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Chapter 1 

GENERAL INTRODUCTION 

 

Chronic Obstructive Pulmonary Disease 

Chronic obstructive pulmonary disease (COPD) is defined as a disorder that is 

characterized by airflow limitation that is not fully reversible. The airflow limitation is 

usually both progressive and associated with an abnormal inflammatory response of 

the lungs to noxious particles or gases.1 

The chronic airflow limitation is caused by a mixture of small airway disease 

(obstructive bronchiolitis) and parenchymal destruction (emphysema), the relative 

contributions of which vary from person to person. Chronic inflammation causes 

remodelling and narrowing of the small airways. Destruction of the lung parenchyma , 

also by inflammatory processes, leads to the loss of alveolar attachments to the 

small airways and decreases lung elastic recoil; in turn, these changes diminish the 

ability of the airways to remain open during expiration. The amount of airflow 

limitation is measured by spirometry. A simple classification, based on spirometric 

data is recommended by the Global Initiative for Chronic Obstructive Lung Disease: 

stage 0 to IV. (table 1)1 

 

COPD is a major and growing global health problem. It ranks the fourth place in most 

common causes of death world wide. It is the only common cause of death which 

prevalence has increased over the past twenty years, and maybe even more 

important, it will increase in both death-ranking and cause of chronic disability until 

2020. COPD primarily affects middle aged and older persons. Smoking is the most 

frequent cause of the development of COPD, accounting for more than 90% of cases 

in developed countries. However, COPD develops in only a minority of smokers (10 
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General introduction 

to 20 percent), indicating that there are differences in individual susceptibility to the 

effects of cigarette smoking.2 

 

Table 1: Classification of COPD by severity (GOLD guidelines)1 

stage characteristics 

0: at risk -normal spirometry 

-chronic cough and sputum production 

I: mild COPD -FEV1/FVC<70% 

-FEV1≥80% predicted 

-with or without chronic symptoms; cough, sputum production 

II:moderate COPD -FEV1/FVC<70% 

-50%≤ FEV1<80% predicted 

-progression of symptoms, with shortness of breath typically developing 

on exertion. 

III: severe COPD -FEV1/FVC<70% 

-30%≤ FEV1<50% predicted 

-increased shortness of breath, and repeated exacerbations which have 

an impact on Quality of Life 

IV: very severe 

COPD 

-FEV1/FVC<70% 

-FEV1<30% predicted or presence of chronic respiratory failure 

 

 

Respiratory complaints are variable and usually consist of cough, sputum production 

and recurrent exacerbations. These complaints usually progress with increasing 

disease severity. Most patients experience dyspnea on exertion, or even at rest when 

the disease progresses. COPD not only leads to respiratory problems, it also leads to 

systemic abnormalities. A lot of patients suffer from exercise intolerance. Maximal as 

well as endurance exercise capacity are often diminished. Furthermore, systemic 

inflammation can be found in COPD patients.3 Peripheral muscle weakness is often 
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present in COPD patients, which also contributes to exercise limitation.4-13  Weight 

loss and low fat free mass index is another important abnormality, which is 

associated with increased mortality and diminished exercise capacity.14;15 (see table 

1) 

 

Respiratory muscles 

The primary ventilatory muscle is the diaphragm. It is active throughout the entire life 

of an individual and to a certain extent represents the sole skeletal muscle that is 

essential for life. Other respiratory muscles are the scalenes and the external 

intercostals (inspiratory muscles) and abdominal muscles (rectus abdominis, external 

and internal obliques and transverses abdominis) and internal intercostals (expiratory 

muscles).16;17 Respiratory muscles improve their function in response to training, like 

all skeletal muscles. 

Dysfunction of the respiratory muscles frequently occurs in patients with COPD. 

Reduced respiratory muscle function is caused by either respiratory muscle 

weakness, relative inactivity due to dyspnea, increased work of breathing due to 

changes in the airways and lungs and inefficiency of the inspiratory muscles because 

of hyperinflation or a combination of these factors.18 Respiratory muscle weakness 

may occur because of metabolic abnormalities such as malnutrition, abnormalities in 

arterial blood gases and electrolyte concentrations, infection and chronic systemic 

steroid administration. Airway obstruction due to mucus and/or inflammation of the 

airways, and loss of alveolar tissue, which all contribute to dynamic airway 

compression and hyperinflation, lead to increased work of breathing. Hyperinflation, 

leading to abnormally large lung volumes, causes the inspiratory muscles to operate 

at lengths shorter than normal. Because of the length-tension curve, this condition 
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places these muscles at a disadvantage for tension generation. The diaphragm, 

under quiet breathing conditions performing about 70-80% of the work of breathing, 

is affected to the greatest degree.17 

 

This respiratory muscle dysfunction may contribute to sensations of dyspnea, limited 

exercise tolerance, reduced quality of life, and as the disease progresses, 

hypercapnic ventilatory failure.18;19 The clinical importance is ambiguous: first of all 

there is the patient with her or his complaints and disabilities. Secondly an increased 

utilization of health care resources was observed in COPD patients with weakness of 

the respiratory muscles.20 

As a consequence, treatment of respiratory muscle dysfunction has gained interest in 

the last three decades. Treatment modalities that were used include 

pharmacotherapy, nutritional repletion, and respiratory muscle training to improve 

strength and endurance. In this thesis we focus on respiratory muscle training. 

 

Training principles  

Training of the ventilatory muscles must follow the basic principles of training for any 

striated muscle with regard to the intensity and duration of the stimulus, the 

specificity of training and the reversibility of training. The basic principles are that for 

muscle fibres to change structure and function they must be stressed (loaded) above 

a critical threshold. This load may be applied by increasing the frequency of training, 

the duration of training, the intensity of the loading, or a combination of these factors. 

Secondly training is specific for the stimulus- that is, strength training will increase 

fibre size (muscle hypertrophy) whereas endurance training will increase oxidative 

enzymes and mitochondrial density, myoglobin content, and capillary density. 
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According to this principle, respiratory muscle training will improve respiratory muscle 

function during day to day activities when the type of recruitment pattern during 

training is most similar to the recruitment pattern required during those activities. 

Leith and Bradley showed that indeed ventilatory muscle strength or endurance can 

be specifically increased by appropriate ventilatory muscle training programs.21 

Furthermore training is reversible and the effects will be reduced (deconditioning) if 

the training ceases. As soon as the individual stops training, the structural and 

functional changes within the body related to training will begin to return to baseline. 

18;22-24 

Concerning the respiratory muscles in patients with COPD, strength training, as well 

as endurance training has been performed, with different rates of success. Training 

of the respiratory muscles can also be achieved by both specific and non-specific 

conditioning programs. The obvious non-specific program is total body exercise. 

Specific training programs include inspiratory resistive training and threshold loading 

(strength training) and normocapnic hyperpnea (endurance training).  

The effects of respiratory muscle training can be evaluated in several ways. First of 

all the performance of the muscles itself can be tested. Respiratory muscle strength 

can be tested by means of evaluation of maximal in- and expiratory pressures (Pimax 

and Pemax).25;26 Endurance capacity can be tested by incremental threshold 

loading27 and other endurance tests like maximal sustained ventilatory capacity. 

Determination of the tension-time index also provides information in this way.28 

Furthermore, the effects of respiratory muscle training can be evaluated in terms of 

functional and endurance exercise capacity, which are useful outcome 

measurements as was pointed out in a recent editorial by Polkey and Moxham.29 
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Respiratory muscle strength training: inspiratory resistive training and 

threshold loading 

Respiratory muscle strength training can be described as performing (sub-)maximal 

inspiratory or expiratory manoeuvres against a resistance. The repetition rate is low 

(5-10 repetitions/minute). The primary goal of strength training is to improve force 

production of the respiratory muscles, thereby also improving, to some extent the 

endurance capacity of these muscles, and eventually improving the exercise capacity 

of the patient and reducing dyspnea. 

 

Inspiratory resistive training (IRT) is a well known respiratory muscle strength- 

training technique, aimed at generating high inspiratory pressures. During IRT the 

patient inspires through a mouthpiece with a two-way valve with a resistance in the 

inspiratory line, usually at normal breathing frequencies. This method is highly 

dependent on the breathing strategy and subjects can adopt a non-fatiguing 

breathing pattern with low-flow rates.30 Essentially, this type of training follows Ohm’s 

law characteristics: P=VxR (P=driving pressure, V=inspiratory flow, R=resistance). 

When imposing only a resistance (R) the patient has two degrees of freedom to 

regulate breathing: pressure (P) and flow (V). Consequently, in this type of training, 

two parameters have to be imposed: P and R or V and R. Thus the breathing pattern 

is strictly defined and controlled.31 Expiration is unimpeded.  

 

Threshold loading is a method which imposes pressures independent of flow-rates. 

Subjects have to breathe through a device with an inspiratory valve (weighted 

plunger) or a spring loaded inspiratory valve. This inspiratory valve is opened when a 
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critical mouth pressure is reached.32 It can also be performed for expiratory muscle 

training. 

 

Most studies using these techniques showed that respiratory muscles can be trained. 

31;33-40 Some studies also showed a reduction of dyspnea.34-38 The effects of 

respiratory muscle strength training on general exercise capacity are however not 

unambiguous. Some investigators found a modestly increased exercise capacity 

after IRT33-37;39;41-43, whereas other studies did not reveal such effects.44;45 These 

differences may be due to the method and protocol of IRT that was used, due to 

patient selection, as well as the fact that the outcome parameters of these studies 

mostly were incremental maximal exercise tests.  

 

Normocapnic hyperpnea: Respiratory Muscle Endurance Training (RMET)  

Normocapnic hyperpnea is a mode of endurance training of the respiratory muscles. 

This Respiratory Muscle Endurance Training (RMET) has much wider potential 

clinical application than respiratory muscle strength training because the respiratory 

muscles must remain active continuously even when placed under added loads, for 

example during exercise, infection, or in case of severe COPD even during activities 

of daily life. Normocapnic hyperpnea is based on non-resistive hyperpnea, in which 

patients are inspiring or rebreathing CO2 in order to maintain CO2 homeostasis. 

RMET may be closer related to daily life situations of COPD patients. It has only 

been used for research purposes and not for routine clinical use, because of the 

complicated equipment needed, requiring a laboratory setting.19;46 
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Normocapnic hyperpnea requires the individual to sustain a period of hyperpnea for 

about 15 minutes. It is probably the best technique for improving endurance of the 

respiratory muscles at high speeds of muscle contraction, which occurs during 

hyperpnea and exercise.18 An improvement of 268% in breathing endurance was 

found after isolated normocapnic hyperpnea in healthy sedentary subjects, whereas, 

in the same study, a sub-maximal exercise test increased with 50%.47 Improvements 

in respiratory muscle function and exercise performance were described in trained 

athletes.48 COPD-patients trained with RMET showed improvement of respiratory 

muscle function49 and exercise performance.50-52  

 

Home-based normocapnic hyperpnea requires special equipment to maintain arterial 

blood gases within a physiological range, because during a period of hyperpnea the 

partial pressure of arterial carbon dioxide (paCO2) decreases. CO2-homeostasis 

during normocapnic hyperpnea can be achieved by adding an external dead space to 

the respiratory system. Because of a lack of a home training device for normocapnic 

hyperpnea, this kind of training method has rarely been used as a training mode for 

patients with COPD. RMET was applied as a home-based training regimen in only 

two studies in patients with COPD.51;52 The studies by Boutellier and Scherer,47;48;52 

that are mentioned above, were performed with a specially developed, electro-

mechanical device, which is expensive and complicated. Enlargement of the 

respiratory dead space can also be done by breathing through a tube, which is much 

easier and less expensive. Therefore Respiratory Muscle Endurance Training 

(RMET) by means of tube breathing, might be a promising technique enabling a 

widespread use. 
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Exercise capacity 

Maximal exercise tests are widely used to asses the factors that limit exercise 

tolerance, to quantify the extent of disability and to set up an exercise training 

program. 

 

Exercise tolerance can be limited in several ways. The respiratory and cardio-

circulatory systems are involved in the transport of oxygen from the atmosphere to 

the mitochondria of skeletal muscle.  

Respiratory function can be diminished by impaired ventilatory capacity, impaired 

diffusion and ventilation-perfusion mismatch. CO2 elimination is limited by alveolar 

ventilation, whereas O2 uptake is most vulnerable at the diffusion through the alveolar 

membrane.  

The cardio-circulatory transport of oxygen is dependent on cardiac output, peripheral 

vascularisation and the quantity of haemoglobin.  

Exercise tolerance can furthermore be diminished because of peripheral muscle 

weakness, neurological problems and psychological factors such as dyspnea. 

 

It is known that limited exercise capacity is frequently observed in patients with 

COPD. Diminished ventilatory efficiency and dyspnea can be one of the factors 

contributing to this impairment in exercise capacity. This diminished ventilatory 

efficiency results from either respiratory muscle weakness, increased work of 

breathing due to changes in the airways and lungs and inefficiency of the inspiratory 

muscles because of hyperinflation, or a combination of these factors.18  
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Patients with mild to moderate COPD (GOLD I and II) are, similarly to healthy 

subjects, limited during exercise by the cardio-circulatory system and on metabolic 

factors at the level of the peripheral muscles. During incremental exercise, these 

subjects may achieve their maximal, age-specific heart-rate and blood lactate may 

increase by more than 10 mmol/liter, reflected by a decrease in base-excess.53 

Dyspnea and perceived leg effort contribute to subjective exercise limitation.54 

 

Patients with severe COPD (GOLD III) are usually limited by their ventilatory system: 

either by abnormal respiratory mechanics or by gas exchange disturbances. Failure 

of the respiratory pump function leads to hypercapnia and eventually hypoxemia 

because of insufficient alveolar ventilation. Respiratory muscle function, amongst 

others, is an important determinant of exercise capacity.4 Maximal exercise capacity 

is substantially limited by dyspnea.55 At the point of maximal exercise, maximal 

minute ventilation approaches or exceeds maximal voluntary ventilation, which as a 

consequence, results in a low or negative breathing reserve. Furthermore, dynamic 

hyperinflation during exercise may lead to an increased load on the respiratory 

muscles and increased exercise intolerance.56 However, dyspnea may limit exercise 

before those mechanisms lead to a physiological limitation. As a consequence, age 

specific maximal heart rate will not be reached. Thus improvement of respiratory 

muscle function and improved alveolar ventilation, reduction of dyspnea, as well as 

bronchodilatation, may lead to improvement of exercise capacity.33;35-37;57 

 

Although it was generally accepted that ventilation does not limit exercise 

performance in normal subjects without airway obstruction, literature from sports 

medicine suggests that respiratory muscle endurance training by means of 
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normocapnic hyperpnea in healthy volunteers leads to a substantial improvement of 

breathing endurance and endurance exercise capacity.47;48;58 It is strikingly apparent 

that people with fully trained respiratory muscles have the lowest minute-ventilation 

possible, and their respiratory muscles fatigue later and metabolise more lactate, but 

the mechanism by which respiratory training improves overall physical performance 

is as yet unknown.59  

 

It also seems important to take the different outcome parameters into account. 

Studies performed before 1990 mostly used maximal incremental exercise tests to 

determine exercise capacity,41;42;45;60 whereas later studies also tested endurance 

capacity by means of constant load exercise testing.47;48;52;57;58;61-65 Constant load 

exercise testing (CLET) can be used to measure endurance exercise capacity and to 

compare ventilatory and metabolic parameters at the same work-rate before and 

after intervention. The latter being an effort independent measurement of training 

effects. CLET has been proven to be a reproducible, reliable and valid method to 

assess endurance exercise capacity in patients with COPD.66;67 

Considering the above-mentioned, training methods for respiratory muscles that 

improve endurance capacity may be more beneficial to patients with COPD, as in 

daily life maximal exercise is seldomly performed. Therefore outcome parameters 

should also focus on endurance capacity rather then maximal exercise. 

 

Dyspnea 

Dyspnea is an important symptom in patients with COPD. Dyspnea may be defined 

as the unpleasant awareness of the need to breathe. Dyspnea originates a.o. in the 

central nervous system because of an imbalance between motor neural output to the 
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respiratory muscles and the magnitude of ventilation resulting from it. In patients with 

COPD the sense of respiratory muscular effort is an important determinant of 

dyspnea.68;69 The clinical rating of dyspnea as measured by the Baseline Dyspnea 

Index is significantly correlated with maximal inspiratory and expiratory pressure.70 

Several studies have shown that respiratory muscle strength-training, by means of 

resistive breathing or threshold loading, leads to an improvement of respiratory 

muscle function31;33-39 and an improvement of dyspnea33;35-38 in patients with COPD. 

Only one study, using endurance respiratory muscle training in COPD patients, 

looked at the effects of this training regimen on dyspnea. Scherer and co-workers 

showed an improvement of dyspnea after RMET.52 

Other factors contributing to dyspnea are hypercapnia and hypoxia sensed by the 

chemo receptors. Proprio receptors in the respiratory muscles, especially the muscle 

spindles in the intercostals, are important contributors to dyspnea sensations. These 

spindles are essential in detecting a length-tension inappropriateness in every 

muscle. The tension/force, relative to the maximal force that a muscle can generate, 

is a major determinant of the sensation of load on a muscle. This type of sensations 

from intercostals muscles, is perceived as dyspnea. Furthermore different signals 

which originate in the parenchyma of the lung and in the airways contribute to 

dyspnea. It can be concluded that dyspnea is a multi-factorial problem. Interventions 

leading to improvement of respiratory muscle function or adaptation to signals from 

mechanoreceptors or chemo receptors thus may lead to a reduction of the 

unpleasant sensation of breathing/dyspnea.  
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Health related Quality of life 

Survival and physiological parameters of airway narrowing do not represent the full 

impact of the disease for patients with COPD. It is also important to reduce the 

personal and social burden of the disease by improving symptoms and functional 

status.71 Therefore health related quality of life has become an important outcome for 

treatment in studies with COPD patients. Measurement of health related quality of 

life, is a means of quantifying, in a standardised and objective manner, the impact of 

disease on a patient’s daily life, health and wellbeing.72 A number of instruments 

have been developed to measure (changes in) health status in COPD: The Chronic 

Respiratory Disease Questionnaire and the St George’s Hospital Questionnaire have 

been validated and have proven to be responsive to (training induced) changes.73;74 

Only one study looked at the effects of RMET on quality of life in COPD. An 

improvement of the physical, but not the mental component of the SF-12 health 

questionnaire was found.52 Since dyspnea is an important determinant of the health 

related quality of life in COPD it can be speculated that, once dyspnea improves as a 

result of respiratory muscle training, quality of life also may improve. 

 

Pulmonary rehabilitation 

Pulmonary rehabilitation is a multidisciplinary program of care for patients with 

chronic respiratory impairment that is individually tailored and designed to optimise 

physical and social performance and autonomy.75 The principal goals of pulmonary 

rehabilitation are to reduce symptoms, improve quality of life, and increase physical 

and emotional participation in everyday activities.1 To achieve these goals, smoking 

cessation must be encouraged and patients should be supported. Furthermore, 

medical therapy must be optimised and exercise training, physical therapy, breathing 
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retraining, nutrition counselling and education of the patient and family must be 

carried out.1;76-79 The diagnosis must of course be accurate and an evaluation of the 

exercise limitation is preferable. COPD patients at all stages of disease benefit from 

exercise training programs. Specific pulmonary rehabilitation programs are 

recommended for GOLD stage II to IV.1 There are no specific patient selection 

criteria, but patients must have symptomatic chronic lung disease. They must be 

stable with optimal standard medical therapy and experience functional limitation 

from their disease. Furthermore they must be motivated and there should be no 

interfering or unstable medical conditions.75 The benefits of pulmonary rehabilitation 

in patients with COPD have been well established: improvement of exercise capacity, 

reduction in perceived breathlessness, improvement of quality of life, reduction in the 

number of hospitalisations and a reduction in anxiety and depression associated with 

COPD.1;80-83 Guidelines for the assessment of candidates and goals of treatment 

have also been published in the Netherlands.84 

Respiratory muscle training in pulmonary rehabilitation is a controversial issue.76-79 

Selection of patients, different training modalities and protocols and measurement of 

different outcome parameters may be the cause of this. However, the recent GOLD 

guidelines mention that respiratory muscle training is beneficial, especially when 

combined with general exercise training.1  
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OUTLINES AND AIMS OF THE STUDY 

 

In the following studies we describe the applicability of home-based normocapnic 

hyperpnea by means of tube breathing and the effects of this respiratory muscle 

endurance training on CO2-homeostasis, endurance exercise capacity, dyspnea, 

quality of life and pulmonary rehabilitation. 

 

The aim of chapter 2 was to study the feasibility and safety of tube breathing as a 

new method of respiratory muscle endurance training (RMET) and its effects on CO2 

homeostasis in healthy volunteers. 

 

In chapter 3 we describe the effects of tube breathing, on CO2 homeostasis in COPD 

patients.  

 

Chapter 4 focuses on the results of home-based RMET, comparing normocapnic 

hyperpnea RMET with sham training, in patients with moderate to severe COPD, 

waiting for in-patient pulmonary rehabilitation. Outcome parameters were respiratory 

muscle performance, endurance and maximal exercise capacity and perception of 

dyspnea. 

 

In chapter 5, which is closely related to chapter 4, we describe the effects of home-

based RMET compared to sham training, with regard to quality of life and dyspnea in 

daily activities, in patients with moderate and severe COPD, before in-patient 

pulmonary rehabilitation. 
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The aim of chapter 6 was to study the effects of optimising the respiratory muscles by 

means of RMET, on the outcome of a pulmonary rehabilitation program. We 

hypothesized that optimising the respiratory muscles before the rehab program would 

lead to a better outcome of this program in terms of respiratory muscle performance 

and endurance exercise capacity. 

 

Chapter 7 gives a summary of the studies in this thesis. The general conclusions and 

implications for daily practice are discussed. 
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ABSTRACT 

Normocapnic hyperpnea has been established as a method of respiratory muscle 

endurance training. This technique has not been applied on a large scale because 

complicated and expensive equipment is needed to maintain CO2-homeostasis 

during hyperpnea. This CO2-homeostasis can be preserved during hyperpnea by 

enlarging the dead space of the ventilatory system. One of the possibilities to enlarge 

dead space is breathing through a tube. If tube-breathing is safe and feasible, it may 

be a new and inexpensive method for respiratory muscle endurance training, 

enabling its widespread use. 

The aim of this study was to evaluate the safety of tube-breathing and investigate the 

effect on CO2-homeostasis in healthy subjects.  

20 healthy volunteers performed 10 minutes of tube-breathing (dead space 60% of 

Vital Capacity). Oxygen-saturation, PaCO2, respiratory muscle function, hypercapnic 

ventilatory response and dyspnea (Borg-score) were measured. Tube-breathing did 

not lead to severe complaints, adverse events or oxygen desaturations. 14 out of 20 

subjects became hypercapnic (PaCO2 >6,0 kpa) during tube-breathing. There were 

no significant correlations between PaCO2 and respiratory muscle function or 

hypercapnic ventilatory responses. The normocapnic versus hypercapnic subjects 

showed no significant differences between decrease in oxygen saturation (–0,7% 

versus –0,2% respectively, p=0,6), Borg score (4,3 versus 4,7, p=0,9) , respiratory 

muscle function nor hypercapnic ventilatory responses.  

Our results show that tube-breathing is well tolerated amongst healthy subjects. No 

complaints, nor desaturations occurred. Hypercapnia developed in a substantial 

number of subjects. When tube-breathing will be applied as respiratory muscle 

training modality, this potential development of hypercapnia must be considered. 
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 INTRODUCTION 

The function of respiratory muscles can improve in response to training. 

Normocapnic hyperpnea is probably the best technique for improving endurance 

respiratory muscle function, which is required during exercise.1 During normocapnic 

hyperpnea the subject has to sustain a period of hyperpnea for about 10 to 15 

minutes. Respiratory Muscle Endurance Training (RMET) is based on the principle of 

normocapnic hyperpnea. RMET, performed with a specially designed, expensive 

electromechanical device showed an improvement of 268% in breathing endurance 

in healthy sedentary subjects, and more-over, the endurance time of a sub-maximal 

exercise test increased with 50% in this study without placebo-training group.2 RMET 

also led to improvements in respiratory muscle function and exercise performance in 

a study in trained athletes, also without a placebo group and in a randomised 

controlled trial in patients with Chronic Obstructive Pulmonary Disease (COPD).3,4

Despite these promising results, RMET is not applied on a large scale because of 

this complicated and expensive equipment that is needed to maintain O2 and CO2-

homeostasis during hyperpnea. This CO2-homeostasis can also be preserved during 

a period of hyperpnea by enlarging the dead space of the ventilatory system. One of 

the possibilities to do so is to breathe through a tube. Thus, RMET by means of tube-

breathing might be a new, inexpensive method to perform respiratory muscle 

training, possibly even in a home-based setting. However, the safety and the effects 

of this kind of tube-breathing on CO2-homeostasis have never been evaluated. 

Therefore we investigated whether tube-breathing might be a safe and inexpensive 

technique to perform RMET, enabling widespread use. 
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The aim of this study was to study the safety and feasibility of tube-breathing in 

healthy subjects. We therefore evaluated oxygenation, perception of dyspnea and 

CO2-homeostasis in 20 healthy volunteers during tube-breathing.  

 

SUBJECTS AND METHODS 

The study population consisted of twenty healthy subjects (13 females) (table 1). 

Exclusion criteria were: a pulmonary medical history, pulmonary complaints and 

current smoking. Subjects were recruited by means of an advertisement in a free 

local paper. The subjects were informed about the purpose of this study and gave 

informed consent. The study was approved by the Ethics Committee of the University 

Hospital Nijmegen. 

  

Pulmonary function test 

Pulmonary function tests at rest were measured according to ERS-criteria 5 with a 

Sensorloop spirometer (Sensormedics corporation, Bilthoven, the Netherlands): 

forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were 

recorded.  

 

Hypercapnic ventilatory response 

The steady state ventilatory response to CO2 was measured. Subjects breathed in a 

closed spirometer circuit (Godart, Bilthoven, the Netherlands) in which the soda lime 

absorber could be partially bypassed with a three way valve. Oxygen was 

supplemented. End-tidal PCO2 was monitored at the mouth (Drager, Typ 8290000). 

After at least 5 minutes, when the end-tidal PCO2 value was stabilized, the soda lime 

absorber was partially bypassed. When the end-tidal PCO2 increased by 1 kPa the 
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bypass around the soda lime absorber was readjusted to prevent the end-tidal PCO2 

from rising any further. After 5 minutes in this steady state the test was ended. Tidal 

volume and breathing frequency were obtained from the spirometer and were 

converted to minute volume of ventilation (VE). The ventilatory response (S) to 

carbon dioxide is the slope of the relationship of ventilation versus end-tidal PCO2 

(l/min/kpa).6,7

 

PImax/PEmax

Maximal static inspiratory and expiratory mouth pressures (PImax and PEmax) were 

measured using a flanged mouthpiece connected to a rigid, plastic tube with a small 

air leak. Pressure was measured with a pressure transducer (Validyne, Northridge, 

California, USA) and recorded (Kipp & Zonen, Delft, the Netherlands). Plateau levels 

for PImax were measured from residual volume, for PEmax from total lung capacity.8 

 

Threshold loading 

Inspiratory threshold loading was used to measure inspiratory muscle endurance. 

Subjects, wearing a nose clip, were connected with a mouthpiece to a threshold 

loading device.9 They inspired against a loaded valve, starting with a load equal to 

10% of Pimax, and 25 gram weights were added at 1.5 minute intervals.10 Pressure 

was measured inside the mouthpiece with a pressure transducer (Validyne, 

Northridge, California, USA). Breathing was continued until inspiration could no 

longer be sustained. The pressure achieved during the heaviest load tolerated for at 

least 45 seconds was defined as the maximal sustainable inspiratory pressure 

(SIPmax).  
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Table 1.   Variables for normocapnic versus hypercapnic group. 

Variable Normocapnic 

Mean (SD) 

Hypercapnic 

Mean (SD) 

P-value 

(between groups) 

Female/male 4/2 9/5  

Age (yr) 21 (2) 29 (13) 0.9 

Height (cm) 176 (15) 177 (11) 0.7 

Weight (kg) 73 (13) 74 (12) 0.3 

FEV1 (litres) 4.0 (1.1) 3.9 (0.6) 0.9 

FEV1 (% predicted) 100 (12) 103 (10) 0.9 

FVC (litres) 4.6 (1.4) 4.4 (0.6) 0.7 

FVC (%predicted) 97 (10) 97 (14) 0.9 

PaCO2 rest (kPa) 5.1 (0.3) 

(38mmHg) 

5.3 (0.4)  

(40 mm Hg) 

0.9 

TBPaCO2 (kPa) 5.2 (0.7)  

(39 mm Hg) 

6.6 (0.4)  

(50 mm Hg) 

0.01 

 Delta PaCO2 (tube-rest 

(kPa)) 

0.09 (0.60)  

(1 mm Hg) 

1.29 (0.50)  

(10 mm Hg) 

0.01 

SaO2 rest 98.5 (0.5) 96.2 (2.0) 0.02 

SaO2 tube 97.8 (2.0) 95.9 (1.0) 0.02 

Delta SaO2 (tube-rest (%)) -0.7 (1.9) -0.2 (1.9) 0.6 

Heart beats/min rest 74 (6) 70 (11) 0.5 

Heart beats/min tube 81 (10) 81 (12) 0.7 

Borg 4.3 (2.9) 4.7 (1.9) 0.9 

S (l/min/kPa) 6.7 (4.7) 10.8 (7.2) 0.7 

SIPmax (kPa) 3.6 (1.6) 4.5 (1.9) 0.2 

PImax (kPa) 7.1 (2.7) 8.7 (2.4) 0.2 

PImax % pred 82 (32) 99 (28) 0.3 

PEmax (kPa) 9.8 (3.9) 10.1 (3.1) 0.7 

PEmax % pred 86.5 (29.1) 88.1 (26.3) 1.0 

Data reported as mean (standard deviation)  
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Legend to Table 1.  
FEV1 = forced expiratory volume in litres in 1 sec  
FVC = forced vital capacity in litres 
PaCO2 = capillary blood pressure of carbon dioxide 
PaCO2 rest = PaCO2 at rest/before tube breathing  
TBPaCO2 = PaCO2 at the end of 10 minutes tube breathing  
Delta PaCO2 tube-rest = difference between PaCO2 value during tube breathing and resting 
value  
SaO2 rest = oxygen saturation at rest 
SaO2 tube = oxygen saturation at the end of 10 minutes tube breathing 
Delta SaO2 tube-rest = difference between SaO2 value during tube breathing and resting 
value 
Borg = Borg-score at the end of tube breathing 
S = slope of ventilatory response to CO2  
SIPmax = maximal sustainable inspiratory pressure in kilopascal 
PImax = maximal inspiratory pressure in kilopascal 
PImax % pred = maximal inspiratory pressure as percentage from reference value 
PEmax = maximal expiratory pressure in kilopascal 
PEmax % pred = maximal expiratory pressure as percentage from reference value 
  

 

External dead space ventilation (tube-breathing) 

The external dead space consisted of a wired bore spirometer-tube (internal diameter 

3 cm, preliminary measured resistance of one meter of tube: 0.03 kPa/l/sec), 

connected to a mouthpiece. The length of the tube, representing the dead space, 

was adjusted to 60% of the forced vital capacity (FVC) 2, because during exercise, 

when minute ventilation rises, tidal volume increases to about 60% of the vital 

capacity and remains constant thereafter.11 A capnograph (Drager, Type 8290000) 

was connected to the mouthpiece, to monitor the end-tidal PCO2. The sampled gas 

was returned from the capnograph to the mouthpiece. The subjects breathed through 

the tube during 10 minutes, at an imposed frequency of 15 breaths/min, and at an 

inspiratory versus expiratory-time ratio of 1:2, using a metronome (Qwik Time QT5, 

quartz metronome). Before the experiment subjects were instructed to take deep 

breaths, to overcome the large dead space. They were seated and rested during 3 

minutes. 30 seconds before the start of tube breathing (PaCO2 rest) and 30 seconds 

before ending tube-breathing (TBPaCO2), an arterialized capillary blood-gas sample 
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was taken from a warmed fingertip. Arterial oxygen saturation and heart rate were 

measured noninvasively by oximetry (Nonin Medical Inc. USA model 8500 MA). 

Perception of dyspnea at the end of tube-breathing was measured with a modified 

Borg-scale (BORG).12 

 

Protocol 

After the pulmonary function test, the hypercapnic ventilatory response was 

determined, followed by measurement of Pimax and Pemax. Next threshold loading 

was performed. The 3 hour session ended with tube-breathing. All experiments were 

performed in the late morning and early afternoon. 

Subjects were resting for 20 minutes between each test. 

 

Statistics 

Pearson correlations between different parameters were determined. Furthermore, 

subjects were divided into two groups: normocapnic versus hypercapnic, which was 

dependent on their TBPaCO2. A PaCO2 ≤ 6.0 kPa was defined as normocapnia. 

Mean values between groups were compared. Data are reported as mean ± SD. The 

Mann-Whitney U test was used to test significant differences between the two 

groups. Significance was set at p<0.05. Statistics were performed using SPSS. 

 

RESULTS 

Table 1 shows the characteristics and the results of the subjects.  

Tube volumes ranged from 2.0 to 4.4 litres (=60% of FVC). During tube-breathing, 14 

out of 20 subjects became hypercapnic (TBPaCO2 > 6 kpa). Besides of dyspnea, 

there were neither severe complaints, nor adverse events. There were no significant 

 36 



Tube-breathing in healthy volunteers 

correlations between PaCO2 and the ventilatory response to CO2, PImax , PEmax or 

SIPmax. Subsequently the subjects were divided into two groups to compare mean 

values: normocapnic versus hypercapnic at the end of tube-breathing. In the 

normocapnic group PaCO2 remained constant: 5.1 (0.3) kPa [mean (± SD)] at rest, 

versus 5.2 (0.7) kPa at the end of 10 minutes tube-breathing (range during tube-

breathing 4.2-6.0 kpa). In the hypercapnic group PaCO2 showed a rise from 5.3 (0.4) 

kpa at rest, to 6.6 (0.4) kpa, p=0.001 (range during tube-breathing 6.1-7.7 kpa). A 

significant difference was found for oxygen saturation at rest as well as at the end of 

tube-breathing, p=0.02 (table 1). However, the change in oxygen saturation (tube-

breathing value minus resting value) did not differ significantly between the groups: 

normocapnic group –0.7% versus hypercapnic group -0.2%, p=0.6. Clinically relevant 

desaturations did not occur in neither group. Lowest saturation in both groups was 

94%.  

 

No significant differences in heart rate at rest, heart rate during tube-breathing, or 

perception of dyspnea (BORG) were recorded among the normocapnic and 

hypercapnic groups. Subjects had no complaints during tube-breathing, besides of 

dyspnea. 

 

Normocapnic and hypercapnic subjects showed no significant differences in the 

following characteristics: age, height, weight, FEV1, FVC, PaCO2 rest.  

 

The ventilatory response to CO2 (S) was not significantly different for the 

normocapnic (6.7 l/min/kPa (4.7)) versus the hypercapnic group (10.8 l/min/kPa 

(7.2)), p=0.2.  
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The normocapnic and hypercapnic subjects did not differ significantly in maximal 

inspiratory pressure (PImax) and maximal expiratory pressure (PEmax). Pimax was 

within a normal range in both groups: normocapnic: 82% (32%) predicted, versus 

hypercapnic 99% (28%) predicted, p=0,3.8 

  

Inspiratory muscle endurance measured with incremental threshold loading, showed 

no significant differences between the normocapnic and hypercapnic subjects: SIPmax 

3.6 (1.6) kpa versus 4.5 (1.9) kpa respectively, p=0.2.  

 

DISCUSSION 

The present study shows that tube-breathing in healthy volunteers is well tolerated. 

No clinically significant desaturations, severe complaints or adverse events occurred. 

It leads to hypercapnia in several subjects. Thus tube-breathing might be a feasible 

and inexpensive method to perform RMET, which suggests that it could become 

available to a large population. However, the potential development of hypercapnia 

must be considered when tube-breathing will be applied as endurance training for the 

respiratory muscles. 

 

To our knowledge this is the first study, evaluating tube-breathing as a new method 

for RMET. Therefore we investigated the safety of this method, first of all in healthy 

subjects. Tube-breathing in our study did not lead to severe complaints, adverse 

events or relevant oxygen desaturations. A heart rate of 81 beats/minute at the end 

of 10 minutes tube-breathing does not reflect severe stress. Perception of dyspnea 

(Borg-score) was moderate to severe at the end of the tube-breathing session.  
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We also looked at the effects of tube-breathing on CO2-homeostasis. Strikingly, 

ventilation was not adapted to maintain a normal PaCO2 during tube-breathing in all 

healthy subjects and consequently alveolar hypoventilation occurred. One of the 

limitations of this study is the fact that we did not measure tidal volumes and minute 

ventilation during tube breathing in our subjects. Thus, the question remains whether 

tidal volumes or probably the fixed respiratory rate (15 breaths/minute), or a 

combination of these two variables, were the limiting factors in achieving an 

adequate alveolar ventilation. On the other hand, the net effect of the alveolar 

ventilation was measured on end-tidal PCO2. This partly obviates the necessity to 

measure minute ventilation as such. However, as a consequence, hypercapnia 

developed in this subset of subjects. Brief increases in PaCO2 (lasting several 

minutes) produce a sensation of respiratory discomfort (air hunger), which is neither 

a harmful, nor a dangerous situation. Hypercapnia also leads to cerebral 

vasodilatation and it diminishes in- and expiratory upper airway resistance.13,14 In 

several studies (in healthy subjects) the effect of induced acute hypercapnia on 

ventilation was evaluated.15-17 However, the design of these studies was different 

from ours because, spontaneous breathing was compared to mechanical ventilation. 

It was shown that ventilation at the same level of hypercapnia, increased even more 

during spontaneous breathing, compared to mechanical ventilation. Furthermore, air 

hunger was much lower at the same level of hypercapnia during spontaneous 

breathing compared to mechanical ventilation. Mean levels of PaCO2 ranged from 

6,1 to 6,9 kpa. Thus it can be speculated that a small rise in PaCO2 during tube-

breathing might even lead to a more intense training stimulus. Moreover, even 
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prolonged exposure (5 days) to elevated levels of CO2 in healthy subjects, did not 

alter the ventilatory chemosensitivity to subsequent acute hypercapnia.18  

 

However, chronic hypercapnia due to respiratory muscle failure is an important 

complication and a poor prognostic marker, especially in patients with COPD.19 On 

the other hand, especially these patients are eligible for respiratory muscle training to 

attempt to prevent or postpone this respiratory muscle failure, which is, among other 

things, caused by impaired respiratory muscle function.20 Nevertheless, before 

applying RMET by means of tube breathing to patients with COPD, the safety, 

applicability and the appropriate training scheme of this technique have to be 

investigated in these patients. 

In Jederlinic’s classical study on resistance stress-testing and training of respiratory 

muscles in COPD-patients, these authors found that all patients hypoventilated, and 

desaturated.21 However, some of their patients were already hypoxemic at the start 

of the test (SaO2 84%). When performing this resistive stress test, Jederlinic’s 

patients hypoventilated. The ‘wisdom of their bodies’ had to make a choice between 

very strong exertion of their respiratory muscles versus accepting some degree of 

hypercapnia. Apparently they chose the latter. The subjects in our study, and also 

possibly future patients, face similar choices. As the resistive load in our study was 

distinctly lower than in Jederlinic’s study, one might expect that the urge/need to 

trade off a heavy respiratory load for some degree of hypercapnia, might be less.  

 

Dead space breathing or tube breathing has been studied in the past, however these 

studies are not comparable to our study design because our subjects were instructed 

to take deep breaths to overcome the large dead space (respiratory muscle 
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endurance training modality), whereas in the other tube-breathing studies the 

investigators looked at the spontaneous (physiological) effects of tube-breathing on 

ventilation.22-25

 

In determining the safety of tube-breathing we looked, among other things, at oxygen 

saturation. The upper part of the oxygen saturation curve levels off, which means that 

the partial pressure of O2 might fall while the oxygen saturation is still normal. 

However, the lowest saturation measured was 94%, which is not associated with 

(relevant) hypoxemia. This observation, along with dyspnea scores and heart rate 

during tube-breathing, underlines that tube-breathing is a safe method. 

 

The striking observation that hypercapnia developed in a large number of subjects 

could be explained by several mechanisms, which will be discussed below. 

A difference in the sensitivity of the chemo receptors to a certain change in PaCO2 

might be responsible for the development of hypercapnia during tube-breathing. This 

response to CO2 is mediated centrally by brainstem chemo receptors in the medulla 

and peripherally by the carotid and aortic bodies. A wide range of ventilatory 

responses to CO2 has been reported in the literature.26 Our subjects also showed a 

wide variance and the results of the hypercapnic ventilatory response could not 

explain the difference in TBPaCO2 between the two groups.  

 

Inspiratory muscle fatigue may lead to acute hypercapnic respiratory failure. One 

study investigated the effect of diaphragmatic fatigue on control of respiratory 

muscles and ventilation during CO2 rebreathing in healthy volunteers. It was 

concluded that diaphragmatic fatigue induces proportionally greater contributions of 

 41



Chapter 2 

inspiratory rib cage muscles, resulting in the preservation of ventilatory response to 

CO2, despite impaired diaphragmatic contractility.27 Diaphragmatic fatigue measured 

by cervical magnetic stimulation occurs following voluntary hyperpnea (until task 

failure), and lasts for at least one hour after hyperpnea.28 The subjects in this study 

breathed at 60% MVV during 517±58 seconds with a respiratory rate of 89±5 

breaths/min. Our subjects were healthy volunteers, breathing with a respiratory rate 

of 15 breaths/minute. Furthermore Pimax was within a normal range in both groups. 

Therefore respiratory muscle fatigue or weakness can not explain the difference in 

TBPaCO2 between both groups.  

 

There was a wider range of ages and there were more females in the hypercapnic 

group. It is difficult to establish whether this might have played a role in becoming 

hypercapnic. Despite this, they were all healthy subjects of whom it is difficult to 

estimate retrospectively whether these factors may have played a role in becoming 

hypercapnic. This would require another study. Furthermore, the sample size in our 

study could have contributed to the absence of statistically significant differences 

between the different parameters. 

 

Based on the knowledge that tube-breathing leads to a stimulation of ventilation 

because it increases the amplitude and leads to a change in the timing of the 

respiratory oscillations in arterial PCO2, we would have expected our subjects to 

remain at least normocapnic, and possibly somewhat hypocapnic.23-25 However, 

several subjects became hypercapnic. Neither respiratory muscle endurance, nor 

chemoreceptor sensitivity was significantly different between the groups, although 

the wide range in ventilatory responses to CO2 makes it hard to detect significant 
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differences. Especially when taken into account the small number of subjects that 

were studied, and therefore a type II error cannot be excluded. Despite these 

statistical remarks, these subjects “accepted” a higher PaCO2 value, rather than 

increase their minute ventilation and thus their work of breathing, in spite of the fact 

that there still was a breathing reserve. The perception of the work of breathing at the 

end of tube-breathing was the same in both groups as shown by the Borg scores. 

Similar differences can be observed in patients with severe COPD. Some maintain a 

high ventilation in order to remain normocapnic (so called “pink puffers”), and others 

do not seem to be bothered by the hypercapnia (so called “blue bloaters”). This fits 

with the recently proposed theory of natural wisdom, that protects these patients from 

the detrimental consequences of their disease, but with the inevitable cost of 

hypercapnia.29 It is, of course, extremely speculative to suggest that possibly these 

types of reactions may already be present in early life, before COPD ever develops. 

However, it is a known fact that there are great interindividual differences in 

ventilatory sensitivity to CO2 and there are several reports suggesting that heredity 

plays a very important role.25 Thus genetic set differences might determine the 

tendency to normocapnia or hypercapnia during tube-breathing. 

 

The observation that tube-breathing is well tolerated in healthy subjects, might have 

important implications for the applicability of this training technique. Nevertheless, 

further studies are necessary before application of RMET by means of tube-breathing 

can be recommended as safe in healthy subjects and these findings need to be 

confirmed in patients with COPD. The equipment for tube-breathing is inexpensive 

and almost everywhere available. This means that RMET by means of tube-
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breathing can be applied on a larger scale: in clinical research, and eventually in 

routine clinical use.  

 

In summary, the results of this experiment show that tube-breathing is well tolerated 

in healthy subjects. It does not lead to complaints, adverse events or desaturations. It 

results in hypercapnia in a substantial number of subjects. This response could not 

be related to any characteristics of the subjects. When tube-breathing will be applied 

as a respiratory muscle training modality, this potential development of hypercapnia 

must be considered. Furthermore, the appropriate training scheme in healthy 

subjects and the safety and applicability of tube-breathing in patients with COPD 

needs further investigations.  
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ABSTRACT 

The function of respiratory muscles can improve in response to training. Home-based 

endurance respiratory muscle training by means of tube-breathing is possibly a new 

training modality for respiratory muscles. The aim of this study was to investigate the 

effect of this tube-breathing on CO2 homeostasis in patients with chronic obstructive 

pulmonary disease (COPD). We hypothesized that the ventilatory control system will 

stimulate ventilation during tube breathing, in order to preserve normocapnia. 

Fourteen consecutive patients with moderate and severe COPD were included in the 

study. Pulmonary function test, hypercapnic ventilatory responses, endurance 

capacity of the respiratory muscles and tube-breathing with dyspnea scores (Borg) 

were performed.  

Strikingly, four patients became hypercapnic (PaCO2>6,0 kpa) during tube-breathing. 

These hypercapnic patients had significantly more severe COPD, more 

hyperinflation, a worse capacity of their respiratory muscles and more dyspnea 

during tube-breathing compared to the normocapnic patients. No significant 

difference was found for the hypercapnic ventilatory response. 

This study shows that tube breathing may lead to hypercapnia and more dyspnea in 

severe COPD patients, especially in those with impaired respiratory muscle capacity. 

The ventilatory controlling system does not seem to play an important role in this 

situation. 
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INTRODUCTION 

Impaired respiratory muscle function, due to respiratory muscle fatigue and 

weakness, leads to dyspnea and exercise intolerance in patients with chronic 

obstructive pulmonary disease (COPD).1 

 

The function of respiratory muscles can improve in response to training. This 

improved function, in turn, can potentially decrease dyspnea, improve exercise 

capacity and increase the ability to perform daily activities in patients with COPD.2-7 

Different training protocols have been designed for improving respiratory muscle 

strength in COPD patients, including targeted inspiratory resistance training and 

threshold loading. Both techniques lead to an improvement of respiratory muscle 

strength, but the effect on exercise performance is less unambiguous.6-11 However, 

the main function of the ventilatory muscles is to continuously perform low intensity 

contractions about 10 to 20 times per minute at rest. During exercise this frequency 

rises even up to 60 times per minute. Therefore specific endurance training may be 

much more effective. Respiratory Muscle Endurance Training (RMET) by means of 

normocapnic hyperpnea requires the individual to maintain a period of hyperpnea for 

about 15 minutes. This is probably the best technique for improving the endurance 

capacity of the respiratory muscles.2 The only study that performed home-based 

RMET in COPD patients, indeed showed improvement in respiratory muscle function 

and exercise capacity.12 However, the equipment needed to maintain a normocapnic 

situation during RMET is expensive and complicated. Therefore RMET, which is a 

technique with good prospects, is not applied on a large scale. 

 During hyperpnea, CO2-homeostasis can be achieved by enlarging the dead space 

of the ventilatory system, which can be done by breathing through a tube. Thus tube-
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breathing might be a simple and inexpensive way to perform RMET in a home based 

setting, enabling a widespread use of this promising training-method. However the 

effects of tube breathing on CO2-homeostasis in patients with COPD have never 

been evaluated. 

Therefore we investigated the effects of tube breathing on CO2-homeostasis in 

patients with COPD. We hypothesized that the ventilatory control system will regulate 

ventilation during tube breathing at such a level that normocapnia will be maintained. 

 

SUBJECTS AND METHODS 

Fourteen consecutive patients (3 female and 11 male) with moderate and severe 

COPD, (FEV1/FVC<70% and FEV1 post-bronchodilatation between 80% and 30% 

predicted) from the out-patient clinic,13 who were in a stable clinical condition for at 

least 6 weeks, participated in this study. Patients were excluded in case of recent 

exacerbation, hypoxemia or hypercapnia at rest, use of oral steroids and a medical 

history with thoracotomy. The subjects were informed about the purpose of this study 

and gave informed consent. The study was approved by the Ethics Committee of the 

University Hospital Nijmegen.  

 

Pulmonary function test 

Pulmonary function tests at rest were measured according to European Respiratory 

Society.14 The characteristics of the pulmonary function tests are listed in table 1.  

 

Hypercapnic ventilatory response 

The steady state ventilatory response to CO2 was measured. Subjects breathed in a 

closed spirometer circuit (Godant, Bilthoven, the Netherlands) in which the soda lime 
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absorber could be partially bypassed with a three way valve. Oxygen was 

supplemented. End-tidal PCO2 was monitored (capnograph Drager, Typ 8290000). 

After at least 5 minutes, when the end-tidal PCO2 value was stabilized, the soda lime 

absorber was partially bypassed. When the end-tidal PCO2 increased by 1 kPa the 

bypass around the soda lime absorber was readjusted to prevent the end-tidal PCO2 

from rising further. After 5 minutes in this steady state, the test was ended. Tidal 

volume and breathing frequency were obtained from the spirometer and were 

converted to minute volume of ventilation (VE). The ventilatory response (S) to 

carbon dioxide is the slope of the relationship of ventilation versus end-tidal PCO2 

(l/min/kPa).15;16 

 

PImax/PEmax

Maximal static inspiratory and expiratory mouth pressures (PImax and PEmax) were 

measured using a flanged mouthpiece connected to a closed, rigid, plastic tube with 

a small air leak. The pressure inside the tube was measured with a pressure 

transducer (Validyne, Northridge, California, USA) and recorded on a chart recorder 

(Kipp & Zonen, Delft, the Netherlands). Plateau-levels were taken for analysis. PEmax 

was measured from total lung capacity (TLC), PImax from residual volume (RV).17  

 

Incremental Threshold loading 

Incremental inspiratory threshold loading was used to measure respiratory muscle 

endurance. 

Subjects, wearing a noseclip, were connected with a mouthpiece to a threshold 

loading device described by Nickerson and colleagues.18 They inspired against a 

loaded inspiratory valve. Thus, a certain level of inspiratory pressure has to be 
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generated in order to overcome the threshold load and to initiate airflow. Pressure 

(Pth) was measured inside the mouthpiece with a pressure transducer(Validyne, 

Northridge, California, USA). Pth could be varied by adding weights to the plunger. 

The subjects started with a load equal to 10% of Pimax and 25 gram weights were 

added at 1.5 minute intervals.19 Breathing was continued until inspiration could no 

longer be sustained. The pressure achieved during the heaviest load tolerated for at 

least 45 seconds was defined as the maximal sustainable inspiratory pressure 

(SIPmax).  

 

External Dead space ventilation (tube breathing) 

The external dead space consisted of a tube (internal diameter 3 cm) connected to a 

mouthpiece. A sampling capnograph (Drager, Typ 8290000) was connected to the 

mouthpiece, to monitor the end-tidal PCO2. The sampled gas was returned from the 

capnograph to the mouthpiece. The external dead space was adjusted to 45% of the 

inspiratory vital capacity (IVC) of each individual patient. The subjects breathed 

trough the tube at an imposed frequency of 15/min and a Ti/Ttot ratio of 0.33, using a 

metronome (Qwik Time QT5, quartz metronome). Before the experiment, patients 

were instructed to take deep breaths, to overcome the large dead space. At the 

beginning and at the end of the tube breathing session an arterialized capillary blood-

gas sample was taken from a warmed fingertip (PaCO2-rest and TBPaCO2-45% 

respectively) . Arterial oxygen saturation and heart rate were measured noninvasively 

by oximetry (Nonin Medical Inc. USA model 8500 MA) during tube breathing. 

Dyspnea during tube breathing was measured with a Borg-scale at regular 

intervals.20 
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Protocol 

After pulmonary function testing, the hypercapnic ventilatory response was done, 

followed by measurement of Pimax and Pemax. Next incremental threshold loading 

was performed. The 3 hour session ended with tube breathing (45% IVC). All 

experiments were performed in the late morning and early afternoon. 

Subjects were resting for 20 minutes between each test. 

 

A PaCO2>6.0 kPa was defined as hypercapnia. 

 

Statistics 

Correlations between the different parameters were determined. Furthermore, 

patients were divided into two groups: normocapnic versus hypercapnic, depending 

on their TBPaCO2. Mean values ± SD were compared between the groups, by 

means of the Mann-Whitney U test. A value of p≤0.05 was considered statistically 

significant. Statistics were performed using SPSS 10.0 for Windows. 

 

RESULTS 

Table 1 shows the characteristics of the patients. 10 subjects remained normocapnic 

during tube breathing, whereas 4 subjects became hypercapnic. The correlation 

coefficients between TBPaCO2 and the other parameters were determined and 

subsequently the subjects were divided into two groups, normocapnic versus 

hypercapnic group and mean values were compared. 

 

 53



Chapter 3 

Table 1.  Variables for normocapnic versus hypercapnic group. 

Variable Normocapnic 
Mean (SD) 

Hypercapnic 
Mean (SD) 

P-value 
(between groups) 

Female/male* 2/8 1/3 ---------- 

Age (yr) 62 (8) 68 (9) 0.35 

Height (cm) 177 (10) 173 (12) 0.52 

Weight (kg) 79 (10) 64 (20) 0.22 

FFMI 17.3 (1.2) 16.1 (3.2) 0.50 

Packyears 20 (17) 38 (16) 0.11 

FEV1 (l) 2.0 (0.4) 1.0 (0.5) 0.02 

FEV1(%pred) 62 (12) 38 (16) 0.05 

FVC (l) 4.4 (0.9) 3.2 (0.7) 0.02 

FEV1/FVC 48 (12) 36 (11) 0.13 

FRC(%pred) 106 (22) 143 (18) 0.02 

Kco (%pred) 80 (25) 53 (18) 0.07 

S (l/min/kPa) 8.2 (6.4) 6.7 (4.9) 0.65 

PImax (kPa) 9.5 (1.9) 7.5 (1.5) 0.07 

PImax (%pred) 126 (25) 109 (27) 0.31 

PEmax (kPa) 9.7 (3.9) 8.9 (3.1) 0.82 

PEmax (%pred) 83 (21) 78 (47) 0.85 

SIPmax (kPa) 2.4 (1.6) 1.5 (1.9) 0.04 

PaCO2rest (kPa) 4.9 (0.3) 5.3 (1.2) 0.48 

PaCO2 45% (kPa) 5.2 (0.6) 6.7 (1.0) ---- 

Oxygen saturation 95 (5) 92 (3) 0.22 

Borg 6 (2) 9 (1) 0.007 
 
Legend to table 1: 
FFMI = fat free mass index 
Packyears = number of years, smoking 20 cigarettes a day 
FEV1 (l) = forced expiratory volume in litres in 1 second 
FEV1 (%pred) = forced expiratory volume as percentage predicted 
FVC (l) = forced vital capacity in litres 
FRC (%pred) = functional residual capacity as percentage predicted 
Kco(%pred) = transfer factor for carbon-monoxide/litre alveolar volume as percentage 
predicted 
 S = hypercapnic ventilatory response in litre per minute per kilopascal  
PImax = maximal inspiratory mouth pressure in kilopascal 
PImax(%pred) = maximal inspiratory mouth pressure as percentage predicted 
PEmax = maximal expiratory mouth pressure in kilopascal 
PEmax(%pred) = maximal expiratory mouth pressure as percentage predicted 
SIPmax = maximal sustainable inspiratory pressure in kilopascal 
PaCO2 = pressure of carbon dioxide in arterialized capillary blood in kilopascal 

 54 



Tube-breathing in COPD 

PaCO2rest = PaCO2 at rest/before tube breathing  
PaCO2 45% = PaCO2 at the end of tube breathing 
Oxygen saturation = oxygen saturation at the end of tube breathing 
Borg = Borg-score at the end of tube breathing 
 

 

Correlations 

The correlation coefficient for FEV1 as percentage from predicted and TBPaCO2 was 

–0.30, p=0.4. FEV1/FVC showed no significant correlation with PaCO2.  

Functional residual capacity as percentage of predicted normal value (FRC%pred) 

showed a significant positive correlation with TBPaCO2: r=0.60, p=0.05. 

No significant correlations existed between TBPaCO2 and the hypercapnic ventilatory 

response, r=0.13, p=0.7. 

Correlation-coefficient for TBPaCO2 and PImax(kpa) was -0.64, p=0.02 and for 

TBPaCO2 and PImax(%predicted) r=-0.70, p=0.01. For TBPaCO2 and PEmax(kpa) and 

TBPaCO2 and PEmax(%pred) there was no significant correlation: r=-0.04, p=0.9 and 

r=-0.08, p=0.8 respectively. 

Respiratory muscle endurance capacity (SIPmax) showed no significant correlation 

with PaCO2, r=-0.30, p=0.4. 

Borg score showed no significant correlation with TBPaCO2: r=0.47, p=0.13. 

 

Comparison of mean values 

A significant difference between the normocapnic group and the hypercapnic group 

was found in FEV1 as percentage from predicted; 62 (12)% versus 38 (16)%, p=0.05. 

However the amount of airway obstruction was not significantly different; in the 

normocapnic group and the hypercapnic group, FEV1/FVC was 48 (12)% and 36 

(11)% respectively, p=0.13. 
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FRC as percentage of predicted showed a significant difference between the groups: 

normocapnic 106 (22)% versus hypercapnic 143 (18)%, p=0.02. (table 1) 

There was no significant difference in hypercapnic ventilatory response between the 

groups.  

 

PImax and PEmax were not statistically different between both groups. (table 1) 

 

There was a significant difference between the normocapnic and the hypercapnic 

group for respiratory muscle endurance capacity (SIPmax); 2.4 (1.6) kPa versus 1.5 

(1.9) kPa respectively, p=0.04. (table 1) 

 

A statistically significant difference in the Borg score at the end of tube breathing was 

found between both groups: 6 (2) in the normocapnic group versus 9 (1) in the 

hypercapnic group. (table 1) 

 

Oxygen saturation at the end of tube breathing did not differ significantly between the 

groups. (table 1) 

 

DISCUSSION 

The results of this study indicate that in patients with moderate and severe COPD, 

hyperinflation and diminished respiratory muscle endurance capacity are associated 

with hypercapnia during tube-breathing. Due to the high load on the respiratory 

muscles, and the increased chemical drive, the hypercapnic patients experienced 

more dyspnea. 
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To our knowledge, this is the first study evaluating the effect of tube-breathing, as a 

possible respiratory muscle endurance training modality, on CO2-homeostasis in 

COPD patients. These patients may benefit from respiratory muscle endurance 

training, which requires complicated and expensive equipment. Tube-breathing is a 

simple and inexpensive way to perform RMET, which is accessible to almost all 

patients and chest-physicians. 

 

Patients in the hypercapnic group had a lower FEV1 (% predicted) compared to the 

normocapnic group. They also were more hyper-inflated as shown by a higher FRC 

(% predicted). Their diffusion capacity appeared to be lower, although not statistically 

significant. All these parameters point out that the patients in the hypercapnic group 

had more severe COPD. The increased FRC is of special importance in the 

explanation of the results of this study. It is well known that hyperinflation of the lungs 

leads to an unfavourable position of the diaphragm on its length-force diagram.21 The 

lungs and thorax are in the upper horizontal part of the pressure-volume curve, and 

consequently are stiffer. Muscle fibres not only produce substantially less active force 

at shorter lengths than optimal length, they also fatigue more rapidly.22 Fatigue is 

defined as a condition in which there is a loss in the capacity for developing force 

and/or velocity of a muscle, resulting from muscle activity under load, and which is 

reversible by rest.22 The finding of the lower SIPmax in the hypercapnic group, as a 

parameter for respiratory muscle endurance capacity and the correlation between 

Pimax and TBPaCO2 supports this finding. Mador and colleagues have shown that 

contractile fatigue of the diaphragmatic occurs after voluntary hyperpnea until task 

failure, even in healthy subjects.23 Voluntary hyperpnea is based on endurance 

exercise of the respiratory muscles. This is in accordance with our findings. These 
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factors all contribute to pump failure of the respiratory system, which leads to alveolar 

hypoventilation and thus hypercapnia.  

Patients in the hypercapnic group experienced more dyspnea at the end of tube-

breathing, compared to the normocapnic patients. This is reflected by a significant 

difference in the Borg score of 9 versus 6, p=0.007. Dyspnea is defined as a 

subjective experience of breathing discomfort that consists of qualitatively distinct 

sensations that vary in intensity.24 It is therefore a multi-factorial sensation that arises 

from different pathophysiological mechanisms. One of these mechanisms is the 

sense of respiratory muscular effort, which is related to the ratio of the pressure 

generated by the respiratory muscles to the maximum pressure-generating capacity 

of the muscles. This sense of effort may be the predominant factor contributing to 

breathlessness when the respiratory muscles are fatigued or weakened, or when the 

load on them is increased.25 Another mechanism contributing to dyspnea is 

hypercapnia. Hypercapnia caused breathlessness in the absence of respiratory-

muscle activity in paralysed (neuromuscular-blocking drug) healthy subjects. The 

same results were found in ventilator dependent patients with quadriplegia, who lack 

inspiratory muscle function and had air-hunger when end-tidal carbon dioxide was 

raised.24 The effects of carbon dioxide on dyspnea are mediated through changes in 

pH at the level of (central) chemo receptors.24 Patients in our study had the same 

ventilatory response to carbon dioxide. The difference in paCO2 at the end of tube 

breathing therefore does not seem to be a result of a different sensitivity of the 

chemoreceptor-system for carbon dioxide. Hypercapnia thus is an indicator of a weak 

and fatigable respiratory pump. It could be hypothesized that these patients might 

benefit most from RMET. However, further studies will be needed to evaluate this. 
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In summary, it is likely that the increased load on the respiratory muscles had more 

impact on the patients with diminished respiratory muscle capacity (i.e. the 

hypercapnic group), than on the patients who stayed normocapnic during tube 

breathing. The (fast) change in PaCO2 also contributes to the increased dyspnea. 

Thus, both factors led to a higher dyspnea sensation in the hypercapnic patients. 

Consequently, hyperinflated COPD patients with reduced capacity of the respiratory 

muscles, are probably prone to respiratory failure, hypercapnia and progressive 

dyspnea. Therefore they might be the most adequate patients for respiratory muscle 

endurance training. 

 

One of the limitations of this study is the small number of patients. However, 

correlations and comparison of means even in this small group point in the same 

direction. Another limitation is the fact that we did not measure diaphragmatic fatigue 

strictly speaking. This can be done by cervical magnetic stimulation or 

transcutaneous phrenic nerve stimulation.23 In our study we only looked at 

hypercapnia, which is caused by alveolar hypoventilation and thus is an indirect 

measurement of pump failure of the respiratory muscles. Our study was also not 

designed to look at dynamic hyperinflation. The protocol we used for tube-breathing, 

might have led to (more) dynamic hyperinflation, especially in those patients with 

more severe airflow obstruction. However, to minimize the possibility of dynamic 

hyperinflation we enforced patients (by means of the settings of the metronome) to 

breathe with a normal inspiratory ratio: expiratory ratio of 1:2 (Ti/Ttot= 0.33). Neither 

did we look at differences in lung compliance (loss of elastic recoil) between the 

subjects. Both factors might contribute to increased dyspnea and respiratory muscle 

fatigue.24 
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With the results of this study and the above mentioned remarks in mind, it would be 

interesting to find out whether diaphragmatic fatigue occurs during tube-breathing 

and whether hypercapnic patients would benefit more from endurance respiratory 

muscle training , than normocapnic patients.  

 

In conclusion, the results of this study show that impaired respiratory muscle capacity 

leads to hypercapnia and a higher perception of dyspnea during tube-breathing in 

patients with moderate and severe COPD. The ventilatory controlling system does 

not seem to be an important factor in becoming hypercapnic (won’t breathe). 

However the controlled system (respiratory pump) seems to be the determinant of 

hypercapnia during tube breathing (can’t breathe). Further studies are needed to 

evaluate which patients will benefit most from RMET. 
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ABSTRACT 

Background: Impaired exercise tolerance is frequently observed in patients with 

chronic obstructive pulmonary disease (COPD). Respiratory muscle strength training 

has been applied in COPD patients, to improve respiratory muscle function and 

exercise performance. Respiratory Muscle Endurance Training (RMET) by means of 

normocapnic hyperpnea is probably a better technique for improving endurance 

respiratory muscle function, which is required during exercise. This technique is not 

applied on a large scale because complicated and expensive equipment is needed to 

maintain CO2 homeostasis. This CO2 homeostasis can be preserved during 

hyperpnea by enlarging the dead space of the ventilatory system by breathing 

through a tube. Therefore, tube-breathing might be a new, inexpensive method for 

home-based RMET.  

The aim of this study was to asses whether home-based RMET by means of tube 

breathing improves endurance exercise performance and perception-of-dyspnea in 

patients with COPD.  

Methods: We randomised 36 patients with moderate and severe COPD (GOLD II 

and III) to RMET (n=18) by means of paced tube-breathing or to sham training 

(control: n=18). Both groups trained twice daily for 15 minutes, 7 days per week, 

during 5 weeks.  

Results: Endurance exercise capacity, determined by constant-load exercise testing 

on a cycle-ergometer, showed a significant increase of endurance time in the RMET-

group: 18 minutes ±648 seconds to 28 minutes ±894 seconds (mean±SD), p<0.001, 

whereas perception-of-dyspnea (Borg-score) decreased from 8.4±1.9 to 5.4±1.3, 

p<0.001. Respiratory muscle endurance capacity significantly increased in the 

RMET-group: sustainable inspiratory pressure increased from 25±9 to 31±14 cm H2O 
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, p=0.005. Quality of life (Chronic Respiratory Disease Questionnaire) improved from 

78.7±20.6 to 86.6±18.4, p=0.001. The control group showed no significant changes. 

Conclusion: Home-based RMET by means of tube-breathing leads to a significant 

improvement of endurance exercise capacity, a reduction in perception-of-dyspnea 

and an improvement in quality of life in patients with moderate to severe COPD.  
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INTRODUCTION 

Impaired exercise tolerance and diminished ventilatory efficiency are frequently 

observed in patients with chronic obstructive pulmonary disease (COPD). Airflow 

limitation leads to altered ventilation-perfusion matching and hyperinflation, which 

decreases effective alveolar ventilation and reduces ventilatory efficiency. Increased 

airway resistance also leads to increased work of breathing.1 In COPD patients, low 

maximal respiratory pressures have been observed.2 This is indicative of diminished 

respiratory muscle function, due to respiratory muscle weakness, due to 

hyperinflation, or a combination of these, which contributes to impaired exercise 

tolerance and dyspnea.  

Several forms of respiratory muscle training have been applied in patients with 

COPD, to improve respiratory muscle function and, to some extent, dyspnea and 

exercise performance. Most of these studies used respiratory muscle strength 

training and showed inconsistent results regarding improvements of dyspnea and 

exercise capacity.3-9 Respiratory Muscle Endurance Training (RMET) by means of 

normocapnic hyperpnea is probably a better technique for improving respiratory 

muscle endurance capacity, which is required during exercise.10 This technique is not 

applied on a large scale because complicated and expensive equipment is needed to 

maintain CO2 homeostasis during a period of hyperpnea.11-13 This CO2 homeostasis 

can also be preserved during hyperpnea by enlarging the dead space of the 

ventilatory system by breathing through a tube.  

 

We therefore hypothesized that RMET by means of tube-breathing might be a simple 

and inexpensive technique to improve respiratory muscle performance and exercise 
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capacity in patients with COPD, and thus might become available for routine clinical 

use.  

 

The aim of this randomised controlled trial was to test the effectiveness of RMET by 

means of tube-breathing on endurance exercise capacity in patients with moderate to 

severe COPD. The effects on respiratory muscle function, perception of dyspnea and 

quality of life were also evaluated. 

 

SUBJECTS AND METHODS 

 

Subjects 

Subjects were recruited from the waiting list of participants for pulmonary 

rehabilitation in the Department of Pulmonology Dekkerswald, University Medical 

Center Nijmegen. Consecutive patients, who met the inclusion criteria, agreed to 

participate and had signed the informed consent form were randomly assigned to an 

RMET group or a control group (sham training). The study protocol was approved by 

the Ethics Committee of the University Hospital Nijmegen. Inclusion criteria were: 1) 

Chronic airflow obstruction defined as an FEV1/FVC<70%, FEV1: 30-80% predicted, 

post bronchodilatation. 2) Stable clinical condition for at least 6 weeks. Exclusion 

criteria were: 1) Hypoxemia at rest or during exercise. 2) Cardiac or orthopaedic 

disease. 3) Body Mass Index (BMI) > 30 kg/m2. 

All patients on the waiting list for pulmonary rehabilitation (n=92) were screened 

between July 2001 and November 2002. Three patients refused to participate and 50 

patients met the exclusion criteria. (FEV1<30%predicted and/or hypoxemia at rest or 

during exercise : n=46, BMI>30: n=3 , orthopaedic disease: n=1). Initially 39 patients 

 67



Chapter 4 

were included in the study. Three patients dropped out of the study (severe 

exacerbation requiring hospitalization, 2 controls and 1 study-group). Thirty-six 

patients completed the study. 

Table 1 shows the baseline characteristics of the subjects. There were no significant 

differences between the groups. Age ranged from 38 to 73 years (56±8) (mean±SD). 

All patients used bronchodilators (long acting beta-agonists and short or long acting 

anti-cholinergics). Inhaled corticosteroids were used by 13 patients in the RMET 

group versus 12 in control group, and aminophylline was used by 2 patients in both 

groups. The use of medication did not differ significantly between groups. Medication 

was not changed during the study period. None of the patients had participated in a 

previous rehabilitation program. 

  

Study protocol 

Standardized tests were performed before the start (baseline), and in the last week of 

the training-period. Baseline testing was performed by the investigator. All other tests 

were performed by a doctor and physiotherapist, who were not aware of baseline 

results, nor the training device that was used by the patient. 

 

Pulmonary function testing, measurement of peak oxygen consumption (Vo2peak), 

maximal respiratory muscle strength and BMI were performed during the screening 

for pulmonary rehabilitation. If patients were suitable for participation, supplementary 

tests were performed within 1 week. 

 

On the first day of the study patients performed an inspiratory muscle endurance test 

(Incremental Threshold Loading).14 After 30 minutes of rest a hyperpnea endurance 
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test was done . After another 30 minutes of rest a 6-minutes walking distance test 

was carried out.15 The chronic respiratory disease questionnaire (CRQ) for 

measurement of health-related quality of life was completed.16 

 

On the second day Incremental Threshold Loading (30 minutes rest), hyperpnea 

endurance test (30 minutes rest) and 6-minutes walking distance test were repeated 

followed by (30 minutes rest) an endurance test on a cycle-ergometer.  

The best results were taken for analysis. 

 

Patients of both groups were told that they were undergoing respiratory muscle 

exercises, and that two different devices were being compared for this purpose. 

 

Testing 

Pulmonary function testing: 

A complete pulmonary function study was performed according to the statement of 

the European Respiratory Society.17 

 

Measurement of respiratory muscle performance: 

Maximal inspiratory and expiratory pressures (Pimax, Pemax) were measured in 

sitting position at residual volume and total lung capacity, respectively, using a 

flanged mouthpiece with a small air leak. The pressure was measured with a 

transducer (Validyne DP103-32, Northridge, California, USA) and recorded (Kipp & 

Zonen, BD 101, Delft, the Netherlands). Measurements of plateau values were taken. 

Reference normal values were taken from Wilson.18  
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Table 1: Baseline characteristics 

 RMET Control-group P value 

N 18 18  

age (yrs) 54.4 (7.7) 57.0 (8.5) 0.35 

sex M/F 8/10 9/9 0.75 

BMI (kg/m2) 26.7 (5.0) 27.5 (3.3) 0.61 

FEV1 (litres) 1.5 (0.4) 1.7 (0.5) 0.15 

FEV1 %pred 50 (14) 58 (15) 0.10 

FEV1/IVC 46 (13) 50 (14) 0.47 

RV %pred 137 (38) 127 (26) 0.36 

Pimax (cm H2O) 69 (29) 72 (23) 0.69 

Pimax %pred 89 (34) 93 (28) 0.73 

HET (sec) 534 (349) 389 (265) 0.17 

SIPmax (cm H2O) 25 (9) 29 (12) 0.37 

Wmax CPET 111 (33) 123 (35) 0.29 

Wmax %pred CPET 65 (16) 67 (15) 0.66 

VO2peak (ml/min/kg) 19.6 (4.5) 19.3 (4.0) 0.85 

6-MWD (metres) 519 (89) 550 (75) 0.27 

6-MWD %pred 92 (15) 100 (12) 0.09 

CLET (minutes seconds) 17 51 (10 48) 16 24 (15 30) 0.75 

BORG dyspnea CLET: iso-time 80% 8.4 (1.9) 8.3 (1.7) 0.78 

CRQ 78.7 (20.6) 82.4 (14.7) 0.5 

Data are expressed as means (SD) 

Legend to Table 1. 
BMI = body mass index;  
FEV1 = forced expiratory volume in 1 second;  
%pred = percentage predicted of reference values;  
IVC = inspiratory vital capacity;  
RV = residual volume;  
Pimax = maximal inspiratory mouth pressure;  
HET = hyperpnea endurance test;  
SIPmax = maximal sustainable inspiratory mouth pressure;  
Wmax = maximal work load in watt;  
CPET = cardio pulmonary exercise testing;  
VO2peak = peak oxygen uptake;  
6-MWD = 6-minutes walking distance;  
CLET = constant load exercise test on cycle ergometer;  
CRQ = Chronic Respiratory Disease Questionnaire 
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Inspiratory muscle endurance was measured by Incremental Threshold Loading.19 

Patients inspired against a weighted inspiratory valve, of which the load was 

increased at regular intervals. Threshold pressure was measured with a pressure 

transducer (Validyne DP103-32, Northridge, California, USA). The pressure achieved 

during the heaviest load tolerated for at least 45 seconds was defined as the maximal 

sustainable inspiratory pressure (SIPmax).14 

 

A hyperpnea endurance test (HET) was used to assess endurance performance of 

respiratory muscles. Subjects, wearing a nose-clip, breathed in a closed spirometer 

circuit (Godart, Bilthoven, the Netherlands) in which the soda lime absorber could be 

partially bypassed to maintain an isocapnic situation during the test . Oxygen was 

supplemented. End-tidal PCO2 (PetCO2) was measured at the mouth (Drager, Typ 

8290000) and oxygen saturation was monitored with a pulse oximeter. Patients 

breathed with a fixed frequency of 30 times a minute, Ti/Ttot=1:3, using an electronic 

metronome (Qwik Time QT5) and with a tidal volume of 45% of their vital capacity 

(IVC). They had visual feedback of their tidal volumes on the spirometer and were 

not encouraged during the test. The test was terminated when the patient could no 

longer sustain the respiratory frequency or tidal volume during 3 consecutive breaths 

or after a maximum of 20 minutes and this time was recorded.  

 

Exercise testing: 

Maximal incremental cardio-pulmonary exercise testing (CPET) was performed on an 

electrically-braked cycle ergometer ( Lode, Groningen, The Netherlands). During this 

symptom-limited test the work rate increased every 30 seconds by 5% of the 

predicted maximal work load 20 and pedalling rate was set at about 60 revolutions per 
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minute. Ventilatory parameters were measured breath by breath (sensormedics 

Vmax 29). Arterial blood samples were taken at regular intervals. Heart rate was 

monitored by ECG recording. At the end of the test Vo2peak and Wmax were recorded. 

Results were compared (pre- and post- training) at identical levels of exercise: iso-

work-load. Wmax of the first CPET was set at 100%. 

 

Endurance test or constant-load exercise testing (CLET) was performed on the same 

cycle-ergometer. Patients exercised at a work rate of 50% of the individual Wmax, 

pedalling rate 60 revolutions per minute. They were not encouraged during the test. 

The test was terminated when patients indicated that they were exhausted and were 

unable to maintain a pedalling frequency of 60 revolutions per minute. This time was 

recorded as cycle-endurance time. Ventilatory parameters were measured. 

Perception of dyspnea was measured by Borg scores at regular intervals.21 Results 

(pre- and post- training) were compared at identical time-points of exercise: iso-work-

time. The endurance time of the first CLET was set at 100%. 

 

Six-minute walking test was performed in a standardized way 15 in a corridor of 50 

meters length.  

 

Endurance respiratory muscle training and sham-training 

 

Respiratory muscle endurance training 

RMET was performed by means of tube-breathing. A tube (internal diameter 3 cm), 

connected to a mouthpiece, was added to the respiratory system to re-breathe 

exhaled carbon dioxide. Maximum ventilatory capacity that can be sustained for 15 
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minutes is about 60% of MVV. 22 Therefore, the aimed level of ventilation during 

training was set at 60% of Maximum Voluntary Ventilation (MVV) which was 

calculated from 35 times FEV1 (60% MVV= 0.6 x 35 x FEV1). The dead space was 

adjusted to 60% of the patients inspiratory vital capacity (IVC) + the resting tidal 

volume 23, because during exercise, when minute ventilation rises, tidal volume 

increases to about 60% of the vital capacity and remains constant thereafter.24 

Breathing frequency (Fresp) was calculated: 60% MVV= Fresp x (0.6 x IVC + resting 

tidal volume) and was increased during training to a maximum of 20 breaths per 

minute. Breathing frequency was imposed by an electronic metronome: Ti/Ttot ratio 

of 0.33 (Qwik Time QT5). Patients wore a nose-clip and were instructed to take deep 

breaths. End-tidal CO2 (PetCO2) was analysed with a sampling capnograph (Drager, 

Type 8290000) which was connected to the mouthpiece. 

 

Sham training 

Sham training was performed by breathing 6-7 times/minute through an incentive 

flowmeter (Inspirx, Resprecare Medical Inc, The Hague, The Netherlands). Airflow 

resistance was set at ± 5%Pimax.  

 

Training intensity  

Patients in both groups trained twice daily for 15 minutes, 7 days a week, during 5 

weeks. All patients were seen weekly at the pulmonary laboratory to check whether 

training was performed correctly. Furthermore, patients completed a diary in which 

they reported training regimen. 
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Statistics 

Data are reported as mean ± standard deviation (SD). 

Training induced changes (post- minus pre-training values: delta) were compared 

between groups using Analysis of Covariance (ANCOVA) with baseline as covariable 

(P-delta). The Students t-test for paired samples was used to evaluate differences 

within groups (pre- versus post- training). Significance was set at p≤0.05. SPSS 10.0 

for Windows was used for analysis. Endurance time of the CLET will be the primary 

endpoint. This study was initially powered to detect differences between 3 treatment 

arms. To demonstrate a difference in change of CLET of 15% between either of 2 

active treatments and no treatment, 20 subjects per group are needed, assuming a 

standard deviation of 15% in the change, a significance level of 2.5% per comparison 

and a power of 80%. Since one active treatment arm was dropped soon after start of 

the study (for financial reasons only), the significance level for the final analysis was 

raised to 5%. Hence, 17 subjects per group would suffice to attain a power of 80%. 

 

RESULTS 

Respiratory muscle performance 

Table 2 shows the effects of 5 weeks of home-based RMET on respiratory muscle 

performance. HET and SIPmax significantly increased in the RMET-group. The 

control group showed a decrease of these parameters. Pimax and Pemax showed no 

significant changes. Subset analysis of patients with a low Pimax (<75% predicted, 

n=6 in RMET-group and n=5 in control group), as indicative of respiratory muscle 

weakness, showed the same results in HET and SIPmax and moreover Pimax 

increased significantly in the RMET-group from 39 cm H2O (=54% pred) to 58 cm 

H2O (=80% pred), p=0.049. No changes occurred in the control group. 

 74 



Effect of RMET on exercise performance 

Exercise performance and quality of life 

The effects of home-based RMET on exercise performance and quality of life are 

shown in table 2.  

Endurance exercise capacity (CLET) significantly increased by 58% in the RMET-

group, whereas no change was found in the control group. 6-MWD and quality of life 

also showed a significant increase in the RMET-group, without a change in the 

control group.  

 

At an iso-work-time of 80% of the initial endurance time there were significant 

changes in the RMET-group for the following variables (table 3): Ventilation 

decreased from 42.8±10.5 to 39.6±10.0 litres/minute; p=0.034, respiratory frequency 

decreased from 37±7 to 30±7 breaths/minute; p<0.001 and tidal volume increased 

from 1.2±0.3 to 1.4±0.5 litre; p=0.035. Borg score for exercise dyspnea at iso-work-

time significantly decreased in the RMET-group from 8.4±1.9 to 5.4±1.3, p<0.001. In 

the control group there were no significant changes for these parameters.  

 

CPET showed a significant increase in maximal work-load in the RMET-group. (table 

2) Vo2peak did not change. At an iso-work load of 80% the following changes were 

observed in the RMET-group: Minute ventilation, respiratory rate, Vo2 and heart-rate 

all significantly decreased. No significant changes were observed in the control 

group. (table 4) 
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Table 2:  Pre and post training values and significance of training induced changes  

 RMET Control-group  

 pre post P-value 
within 
group 

pre post P-value 
within 
group 

P-delta 

Pulmonary 
function 
tests 

  

FEV1 (litres) 1.5(0.4) 1.6(0.5) 0.12 1.7(0.5) 1.8(0.5) 0.18 0.84 

IVC (litres) 3.3(0.7) 3.3(0.7) 0.26 3.6(0.9) 3.7(0.9) 0.10 0.52 

Respiratory 
muscle 
performance 

  

Pimax (H2O) 66(29) 73(28) 0.10 72(23) 75(30) 0.72 0.53 

Pemax (H2O) 75(34) 88(42) 0.13 82(34) 92(41) 0.38 0.94 

HET (sec) 534(349) 833(348) <0.001 389(265) 343(259) 0.05 <0.001 

Sipmax (H2O) 25(09) 31(14) 0.005 29(12) 26(12) 0.04 <0.001 

Exercise 
performance 
and CRQ 

  

CLET (minsec) 1751(1048) 2816(1454) <0.001 1624(1530) 1635(1402) 0.85 <0.001 

6-MWD (m) 512(86) 535(77) 0.007 549(75) 544(85) 0.48 0.02 

Wmax CPET 111 (33) 120 (38) 0.02 123 (35) 126 (42) 0.5 0.07 

VO2peak 
(ml/min/kg) 

19.6(4.5) 19.9(4.7) 0.33 19.3(4.0) 19.9(5.1) 0.51 0.93 

CRQ 78.7(20.6) 86.6(18.4) 0.001 82.4(14.7) 85.0(15.0) 0.2 0.07 

Data are expressed as means (SD).   P delta: significance of training induced changes (post- 
minus pre-training values: delta) between groups by ANCOVA. 
Legend to table 2. 
FEV1 = forced expiratory volume in 1 second;  
IVC = inspiratory vital capacity;  
Pimax = maximal inspiratory mouth pressure;  
Pemax = maximal expiratory mouth pressure;  
HET = hyperpnea endurance test;  
SIPmax = maximal sustainable inspiratory mouth pressure;  
6-MWD = 6-minutes walking distance;  
CLET = constant load exercise test on cycle ergometer;  
Wmax = maximal work load in watt;  
CPET = cardio pulmonary exercise testing;  
VO2peak = peak oxygen uptake;  
CRQ = Chronic Respiratory Disease Questionnaire 
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Table 3:  CLET: iso-work-time 80% 

  Pre and post training values and significance of training induced changes  

RMET Control-group  

 pre post P-value 

within 
group 

pre post P-value 
within 
group 

P-delta 

Ventilation l/min 42.8 (10.5) 39.6 (10.0) 0.034 40.9 (8.6) 43.3 (8.9) 0.33 0.03 

Resp. rate  37 (7) 30 (7) <0.001 32 (6) 32 (6) 0.50 0.05 

Tidal volume (l) 1.2 (0.3) 1.4 (0.5) 0.035 1.3 (0.3) 1.3 (0.3) 0.45 0.6 

BORG dyspnea  8.4 (1.9) 5.4 (1.3) <0.001 8.3 (1.7) 7.2 (2.2) 0.23 0.02 
Data are expressed as means (SD). 
P delta: significance of training induced changes (post- minus pre-training values: delta) 
between groups by ANCOVA. 
Endurance time of first CLET=100% 
Resp. rate = respiratory rate in breaths per minute 
 

 

Table 4:  CPET: iso-work-load 80% Wmax 

  Pre and post training values and significance of training induced changes

    

RMET Control-group 

 pre post P-value 

within 
group 

pre post P-
value 

within 
group 

P-delta 

Ventilation l/min 53.5 (14.8)  47.9 (15.1) 0.01 53.7 (10.4) 52.0 (12.7) 0.16 0.09 

Resp. rate 40 (7) 32 (5) 0.002 36 (5) 34 (5) 0.13 0.12 

Vo2 l/min 1.52 (0.41) 1.42 (0.41) 0.01 1.52 (0.42) 1.50 (0.47) 0.67 0.33 

Heart rate BPM 150 (17) 135 (16) 0.005 144 (17) 142 (17) 0.65 0.05 
Data are expressed as means (SD). 
P delta: significance of training induced changes (post- minus pre-training values: delta) 
between groups by ANCOVA. 
Maximal work-load of first CPET=100% 
Resp. rate = respiratory rate in breaths per minute;  
BPM = beats per minute 
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DISCUSSION 

The present study shows that home-based RMET by means of tube-breathing leads 

to a substantial improvement of endurance exercise capacity by 58%, an 

improvement in quality of life and a reduction in the perception of dyspnea, in 

patients with moderate and severe COPD. These findings suggest that this 

inexpensive technique can be a clinically relevant and easy applicable training 

intervention for COPD patients. 

 

To our knowledge, this is the first study using tube-breathing as home based 

respiratory muscle endurance training in COPD patients. We found an improvement 

in exercise endurance capacity of 58%. One other study showed an increase of 54% 

in submaximal cycling endurance exercise, after RMET in COPD patients. However 

RMET was not performed in a home-based setting and that study had no control 

group.25 Another study, performing home-based RMET in COPD, with a specially 

developed, expensive electromechanical device, reported an increase in submaximal 

treadmill exercise in the study-group compared to the control-group, that did not 

reach statistical significance.13 Furthermore, submaximal exercise on a treadmill has 

never been validated in COPD, whereas constant load exercise testing (CLET) on 

cycle ergometer has been proven to be a reproducible, reliable and valid method to 

assess endurance exercise capacity in patients with COPD.26,27 CLET can not only 

be used to measure endurance exercise time, but also to compare ventilatory and 

metabolic parameters at the same work-rate, before and after intervention. The latter 

being an effort independent measurement of training effects. Our study shows a 

change in breathing pattern after RMET. We found a lower minute ventilation, a lower 

breathing frequency and a larger tidal volume during CLET at iso-work-time 80%. 
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This change of breathing pattern has two major advantages. First, the ratio of dead 

space to tidal volume (Vd/Vt) decreases, which leads to an increase in effective 

alveolar ventilation. Secondly, it diminishes the work-of-breathing.1 It also indicates 

that respiratory muscle fatigue, leading to a rapid, shallow breathing pattern is 

delayed.28,29 These observations are supported by the finding that Borg-scores were 

significantly lower in the RMET-group at iso-time during CLET. This can be an 

additional explanation for the better performance during endurance exercise.30 Other 

studies using RMET in patients with COPD 13,25,31,32 do not report ventilatory 

parameters at iso-work-time. One study reported a decrease in strain index for 

ventilation, which means that a lower percentage of Vemax was necessary for a 

given workload.25 In accordance with the above mentioned clinical and home-based 

trial our results show improvement in endurance exercise time and improvements in 

ventilatory parameters. However, our study is the first to show that home based 

RMET by means of tube breathing, leads to a significant and clinically relevant 

improvement in endurance exercise capacity. 

 

Remarkably, maximal exercise capacity (Wmax) improved in the RMET-group by 8%, 

without a change in VO2peak. This can be explained by comparing parameters of 

CPET at iso-work load 80%, showing that minute ventilation, respiratory rate, VO2 

and heart-rate are significantly less after training, as a result of a more efficient way 

of breathing and less work of breathing. The reduction of minute ventilation and 

respiratory rate and their mutual relationship leads to an improvement of Vd/Vt. The 

decrease of VO2 by 100 ml/min at the same work-load can be a result of a better 

trained respiratory system in terms of oxidative capacity, requiring less oxygen for the 

same amount of work and thus a lower heart-rate. Translating these data to maximal 
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exercise capacity leads to an improvement of work-load at the same oxygen-

consumption. An increase in VO2peak of 19% was found in the only other study on 

home-based RMET in COPD patients. However, they did not speculate on the 

mechanism explaining this increase.13 Thus our results show effort independent 

improvements in cardio-circulatory and ventilatory parameters as a result of RMET. 

 

In accordance with improvements in endurance and maximal exercise capacity, 

patients in our RMET-group significantly improved 6-minutes walking distance by 5% 

(23 meters). Other studies showed improvements of 8 to 12 %. Although the 

improvement in 6-MWD was statistically significant, 23 meters do not seem to be 

clinically relevant.15 However, our patients had base-line values of 92% and 100% of 

reference values for 6-MWD (RMET and control respectively)33, and therefore great 

improvements were not expected. The fact that the RMET-group, in contrast to the 

control-group, significantly increased, in combination with a significant P-delta, 

indicates a true training effect. Therefore, functional exercise capacity, which is a 

useful outcome in evaluating the effects of respiratory muscle training34, improved as 

a result of home-based RMET. 

 

Improvements in exercise capacity can, in part, be explained by improved respiratory 

muscle function. Indeed, respiratory muscle endurance, measured by HET, 

significantly improved by 56% in the RMET-group. Previous studies using endurance 

respiratory muscle training as a training mode in patients with COPD showed 

improvements in maximal sustained ventilatory capacity (MSVC) of 29% 32 to 47% 35. 

Our results are comparable with these studies. Scherer reported an increase of 

258% in sustained ventilation13, using a different protocol. We terminated the 

 80 



Effect of RMET on exercise performance 

respiratory muscle endurance test after 20 minutes, because we were looking for 

improvements in respiratory muscle endurance capacity, and not for maximal results. 

The improvement in HET was confirmed by a significant improvement in incremental 

threshold loading. Therefore RMET by means of tube breathing leads to an 

improvement in respiratory muscle function. 

 

General exercise training, compared to isolated respiratory muscle training, is 

another way to train the respiratory muscles in a very specific way. General exercise 

training during 6 weeks indeed showed an improvement of exercise performance and 

respiratory muscle function.36 However, our study showed that training of the 

respiratory muscles without any other intervention, leads to an improvement of 

exercise capacity and respiratory muscle endurance performance. RMET can be 

performed in a home-based setting with minimal supervision, whereas general 

exercise training has to be performed in an institute. Furthermore, RMET can be 

seen as an add-on therapy to general exercise training. Ries et al. indeed showed 

that adding RMET to a rehabilitation program leads to an improvement in exercise 

capacity compared to a control-group receiving general exercise training only.32 

Future investigations are needed to evaluate whether starting RMET before the start 

of general exercise training or pulmonary rehabilitation leads to better outcomes of 

these programs in terms of exercise performance. 

 

One of the limitations of this study is the possibility of introducing a bias because 

patients included in our study were selected on the basis of an intended rehabilitation 

treatment for COPD, GOLD stage II and III. This means that these patients were 

highly motivated to improve their health status. However, motivation to perform this 
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time and energy consuming training is very important.13 Furthermore, neither 

respiratory muscle weakness nor ventilatory limitation were inclusion criteria. 

Analysis of our data shows only a slightly lowered Pimax compared to reference 

values. However, other studies even found improvements of respiratory muscle 

function and exercise capacity in normal sedentary subjects23 and in normal trained 

subjects 37,38 after endurance training of the respiratory muscles. Therefore RMET is 

also useful in subjects with normal respiratory muscle performance.  

 

The results of this study may have important clinical implications for the treatment of 

COPD patients. This easy applicable and inexpensive technique can be applied on a 

large scale. In this light, it can be added to the non-pharmacological therapeutic 

interventions in COPD, whereas respiratory muscle training until now is indicated, 

only along with a pulmonary rehabilitation program for selected patients with 

decreased respiratory muscle strength.39 Furthermore, when pulmonary 

rehabilitation, or even general exercise training is not available, home based RMET 

by means of tube breathing, can be a good alternative. In addition, home-based 

RMET resulted in a significant improvement in health-related quality of life, which is 

an important clinical outcome parameter in COPD patients.40 

In conclusion, the results of this study show that home-based RMET by means of 

tube breathing substantially improves endurance exercise capacity. It also improves 

quality of life and leads to a decrease of dyspnea in patients with moderate and 

severe COPD. Future investigations are needed to determine the effects of RMET in 

patients with very severe COPD, GOLD IV. Furthermore, it will be interesting to find 

out whether adding RMET to a pulmonary rehabilitation program might result in 

improvements of the outcomes of such a program. 
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ABSTRACT 

Background: Respiratory muscle weakness may contribute to dyspnea in patients 

with Chronic Obstructive Pulmonary Disease (COPD). Dyspnea leads to impaired 

exercise tolerance and adversely affects quality of life. Home-based respiratory 

muscle endurance training by means of tube-breathing is a new training mode, based 

on the principle of normocapnic hyperpnea. We hypothesized that home-based 

Respiratory Muscle Endurance Training (RMET) leads to an improvement of 

respiratory muscle endurance capacity, a reduction of dyspnea and an improvement 

in quality of life. 

Methods: Thirty-six patients with moderate to severe COPD (GOLD II and III) were 

randomized into two groups: RMET by means of tube-breathing (n=18) and sham 

training with an incentive spirometer (control: n=18). Patients in both groups trained 

twice daily, 15 minutes, 7 days a week during 5 weeks. Pulmonary function tests, 

respiratory muscle performance, dyspnea scores (BDI/TDI), and health-related 

quality of life (CRQ) were measured before and after training. 

Results: Patients in the RMET-group showed significant improvement of respiratory 

muscle endurance capacity. There was also a significant improvement in dyspnea 

and quality of life in the RMET-group: TDI-focal score increased by 2.8±2.5 points 

[mean±SD], p=0.001, CRQ-total score increased from 78.7±20.6 to 86.6±18.4, 

p=0.001. The control group showed no significant changes. 

Conclusions: Home-based RMET by means of tube breathing is a new method for 

endurance training of the respiratory muscles and it leads to an improvement of 

respiratory muscle endurance capacity, a reduction in dyspnea during daily activities, 

as well as an improvement in quality of life. 

 
 

 88 



Effect of RMET on dyspnea and quality of life 

List of abbreviations 

BDI = baseline dyspnea index  

CO2 = carbon dioxide 

COPD = Chronic Obstructive Pulmonary Disease 

CRQ = Chronic Respiratory Disease Questionnaire 

 RMET = Respiratory Muscle Endurance Training  

ERS = European Respiratory Society 

FEV1 = forced expiratory volume in 1 second  

Fresp = respiratory frequency in breaths per minute 

FVC = forced vital capacity 

GOLD = Global Initiative for Chronic Obstructive Pulmonary Disease  

ITLet = incremental threshold loading endurance time 

IVC = inspiratory vital capacity  

MCID = minimum clinically important difference 

M/F = male/female  

MVV = maximum voluntary volume 

N = number of patients  

Pemax = maximal expiratory mouth pressure  

PetCO2 = end tidal CO2  

Pimax = maximal inspiratory mouth pressure 

QOL = Quality of Life  

RV = residual volume  

SD = standard deviation 

TDI = transition dyspnea index 

Ti = inspiratory time 

Ttot = total time of 1 respiratory cycle (in- and expiration) 

Yrs = years 

%pred = % of predicted value 
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INTRODUCTION 

Patients with Chronic Obstructive Pulmonary Disease (COPD) often seek medical 

help because of dyspnea. These patients become concerned when difficulty in 

breathing interferes with their ability to perform various daily activities and adversely 

affects their quality of life (QOL). One of the most important factors contributing to 

dyspnea is the work of breathing and the load on the respiratory muscles.1  

Impairment of expiratory flow, hyperinflation, increased work of breathing and 

increased dead space ventilation, also contribute to dyspnea.2 Respiratory muscle 

weakness is frequently observed in patients with COPD. This is reflected by lower 

maximal respiratory pressures in these patients3 and diminished respiratory muscle 

endurance.4 In summary, on the one hand there is an increased load on the 

respiratory muscles whereas on the other their capacity is less. These factors will 

aggravate the perception of dyspnea. 

Respiratory muscles can improve their capacity in response to training, and thus 

dyspnea and QOL might also improve. Indeed, respiratory muscle strength training 

by means of resistive training, may lead to a reduction of dyspnea5-9 and an 

improvement of QOL7 However, since natural breathing is non-resistive and since 

breathing frequencies during exercise may increase up to 60 breaths per minute, 

specific respiratory muscle endurance training (RMET) might be a much better 

training modality.10 RMET is based on normocapnic hyperpnea. Only one study 

looked at the effects of home-based RMET on dyspnea and quality of life. Indeed 

dyspnea and QOL improved, however the equipment that was used to remain 

normocapnic during a period of hyperpnea is very expensive11 and this prevents 

widespread use of this promising technique. CO2-homeostasis during hyperpnea can 

also be preserved by enlarging the dead space of the ventilatory system by breathing 
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through a tube. Tube breathing might be a very easy and inexpensive way to perform 

RMET. 

 

We hypothesized that tube-breathing, being a new and inexpensive method for 

home-based Respiratory Muscle Endurance Training, leads to an improvement of 

respiratory muscle function, a reduction of dyspnea and an improvement of Quality of 

Life in patients with COPD. 

 

SUBJECTS AND METHODS 

 

Subjects 

Thirty-six patients with moderate to severe COPD (FEV1/FVC<70%, FEV1 30%-80% 

predicted, post bronchodilatation), according to the guidelines of the Global Initiative 

for Chronic Obstructive Lung Disease (GOLD)12 were recruited for the study. All 

patients were on the waiting list of participants for pulmonary rehabilitation in the 

Department of Pulmonology Dekkerswald, University of Nijmegen. They were in a 

stable clinical condition for at least 6 weeks. Patients with hypoxemia at rest or during 

exercise or cardiac disease and poor compliance were excluded from participation. 

Patients who agreed to participate and had signed the informed consent form were 

randomly assigned to Respiratory Muscle Endurance Training (RMET-group) or to 

sham training (control-group). The study protocol was approved by the Ethics 

Committee of the University Hospital Nijmegen. Medication was not changed during 

the study period. Table 1 shows the baseline characteristics of the subjects. There 

were no significant differences in baseline characteristics between the two groups at 

the start of the study.  
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Table 1:  Baseline characteristics 

 RMET-group Control-group P value 

between groups 

n 18 18  

age (years) 54.4 (7.7) 57.0 (8.5) 0.4 

sex Male/Female 8/10 9/9 0.8 

Smoking (packyears) 33 (22) 34 (16) 0.9 

FEV1 (litres) 1.5 (0.4) 1.7 (0.5) 0.2 

FEV1(%predicted) 50 (14) 58 (15) 0.1 

FEV1/IVC 46 (13) 50 (14) 0.5 

RV (%predicted) 137 (38) 127 (26) 0.4 

Pimax (%predicted) 89 (34) 93 (28) 0.7 

ITLet (seconds) 760 (267) 892 (377) 0.2 

CRQ total 78.7 (20.6) 82.4 (14.7) 0.5 

CRQ dyspnea 18.1 (5.0) 19.6 (5.1) 0.4 

CRQ fatigue 14.1 (4.1) 14.8 (3.6) 0.6 

CRQ emotional function 29.1 (8.6) 29.4 (7.4) 0.9 

CRQ mastery 17.4 (5.2) 18.6 (4.9) 0.5 

BDI Focal score 5.0 (2.1) 5.7 (1.5) 0.3 

BDI functional impairment 1.5(1.0) 2.0 (0.6) 0.1 

BDI magnitude of task 1.8 (0.6) 1.9 (0.7) 0.4 

BDI magnitude of effort 1.8 (0.8) 1.8 (0.6) 0.95 

Data are expressed as mean (SD) 

Legend to table 1: 

RMET: Respiratory Muscle Endurance Training 
n: number of patients 
packyears: number of years that a subject smokes a mean of 20 cigarettes per day 
FEV1: Forced Expiratory Volume in 1 second 
IVC: Inspiratory Vital Capacity 
RV: Residual Volume 
Pimax: Maximal Inspiratory Pressure 
ITLet: Incremental Threshold Loading endurance time 
CRQ: Chronic Respiratory Disease Questionnaire 
BDI:  Baseline Dyspnea Index 
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Study protocol 

Baseline tests were performed before the start of the study. Subsequently patients 

exercised their respiratory muscles during 5 weeks by means of RMET or sham-

training. In the last week of this period patients were tested again. Testing was 

standardized.  

 

Patients performed pulmonary function tests, tests to asses respiratory muscle 

performance, followed by an interview and a questionnaire to assess dyspnea and 

health related quality of life. 

 

Patients of both groups were told that they were undergoing respiratory muscle 

exercises, and that two different devices were being compared for this purpose.  

 

TESTS 

 

Pulmonary function tests 

A complete pulmonary function study was performed according to ERS-standards.13 

 

Measurement of respiratory muscle performance 

Maximal in-and expiratory pressures (Pimax and Pemax) were measured in sitting 

position at residual volume and total lung capacity respectively. A flanged 

mouthpiece with a small air leak was connected to a pressure transducer (Validyne 

DP103-32, Northridge, California, USA). Mouth pressures were recorded on a chart 

recorder (Kipp & Zonen, BD 101, Delft, the Netherlands) and plateau values were 

taken for analysis. Reference values were taken from Wilson14  
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Incremental Threshold Loading was used to measure inspiratory muscle endurance. 

Patients inspired against a weighted inspiratory valve. They started with a load of 

10% of their Pimax and 25 gram weights were added at 1.5 minute intervals.15 The 

time during which a patient was able to breathe through the threshold device was 

defined as incremental threshold loading endurance time (ITLet). Borg scores were 

taken at regular intervals. Borg scores (pre- and post- training) were compared at 

identical time-points during the Incremental Threshold Loading test: iso-endurance 

time. The maximal endurance time of the first test was set at 100%. 

 

Assessment of dyspnea and health-related QOL  

Dyspnea during daily activities was assessed by Mahler’s Baseline and Transition 

Dyspnea Index (BDI/TDI).16;17 

Health-related quality of life was measured by the Chronic Respiratory Disease 

Questionnaire (CRQ). This questionnaire measures health-related quality of life in 

patients with COPD in four dimensions: dyspnea, fatigue, emotional function and 

mastery. The dyspnea category is strictly individualized. Altogether 20 items are 

scored on a seven-point scale (a higher score indicates a better quality of life).18;19 

 

Training protocol 

Patients in both groups trained twice daily for 15 minutes, 7 days a week, during 5 

weeks. All patients were checked in the pulmonary laboratory by means of a 15 

minute trial-run on adjustment and once a week thereafter. In the RMET-group, end-

tidal CO2 was analysed with a sampling capnograph (Drager, Typ 8290000) which 

was connected to the mouthpiece. Arterial oxygen saturation and heart rate were 

measured noninvasively by oximetry (Nonin Medical Inc. USA model 8500 MA). 
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Respiratory Muscle Endurance Training 

RMET was performed by means of tube breathing. We added an external dead 

space (mouthpiece+tube, internal diameter 3 cm) to the respiratory system, in order 

to maintain the partial pressure of arterial carbon dioxide within a normal range 

during voluntary hyperpnea. The aimed level of ventilation during training was set at 

60% of Maximum Voluntary Ventilation (MVV) which was calculated from 35 times 

FEV1 (60% MVV= 0.6x35xFEV1). The dead space was adjusted to 60% of the 

patient’s inspiratory vital capacity (IVC) + the resting tidal volume.20 Breathing 

frequency (Fresp) was calculated: 60% MVV= Fresp x (0.6 x IVC+ resting tidal volume) 

and was increased during training to a maximum of 20 breaths per minute. Breathing 

frequency was imposed by a metronome: Ti/Ttot ratio of 0.33 (Qwik Time QT5). 

Patients wore a nose-clip and were instructed to take deep breaths to overcome the 

large dead space.  

 

Sham training 

Sham training consisted of breathing exercises, 6-7 times a minute, on an incentive 

target-flowmeter (Inspirx, Resprecare Medical Inc, The Hague, The Netherlands). 

Airflow resistance was ± 5% of Pimax.  

 

Data Analysis 

Data are reported as mean ± standard deviation (SD). Training induced changes 

(post- minus pre-training values: delta) were compared between groups using 

Analysis of Covariance (ANCOVA) with baseline as covariable (P-delta). The 

Students t-test for paired samples was used to evaluate differences within groups 
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(pre- versus post- training). Significance was set at p≤0.05. SPSS 10.0 for Windows 

was used for analysis. 

 

RESULTS 

Pulmonary function tests 

Pulmonary function tests showed no significant change after the training period. 

(table 2) 

 

Table 2:  Pulmonary function and respiratory muscle performance 

 RMET Controls 

 pre post P-value 

within 

group 

pre post P-value 

within 

group 

P-Delta 

FEV1 (litres) 1.5(0.4) 1.6(0.5) 0.1 1.7(0.5) 1.8(0.5) 0.2 

IVC (litres) 3.3(0.7) 3.3(0.7) 0.3 3.6(0.9) 3.7(0.9) 0.1 

Pimax (kpa) 6.6(2.9) 7.3(2.8) 0.1 7.2(2.3) 7.5(3.0) 0.7 0.53 

Pemax (kpa) 7.5(3.4) 8.8(4.2) 0.1 8.2(3.4) 9.2(4.1) 0.4 0.94 

ITLet (seconds) 760(267) 974(434) 0.001 892(377) 790(381) 0.01 < 0.001 

Borg iso-80% 8.9(1.5) 8.1(1.5) 0.04 9.0(1.6) 8.6(1.5) 0.5 0.7 

pre and post training values: data are expressed as mean (SD) 

 

Legend to table 2: 

RMET: Respiratory Muscle Endurance Training 
FEV1: Forced Expiratory Volume in 1 second 
IVC: Inspiratory Vital Capacity 
Pimax: Maximal Inspiratory Pressure 
Pemax: Maximal Expiratory Pressure 
Kpa: kilopascal 
ITLet: Incremental Threshold Loading endurance time 
Borg iso-80%: Borg score for dyspnea at 80% of maximal time of the first Incremental 

Threshold Loading Test 
P-Delta:  significance of training induced changes (post- minus pre-training values: 

delta) between groups by ANCOVA 
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Respiratory muscle performance 

Respiratory muscle strength, measured by Pimax and Pemax showed no significant 

changes after training. (table 2) 

 

Respiratory muscle endurance performance, measured by incremental threshold 

loading (ITLet), significantly increased by 29% in the RMET-group from 12.6 to 16.2 

minutes. A significant decrease of 11% was observed in the control group. (table 2) 

The Borg-score at iso-endurance time 80% was significantly lower in the RMET-

group after training. Borg score decreased from 8.9±1.5 to 8.1±1.5, p=0.04. No 

change occurred in the control group. (table 2) 

 

Dyspnea 

Baseline Dyspnea Index values showed no significant differences between the two 

groups. Transitional Dyspnea Index (focal score) showed a significant improvement 

of dyspnea in daily activities in the RMET-group versus the control group: 2.8±2.5 

versus –0.2±1.6; p=0.001. There were also significant differences between the two 

groups for each category of the TDI. (table 3)  

 

Health-related quality of life 

The Chronic Respiratory Disease Questionnaire showed a significant improvement in 

total score and also in the domains dyspnea, fatigue and mastery in the RMET-

group. (table 4) The control group showed no significant changes. 
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Table 3:  Transition Dyspnea Index 

 RMET Controls 

 TDI TDI P-Delta  

Functional impairment +1.1 (0.9) +0.0 (0.6) 0.001 

Magnitude of task +0.9 (0.8) +0.1 (0.4) 0.001 

Magnitude of effort +0.8 (1.0) -0.3 (0.9) 0.005 

Focal score +2.8 (2.5) -0.2 (1.6) <0.001 

Post training values TDI: data are expressed as mean (SD) 

Legend to table 3: 

RMET:  Respiratory Muscle Endurance Training 

TDI:  Transition Dyspnea Index 

P-Delta:  significance of training induced changes (delta) between groups by ANCOVA 

 

Table 4:  Quality of life: CRQ  

 RMET Controls 

 pre post P-value 

within 

group 

pre post P-value 

within 

group 

P-

Delta  

CRQ total 78.7(20.6) 86.6(18.4) 0.001 82.4(14.7) 85(15) 0.2 0.07 

CRQ dyspnea 18.1(4.9) 20.9(4.8) 0.01 19.6(5.1) 19.9(5.0) 0.5 0.04 

CRQ fatigue 14.1(4.1) 15.7(4.4) 0.04 14.8(3.6) 15.5(3.7) 0.3 0.46 

CRQ emotional 

function 

29.1(8.6) 30.4(7.8) 0.1 29.4(7.4) 30.2(8.2) 0.2 0.58 

CRQ mastery 17.4(5.2) 19.4(4.7) <0.001 18.6(4.9) 19.3(5.0) 0.3 0.21 

pre and post training values: data are expressed as mean (SD) 

 

Legend to table 4: 

CRQ:  Chronic Respiratory Disease Questionnaire 

RMET:  Respiratory Muscle Endurance Training 

P-Delta:  significance of training induced changes (post- minus pre-training values: 
delta) between groups by ANCOVA  
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DISCUSSION 
The present study demonstrates that dyspnea during daily activities, quality of life 

and respiratory muscle function improve as a result of home-based RMET in patients 

with moderate to severe COPD. This implicates that specific endurance training of 

the respiratory muscles by means of tube-breathing, which is very easy applicable 

and inexpensive, contributes to an improvement in health-status in COPD patients.  

 

To our knowledge, this is the first study evaluating the effects of home-based-RMET 

by means of tube-breathing on dyspnea, QOL and respiratory muscle performance. 

Inspiratory muscle endurance as measured by incremental threshold loading, 

improved by 29% in the RMET-group. Previous studies also showed improvement of 

respiratory muscle endurance capacity after endurance training of the respiratory 

muscles. Improvements ranged from 29% to 47% and in one study even 258%11; 21-23 

However, different endurance tests of the respiratory muscles were used and 

therefore direct comparison of these results is not possible. Nevertheless, it can be 

concluded that respiratory muscle endurance capacity improves significantly as a 

result of specific endurance training. This improvement has its repercussion on the 

sensation of dyspnea. Comparing the post-training Borg scores with the ones 

reported at 80% of the first ITL (iso-endurance time 80%), shows that subjects in the 

RMET-group also experienced less dyspnea at the same time-point. This means that 

less dyspnea is perceived while the work-load for the respiratory muscles is the 

same. Thus, RMET by means of tube-breathing improves the endurance capacity of 

the respiratory muscles, and reduces the perception of dyspnea. 

 

Furthermore, dyspnea in daily activities significantly improved in the RMET-group, as 

reflected by a TDI of +2.8. (table 3). There were also significant differences between 
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the two groups for each category of the TDI, which means that patients were able to 

resume some of their daily activities they had abandoned because of dyspnea and 

perform greater efforts and tasks than prior to RMET. (table 3) The only other study 

that performed home-based endurance training of the respiratory muscles in COPD 

patients, also showed an increase in TDI, however there was no significant difference 

between the study group and the control group.11 Thus our study shows that 

significant improvements in dyspnea during daily activities can be obtained by RMET 

by means of tube-breathing. 

  

With these results in mind, the question still remains whether dyspnea improved only 

as a result of better respiratory muscle performance. It is well known that dyspnea is 

a multi-factorial problem, not solely dependent on respiratory muscle function. 

Dyspnea originates in the central nervous system because of an imbalance between 

the motor neural output to the respiratory muscles and the magnitude of ventilation 

resulting from it. Patients in the study group were enforced to increase their motor 

neural output daily during RMET. This may have led to an adaptation to this higher 

output, and thus a contribution to the reduction in dyspnea. This adaptation aspect 

cannot be excluded in our patients. Our findings of increased performance of the 

respiratory muscles support the concept that the balance between the load on the 

respiratory muscles, versus the working capacity of those muscles, is a major 

determinant of dyspnea. 

  

Health related quality of life, measured by CRQ total score, significantly increased in 

the RMET-group, whereas no significant change was found in the control group. 

Looking at the different subsets of the CRQ, the domain dyspnea showed a 
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significantly and clinically relevant improvement. This is in accordance with our 

results of the TDI. Patients not only experienced less dyspnea, they also had more 

feeling of control over their disease, reflected by a significant and clinically relevant 

increase in the domain mastery. Furthermore patients felt less fatigued.  

Other studies using RMET, did not measure quality of life21;23 except for Scherer et 

al. who used the SF-12 health questionnaire, consisting of a physical and mental 

component. Only the physical, but not the mental component of the SF-12 health 

survey, showed a significant increase in the study group.11 Some studies using 

resistive breathing, also measured quality of life. Larson and co-workers evaluated 

the effects of inspiratory (threshold) muscle training with and without cycle ergometry 

training on the domains dyspnea and fatigue of the CRQ. A control group received 

education only. They found a significant improvement of dyspnea in all groups, but 

no differences between the groups. Furthermore, there were no significant changes 

in the CRQ-fatigue domain.24 In another study patients were trained with inspiratory 

(threshold) muscle training. Two different training loads, 15% and 30% of Pimax, 

were compared. There were no changes in patients’ reports of functional impairment 

(Sickness Impact Profile), mood (Profile of Mood States) and health status (Health 

Perceptions Questionnaire).25 Thus, previous studies have shown that aspects of 

quality of life questionnaires can improve after respiratory muscle training. However, 

our study is the first to show an improvement of health-related quality of life after 

home-based RMET by means of tube-breathing. 

 

Irrespective of whether dyspnea or respiratory muscle deconditioning is the first 

phenomenon in patients with COPD, both aspects lead to a further decline in health 

status. The following model might explain this. (figure 1) Respiratory muscle 
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deconditioning contributes to dyspnea, which influences quality of life and mastery in 

a negative way. Dyspnea itself, leads to a decrease in physical activities, which acts 

negatively upon quality of life. A decline in physical activity leads to further 

deconditioning of the organism as a whole and consequently also of the respiratory 

muscles. In this way a negative loop is created that is intensifying itself. This finally 

leads to progressive dyspnea and severe impairment of quality of life. Our study 

validates this model, and shows that RMET interrupts this negative loop. RMET leads 

to an increased respiratory muscle endurance capacity, a reduction of dyspnea and 

an improvement of quality of life. 

 

Figure 1: relation of respiratory muscle function to dyspnea and quality of life in COPD 

patients: a model 

Respiratory muscle deconditioning

dyspnea

Physical activities

Inactivity and general deconditioning

quality of life and mastery

quality of life
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One of the limitations of this study is the fact that patients were selected from the 

waiting-list for pulmonary rehabilitation. This may have led to a bias because these 

patients are motivated to improve their health status. However, patients need to be 

motivated to perform this kind of endurance training of the respiratory muscles, which 

is time and energy consuming. 

 

The present findings may have implications for the non-pharmacological 

management of patients with moderate and severe COPD (GOLD II and III). It 

appears that home-based RMET by means of tube-breathing is successful in 

reducing dyspnea and improving quality of life. Furthermore it is not expensive and 

easy to perform. This enables its wide-spread use, even apart from a pulmonary 

rehabilitation program, whereas until now respiratory muscle training is only 

recommended for selected patients within a pulmonary rehabilitation program.26 

 

In summary, the results of this study show that home-based endurance training of the 

respiratory muscles by means of tube-breathing results in improvement of respiratory 

muscle endurance performance, dyspnea and health related quality of life in patients 

with moderate and severe COPD. Future investigations are needed to establish its 

role in conjunction with a pulmonary rehabilitation program and the role of adaptation 

of the patient to sensory perceptions from the respiratory muscles. Furthermore, it 

will be interesting to evaluate the effects of this training modality in very severe 

COPD (GOLD IV).  
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ABSTRACT 

Background: Respiratory muscle training can be used in pulmonary rehabilitation of 

patients with Chronic Obstructive Pulmonary Disease (COPD). Endurance training of 

the respiratory muscles, without any other intervention like general exercise training, 

results in improvement of exercise capacity. We therefore hypothesized that 

optimising the condition of the respiratory muscles by means of respiratory muscle 

endurance training before the start of pulmonary rehabilitation might lead to a better 

improvement of endurance exercise capacity after pulmonary rehabilitation.  

Methods: We randomised 36 patients with moderate to severe COPD to home-

based Respiratory Muscle Endurance Training (RMET: n=18) by paced tube-

breathing or sham training with an incentive flowmeter (control: n=18). Both groups 

trained twice daily for 15 minutes, during 17 weeks. Training started 5 weeks prior to 

the start of pulmonary rehabilitation and was continued until the end of rehabilitation.  

Results: Improvements in respiratory muscle capacity and exercise performance 

during the rehabilitation period were not statistically different between the groups. 

Quality of life and dyspnea during daily activities also improved to the same extent 

during rehabilitation in both groups. However, the improvement over the complete 

period of preceding respiratory muscle training and subsequent pulmonary 

rehabilitation was significantly better in patients who received RMET compared to the 

control group for the following variables: respiratory muscle endurance capacity, 

p<0.001; 6-minutes walking distance, p=0.02; endurance exercise capacity, p=0.03 

and dyspnea during exercise (Borg-score), p=0.01  

Conclusion: Optimising the respiratory muscles by means of RMET before the start 

of pulmonary rehabilitation, leads to a better outcome of such a program in terms of 
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improved exercise endurance capacity and a reduction of dyspnea during exercise in 

patients with moderate to severe COPD. 
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INTRODUCTION 

Respiratory muscle training can be considered within a pulmonary rehabilitation 

program especially in patients with Chronic Obstructive Pulmonary Disease (COPD) 

who have decreased ventilatory muscle strength.1 Studies have reported that 

addition of respiratory muscle training to a pulmonary rehabilitation program results in 

an increased strength and endurance of these muscles.2-4 However, the addition of 

respiratory muscle training to a pulmonary rehabilitation program does not always 

result in improvement of (maximal) exercise capacity.2-6 Patient selection, respiratory 

training modality and intensity may all have contributed to these diverse results. 

Furthermore, all studies investigated effects of respiratory muscle training as part of 

the pulmonary rehabilitation program. This may have less effect than applying 

respiratory muscle training before the start of the pulmonary rehabilitation program, 

since this may enhance training intensity due to a better trained ventilatory system 

and less dyspnea. Indeed, isolated home-based Respiratory Muscle Endurance 

Training (RMET) in patients with COPD has been shown to improve respiratory 

muscle function and reduce dyspnea.7 Both factors can contribute to higher tolerable 

training loads and thus may lead to better outcomes of exercise capacity after 

pulmonary rehabilitation. Furthermore, since the prevalence of COPD and therefore 

the need for pulmonary rehabilitation will increase dramatically over the coming 

years, the burden on rehabilitation programs will also increase.8 At present, many 

rehabilitation institutes in the Netherlands deal with considerable waiting lists. During 

such a period, home-based RMET can easily be applied. 

 So far no studies have been reported assessing the effects of optimising the 

respiratory muscles before the start of the pulmonary rehabilitation program.  
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We hypothesized that optimising the condition of the respiratory muscles before the 

start of pulmonary rehabilitation results in an improved exercise capacity because the 

efficiency of breathing improves and dyspnea decreases after RMET.  

We conducted a randomised controlled trial with home-based RMET before the start 

of pulmonary rehabilitation in patients with COPD and evaluated its effect on 

endurance exercise capacity, health related quality of life and dyspnea. 

 

METHODS 

Patients 

Patients were recruited from the waiting list for pulmonary rehabilitation in the 

Department of Pulmonary Diseases Dekkerswald, University of Nijmegen. Patients 

with moderate to severe COPD (FEV1/FVC<70% and FEV1 post-bronchodilatation 

between 30 and 80% predicted: GOLD II and III), in a stable clinical condition, were 

randomly assigned to a RMET group or a control group (sham training). Patients 

were not hypoxemic, neither at rest nor during maximal incremental exercise testing. 

They were free of any clinical evidence of cardiovascular or musculoskeletal disease 

and had a Body Mass Index (BMI) < 30 kg/m2. Initially 39 patients were included in 

the study. Three patients dropped out of the study (severe exacerbation requiring 

hospitalization, 2 controls and 1 in the study-group). Thirty-six patients completed the 

study. 

 

The protocol was approved by the Ethics Committee of the University Hospital 

Nijmegen and all patients gave written informed consent.  
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Pulmonary rehabilitation program 

Patients participated in a multidisciplinary in-patient program for 12 weeks, which 

consisted of exercise training, peripheral muscle training, education, nutritional and 

psycho-social support.9  

 

Study protocol 

Patients trained their respiratory muscles (RMET or sham training), in a standardised 

way after instruction by the investigator, from 5 weeks prior to the start of the 

pulmonary rehabilitation program until the end of this rehab-program. (Figure 1)  

 

Figure 1: Study protocol 

0 weeks 1 week    5 weeks      17 weeks 

 

 

test 1      test 2       test 3 

(baseline)   

   

 start training  start rehabilitation/    end rehabilitation/ 

(RMET or sham) continue training    end training 

 

 

Patients were clinically evaluated at baseline before the start of home-based RMET 

(test 1), 2 days before the start of pulmonary rehabilitation (test 2), and in the last 

week of the rehabilitation program (test 3).  
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Every test took three days. On the first day, pulmonary function testing,10 

measurement of maximal respiratory muscle strength, evaluation of nutritional status 

and measurement of Vo2peak were performed. On the second day patients performed 

respiratory muscle endurance tests. A quality of life questionnaire and a dyspnea 

questionnaire were completed. 6-minutes walking distance was performed. 

 

On the third day respiratory muscle endurance tests and the 6-minutes walking 

distance were repeated. Endurance testing on a cycle-ergometer was performed. 

Between all tests patients rested for 30 minutes. 

The best results of the tests were used for analysis. 

 

MEASUREMENTS 

 

Measurement of respiratory muscle performance 

Inspiratory muscle endurance: Incremental Threshold Loading was used to 

determine inspiratory muscle endurance.11;12 The pressure achieved during the 

heaviest load tolerated for at least 45 seconds was defined as the maximal 

sustainable inspiratory pressure (SIPmax).  

 

Respiratory muscle strength: Maximal inspiratory and expiratory plateau pressures 

(Pimax, Pemax) were measured at the mouth from RV and TLC, respectively. A 

flanged mouthpiece was connected to a transducer (Validyne DP103-32, Northridge, 

California, USA). The highest of at least 9 measurements was taken for analysis.13 

Reference values were taken from Wilson.14
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Respiratory muscle endurance: Performance of in- and expiratory muscles was 

assessed by a hyperpnea endurance test (HET). Patients breathed in a closed 

spirometer circuit (Godart, Bilthoven, the Netherlands) in which the soda lime 

absorber could be partially bypassed with a three way valve to maintain an isocapnic 

situation during the test . Oxygen was supplemented in quantities that kept the level 

of the spirometer constant. End-tidal PCO2 (PetCO2) was monitored at the mouth by a 

capnograph (Drager, Type 8290000). Arterial oxygen saturation (SaO2) was 

monitored with a pulse oximeter (Oxyshuttle, Sensor Medics, Bilthoven, The 

Netherlands). Patients were instructed to hyperventilate at 30 breaths/minute, 

Ti/Ttot=1:2. Visual feedback of the tidal volume (45% of their inspiratory vital 

capacity) was given on the spirometer. The test was stopped when the patient could 

no longer sustain the respiratory frequency or tidal volume during 3 consecutive 

breaths or after a maximum of 20 minutes. Time until the end of the test was 

recorded as hyperpnea endurance time (HET). Patients were not encouraged during 

the test. 

 

Health-related quality of life and Dyspnea 

Health-related quality of life and dyspnea were assessed by means of the Chronic 

Respiratory Disease Questionnaire (CRQ)15 and Mahler Transition Dyspnea Index 

(TDI).16;17 

 

Measurement of exercise performance 

Maximal exercise test: Maximal incremental cardio-pulmonary exercise testing 

(CPET) was performed. Work rate increased each 30 seconds by 5% of the 

predicted value.18 Minute ventilation, respiratory frequency, oxygen consumption and 
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carbon dioxide production as well as oxygen saturation were measured continuously 

(Sensormedics Vmax 29). Heart rate and blood-pressure were monitored.  

 

Endurance exercise test: constant-load bicycle exercise testing (CLET) was 

performed at a work rate of 50% of the individual Wmax. The test was stopped when 

patients were exhausted and could not maintain a pedalling frequency of 60/minute. 

This time was recorded as cycle-endurance time. Measurements of minute 

ventilation, respiratory frequency, oxygen consumption, carbon dioxide production 

and heart rate were performed. Perception of dyspnea was measured by means of 

Borg scores which were taken at the end of the test (CLET BORG).19 Patients were 

not encouraged during the test.  

 

6 minutes walking distance (6 MWD): 6 MWD was determined in a straight corridor of 

50 meters.20

 

Respiratory muscle endurance training and sham-training 

Respiratory muscle endurance training (RMET) 

RMET was performed by means of paced tube breathing. PaCO2 was kept within a 

normal range during hyperpnea by adding an external dead space (tube, internal 

diameter 3 cm) to the respiratory system. The aimed level of ventilation was set at 

60% of Maximum Voluntary Ventilation (MVV), calculated from 35 times FEV1 (60% 

MVV= 0.6 x 35 x FEV1). The dead space was adjusted to 60% of the patient’s 

inspiratory vital capacity (IVC) + the resting tidal volume,21 because during exercise, 

when minute ventilation rises, tidal volume increases to about 60% of the vital 

capacity and remains constant thereafter.22 Breathing frequency (Fresp) was 
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calculated: 60% MVV= Fresp x (0.6 x IVC+ resting tidal volume) and was increased 

during training to a maximum of 20 breaths per minute. Breathing frequency was 

imposed by a metronome: Ti/Ttot ratio of 0.33 (Qwik Time QT5). Patients wore a 

nose-clip and were instructed to take deep breaths. End-tidal CO2 (PetCO2) at the 

mouth was analysed with a sampling capnograph (Drager, Type 8290000). Arterial 

oxygen saturation and heart rate were measured (Nonin Medical Inc. USA model 

8500 MA). 

 

Sham training 

Sham training was performed by breathing 6-7 times/minute through an incentive 

flowmeter (Inspirx, Resprecare Medical Inc, The Hague, The Netherlands). Airflow 

resistance was set at ± 5%Pimax.  

 

All patients were instructed in the pulmonary laboratory by means of a 15 minute 

trial-run at the beginning of the study and weekly thereafter. They trained twice daily 

for 15 minutes, 7 days a week, during 5 weeks prior to pulmonary rehabilitation and 

subsequently during the 12-week in-patient pulmonary rehabilitation program.  

 

Statistical analysis 

Data are reported as mean ± standard deviation (SD), since values were normally 

distributed. For descriptive purposes, the Student’s t-test for paired samples was 

used to evaluate differences within groups. Training induced changes (post- minus 

pre-training values: test 3 minus test 1) were compared between groups using 

Analysis of Covariance (ANCOVA) with baseline as covariable and reflected as 
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‘delta’ (P-Delta). Significance was set at p≤0.05. SPSS 10.0 for Windows was used 

for analysis.  

 

RESULTS 

Baseline demographic data showed no significant differences between the groups 

(table 1).  

 

After the period of isolated home-based RMET and before the start of the 

rehabilitation (test 2) there were no significant differences between the RMET-group 

and the control-group in pulmonary function tests, respiratory muscle strength, 

SIPmax, 6-MWD, maximal exercise capacity, CRQ and TDI. However, respiratory 

muscle endurance capacity (HET), constant load exercise test (CLET) and 

perception of dyspnea at 80% iso-time during CLET (CLET BORG dyspnea) were 

significantly different between the groups in favour of the RMET-group (table 2). 

 

Respiratory muscle endurance capacity (HET), constant load exercise test (CLET) 

and 6-MWD increased significantly during the 12-week rehabilitation period in both 

groups, whereas maximal exercise capacity (Wmax CPET) and SIPmax only 

increased in the control group. Borg score for dyspnea at iso-time 80% of endurance 

exercise significantly decreased in the RMET group. (table 3) 
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Table 1. Baseline demographic characteristics (test 1) 

 RMET-group Control-group P value 
(between groups) 

N 18 18  

age (yrs) 54.4 (7.7) 57.0 (8.5) 0.35 

sex M/F 8/10 9/9 0.75 

Smoking 
(packyears) 

33.1 (21.8) 33.8 (16.2) 0.90 

BMI (kg/m2) 26.7 (5.0) 27.5 (3.3) 0.61 

FEV1 (litres) 1.5 (0.4) 1.7 (0.5) 0.15 

FEV1(%pred) 50 (14) 58 (15) 0.10 

FEV1/IVC 46 (13) 50 (14) 0.47 

RV (%pred) 137 (38) 127 (26) 0.36 

Pimax kpa 6.9 (2.9) 7.2 (2.3) 0.69 

Pimax (%pred) 89 (34) 93 (28) 0.73 

HET (minutesseconds) 854 (549) 629 (425) 0.17 

SIPmax (kpa) 2.5 (0.9) 2.9 (1.2) 0.37 

Wmax CPET (watt) 111 (33) 123 (35) 0.29 

Wmax (%pred) 
CPET 

65 (16) 67 (15) 0.66 

VO2peak ml/min/kg 19.6 (4.5) 19.3 (4.0) 0.85 

6-MWD (m) 519 (89) 550 (75) 0.27 

6-MWD (%pred) 92 (15) 100 (12) 0.09 

CLET 
(minutesseconds) 

1751 (1048) 1624 (1530) 0.75 

CLET BORG 
dyspnea 

8.4 (1.9) 8.3 (1.7) 0.78 

Data are expressed as means (SD) 

Legend to table 1: 
BMI=body mass index  
FEV1= forced expiratory volume in 1 second 
%pred=percentage of predicted value 
IVC=inspiratory vital capacity 
RV=residual volume 
Pimax=maximal inspiratory mouth pressure 
HET=hyperpnea endurance test 
SIPmax= maximal sustainable inspiratory mouth pressure 
Wmax CPET=maximal work load in watts during cardio-pulmonary exercise testing  
VO2peak ml/min/kg=peak oxygen uptake in millilitres per minute per kilogram 
6-MWD=6 minutes walking distance 
CLET=constant load exercise test on cycle ergometer 
CLET BORG dyspnea: Borg score for dyspnea during constant load exercise test at iso-time 
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Table 2: Demographics at start of rehabilitation (test 2) 

 RMET-group Control-group P value 
(between groups) 

Respiratory muscle 

function 

   

Pimax kpa 7.3 (2.8) 7.5 (3.0) 0.67 

Pimax (%pred) 94 (32) 95 (35) 0.94 

HET (minutesseconds) 1353 (548) 543 (419) <0.001 

SIPmax (kpa) 3.1 (1.4) 2.6 (1.2) 0.23 

Exercise performance    

Wmax CPET (watt) 120 (38) 126 (42) 0.64 

Wmax (%pred) CPET 70 (18) 71 (25) 0.87 

VO2peak ml/min/kg 19.9 (4.7) 19.9 (5.1) 0.97 

6-MWD (meters) 535 (77) 544 (85) 0.76 

CLET (minutesseconds) 2816 (1454) 1635 (1402) 0.02 

CLET BORG dyspnea 5.4 (1.3) 7.2 (2.2) 0.01 

Quality of life CRQ total 86.6 (18.4) 85.0 (15.0) 0.78 

Data are expressed as means (SD) 

 

Legend to table 2: 
Pimax=maximal inspiratory mouth pressure 
HET=hyperpnea endurance test 
SIPmax= maximal sustainable inspiratory mouth pressure 
Wmax CPET=maximal work load in watts during cardio-pulmonary exercise testing  
VO2peak ml/min/kg=peak oxygen uptake in millilitres per minute per kilogram 
6-MWD=6 minutes walking distance 
CLET=constant load exercise test on cycle ergometer 
CLET BORG dyspnea: Borg score for dyspnea during constant load exercise test at iso-time 
CRQ=Chronic Respiratory Disease Questionnaire 
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Table 3: Changes in respiratory muscle performance and exercise capacity 

 RMET Control P-Delta 

(between 

groups) 

 pre-rehab 

test 1-2 

rehab 

test 2-3 

pre-rehab

test 1-2 

rehab 

test 2-3 

test 1versus 3 

Wmax CPET(watt) +10(15)* +4(14) +2(13) +11(17)* 0.45 

VO2peak (ml/min) +52(115) +15(173) 17(260) +51(196) 0.55 

Pimax (kpa) +0.7(1.6) +1.0(1.6) +1.1(3.9) +1.1(1.0) 0.80 

Pemax (kpa) +0.8(3.8) -0.1(4.3) +2.3(4.6) +1.2(4.3) 0.48 

HET (minutesseconds) +459(332)‡ +230(311)† -046(133)* +200(235)† <0.001 

SIPmax (kpa) +0.6(0.8)* +0.4(0.9) -0.3(0.5) +0.5(0.7)* 0.02 

6-MWD (meters) +23(31)† +42(39)‡ -6(32) +32(31)‡ 0.02 

CLET (minutesseconds) +1024(639)‡ +519(1049)* +011(410) +715(836)* 0.03 

CLET BORG dyspnea -3.0(2.1)‡ -1.0(1.4)† -0.8(2.1) -0.8(2.7) 0.01 

Data are expressed as means (SD) 

* p≤0.05 before versus after testing (within group) 

† p≤0.01 before versus after testing (within group) 

‡ p≤0.001 before versus after testing (within group) 

 

Legend to table 3: 
Wmax CPET=maximal work load in watts during cardio-pulmonary exercise testing 
VO2peak ml/min=peak oxygen uptake in millilitres per minute 
Pimax=maximal inspiratory mouth pressure 
Pemax= maximal expiratory mouth pressure 
HET=hyperpnea endurance test 
SIPmax= maximal sustainable inspiratory mouth pressure 
6-MWD=6 minutes walking distance 
CLET=constant load exercise test on cycle ergometer 
CLET BORG dyspnea: Borg score for dyspnea during constant load exercise test at iso-time 
P-Delta: significance of training induced changes (post- minus pre-training values: 
delta) between groups by ANCOVA 
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The extent of improvement during the 12-week rehabilitation-period (test 2 versus 3) 

did not significantly differ between both groups. However, the improvement over the 

whole study period (test 1 versus 3) was significantly higher in the RMET-group than 

in the control-group with respect to constant load exercise test, 6-MWD, HET, 

SIPmax and perception of dyspnea as measured by CLET BORG dyspnea. (figure 2, 

table 3) 

 

Both groups showed a significant improvement in the CRQ, i.e. the total score and all 

domains separately improved, as well as dyspnea during daily activities (TDI). 

Improvements in CRQ and TDI during the 12-week rehabilitation period were not 

statistically significant between the groups. (table 4) 

 

Table 4: Changes in health-related quality of life and dyspnea: CRQ and TDI 

 RMET Control P-Delta 
(between groups) 

 pre-rehab 

test 1-2 
rehab 

test 2-3 
pre-rehab 

test 1-2 
rehab 

test 2-3 
test 1 versus 3 

CRQ total score +7.9(8.8)‡ + 18.4(13.8)‡ +2.6(8.5) + 18.6(11.8)‡ 0.67 

CRQ dyspnea +2.8(3.9)† + 4.9(3.6)‡ +0.3(2.1) + 5.8(5.2)‡ 0.84 

CRQ mastery +2.0(1.8)‡ + 3.2(2.5)‡ +0.8(3.1) + 3.7(3.4)‡ 0.96 

CRQ emotional +1.4(3.9) + 5.9(6.1)‡ +0.8(2.3) + 4.4(3.1)‡ 0.38 

CRQ fatigue +1.7(3.1)* + 4.4(4.0)‡ +0.7(3.1) + 4.7(3.3)‡ 0.91 

Dyspnea TDI +2.8(2.5) + 2.2(2.0) -0.2(1.6) +4.0(3.3) 0.39 

Data are expressed as means (SD) 
* p≤0.05 before versus after testing (within group) 
† p≤0.01 before versus after testing (within group) 
‡ p≤0.001 before versus after testing (within group) 
 
CRQ=Chronic Respiratory Disease Questionnaire 
TDI=Transition Dyspnea Index 
P-Delta: significance of training induced changes (post- minus pre-training values: 
delta) between groups by ANCOVA 
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Figure 2: schematic view of changes over time with respect to HET and CLET  
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DISCUSSION 

The results of this study in patients with moderate to severe COPD indicate that 

priming of the respiratory muscles by means of RMET before pulmonary 

rehabilitation leads to a significantly better outcome of a pulmonary rehabilitation 

program with regard to endurance exercise capacity, respiratory muscle endurance 

capacity and perception of dyspnea during exercise. No significant differences were 

found with respect to improvements in quality of life and in dyspnea during daily 

activities.  
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To our knowledge this is the first study showing that priming of the respiratory 

muscles before pulmonary rehabilitation leads to a better outcome of this program. 

So far some reports have been published on the effects of adding respiratory muscle 

training during a pulmonary rehabilitation program. These studies generally used 

strength training by means of inspiratory resistive training or threshold loading,4-6 

instead of endurance training, and showed results that considerably vary, i.e. from 

improvement of maximal exercise performance5 and 12-minute walking distance,4 to 

no effect on maximal and endurance exercise performance.6 Only two studies have 

applied endurance respiratory muscle training by means of normocapnic hyperpnea 

during pulmonary rehabilitation in patients with COPD.2;3  We found a statistically 

significant difference in improvement for endurance exercise capacity (CLET: +88%) 

and functional exercise capacity (6-MWD: +13%) between our study group and the 

control group, whereas Levine and co-workers did not show a significant difference in 

improvement between their study group and the control group for these parameters. 

In their COPD patients with an FEV1 of about 1.5 litre the placebo training consisted 

of intermittent positive pressure ventilation during only one hour a day.2 The second 

study that applied normocapnic hyperpnea in patients with COPD (FEV1 1 litre) even 

found no statistically significant increase in the 12-Minute-walking-distance within the 

study group. The improvement of 65 meters in our study is not only statistically 

significant but also clinically relevant.20 The difference in outcome likely results from 

the training protocol because the above mentioned studies started respiratory muscle 

training and general exercise training at the same time. Hence, the ventilatory 

muscles were not physiologically optimized before the start of the pulmonary 

rehabilitation. In summary, our study shows that RMET by means of tube-breathing 

applied before and during pulmonary rehabilitation, leads to an improvement in sub-
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maximal endurance exercise capacity, which is a sensitive and valid method to asses 

changes in endurance exercise capacity.23;24  

 

Notwithstanding the beneficial effects on endurance exercise capacity and dyspnea, 

priming of the respiratory muscles by means of RMET had no additional effects on 

quality of life and dyspnea during daily activities. Both increased significantly and 

clinically relevant within the RMET-group as well as the control-group, yet without a 

significant difference between the groups.  

 

One of the limitations of our study is the fact that only patients with moderate and 

severe COPD were included. Especially patients with very severe COPD often have 

impaired respiratory muscle performance and/or a ventilatory limitation during 

exercise. Moreover, these patients often are eligible for participation in a pulmonary 

rehabilitation program. Given the positive effects of RMET before starting a 

rehabilitation program, we believe it of prime importance to further investigate this 

rehabilitation extension in patients with more severe COPD. However, RMET may be 

very hard to perform for this group of patients because their inspiratory capacity is 

often reduced as a result of (severe) hyperinflation. 

 

As a result of our design, the time schedule of our study can be divided into two 

separate periods. The first period consists of home-based RMET before the start of 

rehabilitation (between test 1 and 2) These results have been described elsewhere. 

The second period, as described in this paper, covers the 12-week rehabilitation 

period (between test 2 and 3). At baseline (test 1, table 1) there were no differences 

between the two groups. However, after 5 weeks of home-based RMET, significant 

 124 



Effect of RMET on pulmonary rehabilitation 

differences had already occurred between both groups for respiratory muscle 

endurance, exercise endurance and perception of dyspnea (test 2, see table 2). In 

the ensuing 12 weeks of pulmonary rehabilitation, the extent of change that was 

achieved, with respect to respiratory and exercise endurance capacity and quality of 

life and dyspnea, did not differ significantly between both groups (table 3 and table 

4). These observations are schematically reflected in figure 2 and have two major 

implications. First, home based RMET could partially replace rehabilitation, especially 

when the primary goal is to improve sub-maximal endurance exercise capacity. 

Secondly, priming of the respiratory muscles before the start of pulmonary 

rehabilitation leads to a better outcome of this program, because patients have a 

better starting-point after home-based RMET, which is not catched up by the control 

group after 12 weeks of rehabilitation.  

 

The improvement in exercise capacity in our COPD patients can, in part, be 

explained by the improved respiratory muscle function.25 HET and SIPmax 

significantly improved in our study group. In accordance with our results, previous 

studies using endurance respiratory muscle training as a training mode in patients 

with COPD also showed improvements in respiratory muscle function.2;7;26 

Adaptation to dyspnea, which originates in the central nervous system because of an 

imbalance between the motor neural output to the respiratory muscles and the 

magnitude of ventilation resulting from it, may be another explanation for the 

improved exercise capacity. During RMET, patients were enforced to increase their 

motor neural output daily, which may have led to an adaptation to this higher output, 

and thus a reduction in dyspnea. However, our study was not designed to answer 

this question. Nevertheless, our results show that an improved respiratory muscle 
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function leads to an increased exercise capacity. Whether adaptation to dyspnea 

sensation plays an important role in improvements in exercise capacity, needs further 

study. 

 

The results of this study may have important clinical implications. Respiratory muscle 

training previously has been recommended as part of a pulmonary rehabilitation 

program, only in selected patients with decreased respiratory muscle strength and 

breathlessness.1 Patients in our study were not selected because of respiratory 

muscle weakness or ventilatory limitation. Analysis of our data showed only a slightly 

lower Pimax compared to reference values.14 Therefore, optimizing the respiratory 

muscles with endurance respiratory muscle training before the start of a pulmonary 

rehabilitation program, should be considered for all COPD patients, even those 

without impaired respiratory muscle function and it leads to a better outcome of a 

rehabilitation program.  

 

In summary, we have shown that, optimizing the respiratory muscles by means of 

Respiratory Muscle Endurance Training in patients with moderate to severe COPD 

leads to a better outcome of a pulmonary rehabilitation program in terms of 

endurance exercise capacity, respiratory muscle performance and dyspnea 

perception during exercise. Many rehabilitation clinics have waiting lists up to several 

weeks before patients can be admitted. This study shows that such a period can be 

gainfully used by optimizing the respiratory muscles with home-based RMET by 

means of tube-breathing. This even results in a better outcome of the rehabilitation 

program. 
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SUMMARY 

Chronic Obstructive Pulmonary Disease (COPD) is characterised by chronic airflow 

limitation that is not fully reversible. This airflow limitation is usually progressive and 

associated with an abnormal inflammatory response of the lungs to noxious particles 

or gases. Smoking cessation is the first step in the treatment of this disease. 

Inhalation therapy with bronchodilators is the most important pharmacological 

intervention to symptom management in COPD. Non-pharmacologic treatment 

includes rehabilitation, respiratory muscle training, ventilatory support, oxygen 

therapy and surgical interventions.  

The studies presented in this thesis focussed on the effects of Respiratory Muscle 

Endurance Training (RMET), by means of normocapnic hyperventilation, in patients 

with COPD. Several reports have shown that RMET has beneficial effects, especially 

on endurance exercise performance in healthy volunteers, athletes and patients with 

COPD. However, the equipment used to remain normocapnic during a period of 

hyperpnea is very complicated and expensive, and therefore not available to a large 

population. The aim of this thesis was to asses whether RMET by means of tube-

breathing, which is very easy and inexpensive, would be safe and feasible, and 

whether it would have beneficial effects on endurance exercise capacity, health-

related quality of life and dyspnea in patients with moderate to severe COPD. 

Furthermore we wanted to test whether optimising the respiratory muscles of COPD 

patients before the start of a rehabilitation program, would lead to a better outcome of 

this program.  
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Chapter 1 

Chapter 1 gives a survey of the various types of respiratory muscle training. Based 

on the physiologic principles of strength- and endurance-training two different 

methods of respiratory muscle training can be distinguished: strength-training by 

means of inspiratory resistive training and threshold loading versus endurance 

training based on normocapnic hyperpnea, which is also known as Respiratory 

Muscle Endurance Training (RMET). The effects of these training regimens on 

different outcome parameters, such as respiratory muscle performance, maximal and 

endurance exercise capacity, health-related quality of life and dyspnea are 

discussed. Furthermore the objectives of the studies are outlined.  

 

Chapter 2 

In this study we evaluated the feasibility and safety of Respiratory Muscle Endurance 

Training by means of tube-breathing in healthy volunteers. RMET is based on the 

principle of normocapnic hyperpnea. This technique is not applied on a large scale 

because complicated and expensive equipment is needed to maintain CO2 

homeostasis during hyperpnea. This CO2 homeostasis can be preserved during a 

period of hyperpnea by enlarging the dead space of the ventilatory system. One of 

the possibilities to do so is to breathe through a tube. Thus, RMET by means of tube-

breathing might be a new and inexpensive method to perform respiratory muscle 

training, possibly in a home-based setting. However, the safety (hypoxemia) and the 

effects of this kind of tube breathing on CO2 homeostasis have never been 

evaluated. Therefore we performed a 10-minute run of tube-breathing in 20 healthy 

volunteers. The dead space of the ventilatory system was enlarged with 60% of the 

individuals Forced Vital Capacity. We measured oxygenation and PaCO2. We also 
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determined perception of dyspnea (Borg-scores), respiratory muscle function and 

hypercapnic ventilatory responses. 14 out of 20 subjects became hypercapnic during 

tube breathing (PaCO2>6.0 Kpa). No significant correlations were found between the 

different parameters. Subsequently, subjects were divided into two groups: 

normocapnic versus hypercapnic and mean values were compared. No significant 

differences were observed for change in oxygen saturation measured by oximetry 

(normocapnic –0.7% versus hypercapnic –0.2%, p=0.6), Borg score (normocapnic 

4.3 versus hypercapnic 4.7, p=0.9) , respiratory muscle function nor hypercapnic 

ventilatory responses. Clinically relevant desaturations did not occur. We therefore 

concluded that tube breathing is well tolerated amongst healthy subjects. It may lead 

to hypercapnia, but seems a safe and feasible method in healthy subjects. When 

tube-breathing will be applied as respiratory muscle training modality, especially in 

patients with COPD, the potential development of hypercapnia must be considered. 

 

Chapter 3 

Chapter 3 describes the effects of tube breathing on CO2 homeostasis in COPD 

patients. The function of respiratory muscles can improve in response to training. 

Home-based endurance respiratory muscle training by means of tube-breathing is 

possibly a new training modality for respiratory muscles. The aim of this study was to 

investigate the effect of this tube-breathing on CO2 homeostasis in patients with 

chronic obstructive pulmonary disease (COPD). We hypothesized that the ventilatory 

control system will stimulate ventilation during tube breathing, in order to preserve 

normocapnia. 

Fourteen consecutive patients with moderate and severe COPD were included in the 

study. Pulmonary function test, hypercapnic ventilatory responses, endurance 
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capacity of the respiratory muscles and tube-breathing with dyspnea scores (Borg) 

were performed.  

Strikingly, four patients became hypercapnic (PaCO2>6.0 kpa) during tube-breathing. 

These hypercapnic patients had significantly more severe COPD, more 

hyperinflation, a worse capacity of their respiratory muscles and more dyspnea 

during tube-breathing compared to the normocapnic patients. No significant 

difference was found for the hypercapnic ventilatory response. 

This study shows that impaired respiratory muscle capacity leads to hypercapnia and 

more dyspnea during tube-breathing in patients with moderate and severe COPD, 

whereas the ventilatory controlling system does not seem to play an important role. 

 

Chapter 4 

The effects of home-based RMET, by means of tube breathing, on endurance 

exercise capacity are described in this chapter. The aim of this study was to asses 

whether RMET improves exercise capacity and perception-of-dyspnea in patients 

with chronic obstructive pulmonary disease (COPD). We therefore randomised 36 

patients with moderate to severe COPD to RMET (n=18) by means of tube-breathing 

or to sham training (control: n=18). Both groups trained twice daily for 15 minutes, 7 

days per week, during 5 weeks. Endurance exercise performance on a cycle-

ergometer showed a significant increase in the RMET-group: 1071±648 to 1696±894 

seconds (mean±SD), p<0.001. 6-minutes-walking-distance and maximal exercise 

capacity also increased; 512±86 to 535±77 meters, p=0.007, and 111±33 to 120±38 

watt, p=0.02 respectively. Perception-of-dyspnea (Borg-score) decreased from 

8.4±1.9 to 5.4±1.3, p<0.001. Respiratory muscle endurance capacity also increased 

in the RMET-group: hyperpnea-endurance-time and sustainable inspiratory pressure 

 133



Chapter 7 

increased from 534±349 to 833±348 seconds, p<0.001 and from 2.5±0.9 to 3.1±1.4 

kpa, p=0.005 respectively. The control-group showed no significant changes.  

Ventilatory parameters were also analysed during the constant-load exercise test on 

a cycle ergometer at iso-time. This provides effort-independent information regarding 

training effects. In the RMET group, minute ventilation at iso-time (80% of the first 

test) decreased from 43 to 40 litres, p=0.03, respiratory rate decreased from 37 to 30 

breaths/minute, p<0.001, tidal volume increased from 1.2 to 1.4 litres, p=0.04 and 

BORG-score decreased from 8 to 5, p<0.001. The control-group showed no 

significant changes. In conclusion, home-based RMET by means of tube-breathing 

leads to an improvement of endurance exercise capacity, a reduction in perception-

of-dyspnea, and an improvement of respiratory muscle performance in patients with 

moderate to severe COPD. 

 

Chapter 5 

Not only physiologic parameters in terms of exercise capacity are important in the 

evaluation of COPD patients. Parameters as dyspnea and health status are at least 

as important. In this chapter we described the effects of home-based RMET on 

dyspnea and health-related quality of life in the same study subjects as described in 

the previous chapter. 36 patients with COPD, GOLD II and III were randomised into 

two groups: RMET by means of tube-breathing (n=18) and sham training with an 

incentive spirometer (control: n=18). Patients in both groups trained twice daily, 15 

minutes, 7 days a week during 5 weeks. Pulmonary function tests and respiratory 

muscle performance was measured. Dyspnea scores were determined by means of 

Mahler’s Baseline Dyspnea Index and Transition Dyspnea Index (BDI and TDI). 

Health status was evaluated by the Chronic Respiratory Disease Questionnaire 

 134 



Summary and general discussion 

(CRQ). Patients in the RMET-group showed significant improvement of respiratory 

muscle endurance capacity. There was also a significant improvement in dyspnea 

and quality of life in the RMET-group: TDI-focal score increased by 2.8±2.5 points 

[mean±SD], p=0.001, CRQ-total score increased from 78.7±20.6 to 86.6±18.4, 

p=0.001. The control group showed no significant changes. These data confirm the 

hypothesis that RMET by means of tube-breathing leads to a reduction in dyspnea 

and an improvement in quality of life. Furthermore, RMET can interrupt a negative 

loop that originates in many patients with COPD. Respiratory muscle deconditioning 

contributes to dyspnea, which influences quality of life and mastery in a negative 

way. Dyspnea itself, leads to a decrease in physical activities, which acts negatively 

upon quality of life. A decline in physical activity leads to further deconditioning of the 

organism as a whole and the respiratory muscles in detail. Both aspects lead to a 

further decline in health status.  

The results of chapter 4 and chapter 5 might have implications for the future non-

pharmacologic management of moderate and severe COPD patients. With the 

knowledge that RMET by means of tube breathing is not very expensive and easy 

applicable, and therefore available to almost all chest physicians, it can be 

speculated that this mode of ventilatory muscle training should not be reserved for 

combination along with a pulmonary rehabilitation program. RMET might even, in 

part, replace pulmonary rehabilitation when this form of therapy is not available. 

 

Chapter 6 

In this chapter we describe the effects of Respiratory Muscle Endurance Training on 

the outcomes of a pulmonary rehabilitation program. Respiratory Muscle Endurance 

Training leads to an improvement of exercise capacity and to a reduction in the 
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perception of dyspnea. We therefore hypothesized, that optimizing the condition of 

the respiratory muscles by means of RMET, before the start of a rehabilitation 

program might lead to a better outcome of such a program. Endurance exercise 

capacity and perception of dyspnea were primary outcome parameters. We also 

looked at the effects of this intervention on quality of life and dyspnea during daily 

activities. The same patients as described in chapter 4 and chapter 5 continued after 

5 weeks of home-based training with either RMET or sham training, during the 

subsequent rehabilitation program. Patients had moderate and severe COPD and 

they had already (randomly) been divided into Respiratory Muscle Endurance 

Training (RMET: n=18) by means of tube-breathing or to sham training (control: 

n=18) with an incentive flowmeter. As was mentioned before, both groups trained two 

times a day for 15 minutes, during 17 weeks. Training started 5 weeks prior to the 

start of pulmonary rehabilitation and was continued until the end of the rehabilitation 

program. During rehabilitation, improvements in respiratory muscle endurance 

capacity and exercise endurance performance were not statistically different between 

both groups. Quality of life and dyspnea during daily activities also improved to the 

same, statistically and clinical relevant, extent. However, due to the 5 weeks of 

isolated home-based RMET, patients in the RMET-group achieved significantly better 

improvements during the entire training-period (preceding home-based RMET and 

subsequent pulmonary rehabilitation) as compared to the control group for the 

following variables: Respiratory muscle endurance capacity, p<0.001; endurance 

exercise capacity, p=0.03 (see figure 1) and perception of dyspnea (Borg-score), 

p=0.01. We therefore concluded that RMET by means of tube-breathing leads to a 

better outcome of a pulmonary rehabilitation program in terms of respiratory muscle 
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performance and exercise endurance capacity with less dyspnea in patients with 

moderate and severe COPD. 

 

Figure 1:  schematic view of changes over time with respect to respiratory 

muscle endurance capacity and exercise endurance capacity  
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GENERAL DISCUSSION 

Respiratory muscle training has been applied since several decades in order to 

improve not only respiratory muscle function, but also exercise capacity. This 

respiratory muscle training was mostly performed by means of inspiratory resistive 

training and threshold loading. These training modalities are mainly based on the 

physiological principals of strength training. Inspiratory manoeuvres against a 

resistance are performed with low frequencies and high power. The studies 

performed with this respiratory muscle strength training, showed improvements in 

respiratory muscle function. However, the results with regard to exercise capacity 

showed some inconsistencies. This may partly be due to the different training 

frequencies and intensities, different duration of training and different patient 

selection that was used. Furthermore some studies applied this training in 

conjunction with general exercise training, which is an important part of a pulmonary 

rehabilitation program. This led to the recommendation that respiratory muscle 

training can be applied as part of a pulmonary rehabilitation program, only for 

selected patients with decreased respiratory muscle strength and breathlessness.1  

Literature from sports medicine,2;3 healthy sedentary subjects4;5 and patients with 

COPD6 and cystic fibrosis4 shows that respiratory muscle training that is mainly 

based on endurance principles is a very promising technique, because it leads to 

improvement in ventilatory muscle endurance capacity and endurance exercise 

capacity. In this kind of respiratory muscle endurance training subjects perform 

unloaded breathing with high frequencies and large tidal volumes. This method of 

respiratory muscle training is based on normocapnic hyperpnea. From a 

physiological point of view, this type of training is much closer related to daily life 

situations, which means that this endurance training is much more specific when 
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compared to strength training. Only one study looked at the effects of home-based 

RMET in patients with COPD.7 A complicated and very expensive device was used 

for home-based training. This study showed improvements in respiratory muscle 

endurance capacity, 6-MWD and Vo2-peak. However, no difference was found 

between the study group and the control group, in endurance exercise capacity and 

dyspnea during daily activities.  

In view of the above mentioned, we investigated whether home-based RMET could 

be performed by tube-breathing, which is easy to perform and inexpensive and 

therefore available to many patients. We have shown that that tube breathing is a 

safe and simple method to perform RMET. Furthermore in our studies RMET led to 

improvement in respiratory muscle endurance capacity, improvement in endurance 

exercise performance and reduction in dyspnea on exertion. Moreover dyspnea 

during daily activities improved, as well as health related quality of life. We also 

looked at effects of training and optimizing the respiratory muscles by means of 

RMET via tube-breathing before the start of a pulmonary rehabilitation program. In 

the RMET group, endurance exercise capacity, respiratory muscle endurance 

capacity as well as perception of dyspnea showed a significant better improvement 

during this period as compared to a control group. No difference was found for 

dyspnea and quality of life.  

 

In view of the above mentioned it can be concluded that respiratory muscles can be 

trained in several ways. Strength training and endurance training have been 

investigated since several decades. However, endurance training did not gain much 

interest for clinical use because it involved practical problems in terms of expensive 

and complicated equipment. This led to a decreased interest for this technique and 
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consequently less clinical studies. On the other hand commercially available 

threshold loaders and incentive spirometers for respiratory muscle strength training 

were developed. Since then a lot of studies have been performed with these devices 

and they are widely used in daily practice. However, when looking at daily-life 

situations and at the specificity of training, endurance respiratory muscle training may 

be much better. The results with this technique are promising and with new 

equipment, that enables home-based training, more studies can be performed and 

routine clinical use becomes available. 
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SAMENVATTING 

Chronisch Obstructief Longlijden (COPD) wordt gekenmerkt door een chronische 

luchtwegvernauwing welke niet volledig reversibel is. Deze luchtwegvernauwing is 

meestal progressief en gaat gepaard met een abnormale inflammatoire reactie van 

de luchtwegen en longen, op giftige deeltjes of gassen. De eerste stap in de 

behandeling van COPD betreft het stoppen met roken. Inhalatie therapie met 

luchtwegverwijders is de belangrijkste farmacologische interventie, met name gericht 

op symptoombestrijding. Non-farmacologische behandelingen bestaan uit 

longrevalidatie, ademspiertraining, non-invasieve ademhalingsondersteuning, 

zuurstoftoediening en chirurgische interventies.  

De studies in dit proefschrift beschrijven de effecten van ademspier-duurtraining 

(Respiratory Muscle Endurance Training; RMET), door middel van normocapnische 

hyperpnoe, bij patiënten met COPD. Meerdere publicaties hebben laten zien dat 

RMET gunstige effecten heeft, met name op het inspannings-duurvermogen, bij 

gezonde vrijwilligers, atleten en patiënten met COPD. Echter de apparatuur, die 

noodzakelijk is om tijdens een periode van hyperpnoe, normocapnisch te blijven, is 

erg duur en gecompliceerd. Dientengevolge is deze trainingsmethode niet voor een 

grote populatie beschikbaar. Het doel van dit proefschrift was te onderzoeken of 

ademspier-duurtraining op een veilige manier verricht kan worden door middel van 

het ademen met een opgelegde frequentie, door een slangensysteem, waardoor de 

dode ruimte fors vergroot wordt: tube-breathing. Voorts werd onderzocht of tube-

breathing gunstige effecten heeft op het inspannings-duurvermogen, op dyspnoe en 

op de kwaliteit van leven bij patiënten met matig en ernstig COPD. Bovendien werd 

onderzocht of het optimaliseren van de ademspieren, voorafgaand aan een 

longrevalidatie programma, leidt tot een betere uitkomst van een dergelijk 
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programma. Hierbij dient opgemerkt te worden dat tube-breathing een eenvoudige 

en goedkope trainingsmethode is .  

 

Hoofdstuk 1 

Hoofdstuk 1 geeft een overzicht van de verschillende methoden van 

ademspiertraining. Twee verschillende vormen van ademspiertraining kunnen 

onderscheiden worden op basis van fysiologische trainingsprincipes: enerzijds 

kracht-training door middel van inspiratoire weerstandstraining en threshold loading, 

anderzijds duur-training door middel van normocapnische hyperpnoe. Deze laatste 

techniek wordt ook wel ‘respiratory muscle endurance training’ (RMET) genoemd. De 

effecten van bovengenoemde trainingsmodaliteiten op verschillende 

uitkomstparameters, zoals ademspierfunctie, maximaal- en duur-

inspanningsvermogen, kwaliteit van leven en dyspnoe worden besproken. Bovendien 

worden de studiedoelen besproken. 

 

Hoofdstuk 2 

In hoofdstuk 2 wordt de haalbaarheid en de veiligheid (ten aanzien van hypoxie) van 

RMET door middel van tube-breathing bij gezonde vrijwilligers beschreven. RMET is 

gebaseerd op het principe van normocapnische hyperpnoe. Normocapnische 

hyperpnoe wordt niet op grote schaal toegepast omdat gecompliceerde en dure 

apparatuur nodig is om CO2-homeostase te behouden tijdens een periode van 

hyperpnoe. Deze CO2-homeostase kan bewerkstelligd worden door de dode ruimte 

van het respiratoire systeem te vergroten. Een van de mogelijkheden om dat te doen 

is door middel van het ademen via de grote dode ruimte van een slangensysteem: 

tube-breathing. RMET door middel van tube-breathing zou een nieuwe en goedkope 
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manier kunnen zijn om ademspiertraining toe te passen, eventueel zelfs in de 

thuissituatie. Echter de veiligheid en de effecten van deze manier van tube-breathing 

op CO2-homeostase zijn nooit onderzocht.  

Derhalve verrichtten 20 gezonde vrijwilligers een 10 minuten durende tube-breathing 

sessie. De dode ruimte van het ventilatoire systeem werd met 60% van de 

individuele geforceerde vitale capaciteit vergroot. Oxygenatie en koolzuurspanning 

werden bepaald, evenals dyspnoe perceptie (Borg-score), ademspierfunctie en de 

hypercapnische ventilatoire respons. Bij 14 van de 20 vrijwilligers ontstond 

hypercapnie tijdens tube-breathing (PaCO2>6,0 Kpa). Er werden geen significante 

correlaties gevonden tussen de verschillende parameters. Vervolgens werden de 

proefpersonen op grond van hun CO2 gehalte verdeeld in twee groepen: 

normocapnisch versus hypercapnisch, waarbij de gemiddelde waardes vergeleken 

werden. Er werden geen significante verschillen gevonden ten aanzien van: 

verandering in oxygenatie, gemeten door middel van oxymetrie (normocapnisch –

0,7% versus hypercapnisch –0,2%, p=0,6), Borg-score (normocapnisch 4,3 versus 

hypercapnisch 4,7, p=0,9), ademspierfunctie of hypercapnische ventilatoire respons. 

Er traden geen klinisch relevante desaturaties op. Deze studie laat zien dat RMET 

door middel van tube-breathing kan leiden tot hypercapnie, echter het wordt goed 

verdragen en leidt niet tot significante bijwerkingen. Derhalve lijkt RMET een veilige 

en haalbare methode voor ademspiertraining bij gezonde personen. 

 

Hoofdstuk 3 

In dit hoofdstuk worden de effecten van tube-breathing op CO2-homeostase, bij 

patiënten met COPD, beschreven. De functie van de ademhalingsspieren kan 

verbeteren ten gevolge van training. RMET door middel van tube-breathing, 
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toegepast in de thuissituatie zou een nieuwe trainingsmodaliteit voor de 

ademhalingsspieren kunnen zijn.  

Het doel van deze studie was te onderzoeken wat het effect van tube-breathing op 

CO2-homeostase is bij patiënten met COPD. De hypothese luidde dat het 

respiratoire regelmechanisme de ademhaling zodanig zou stimuleren tijdens tube-

breathing, dat normocapnie zou blijven bestaan. Veertien opeenvolgende patiënten 

met matig en ernstig COPD werden geincludeerd in de studie. Patiënten 

ondergingen longfunctie testen, een hypercapnische ventilatoire respons, een 

ademspierduurtest en een tube-breathing sessie met dyspnoe-score (Borg). Tijdens 

tube-breathing werden 4 patiënten hypercapnisch (PaCO2>6,0 kpa). Deze 

hypercapnische patiënten hadden een significant ernstiger COPD, meer 

hyperinflatie, een slechtere ademspierfunctie en hogere dyspnoe scores tijdens tube-

breathing in vergelijking met de normocapnische patiënten. Er werd geen significant 

verschil gevonden ten aanzien van de hypercapnische ventilatoire respons. Ook 

werd geen klinisch relevante desaturatie gevonden bij deze COPD-patienten tijdens 

tube-breathing. 

Deze studie toont dat met name een verminderde ademspierfunctie leidt tot 

hypercapnie en meer dyspnoe tijdens tube-breathing in patiënten met matig en 

ernstig COPD. Het respiratoire regelmechanisme lijkt geen belangrijke rol te spelen 

in deze.  

 

Hoofdstuk 4 

In dit hoofdstuk worden de effecten van RMET, door middel van tube-breathing, op 

het inspannings-duurvermogen beschreven. Het doel van deze studie was te 

onderzoeken of RMET leidt tot een verbetering van het inspanningsvermogen en een 
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afname van dyspnoe-sensaties bij patiënten met matig en ernstig COPD. Hiertoe 

werden 36 patiënten gerandomiseerd in twee groepen: RMET door middel van tube-

breathing in de thuissituatie (n=18) of placebo-training (controle n=18). Beide 

groepen trainden twee maal daags gedurende 15 minuten, 7 dagen per week 

gedurende 5 weken. Het inspannings-duurvermogen, dat gemeten werd op een 

fietsergometer op 50% van het individueel behaalde maximale wattage, toonde een 

significante toename in de RMET-groep: van 17 minuten 51 seconden naar 28 

minuten en 16 seconden, p<0,001. De 6-minuten loopafstand en het maximale 

inspanningsvermogen namen ook toe: van 512 naar 535 meter, p=0,007 en van 111 

naar 120 watt, p=0,02 respectievelijk. De dyspnoe-sensatie (Borg-score) nam af van 

8,4 naar 5,4, p<0,001. Ook het ademspier-duurvermogen verbeterde in de RMET-

groep. Hyperpnoe-endurance-time nam toe van 534 naar 833 seconden, p<0,001 en 

sustainable inspiratory pressure nam toe van 2,5 naar 3,1 kpa, p=0,005. De controle-

groep toonde geen significante veranderingen.  

Behalve bovengenoemde uitkomsten werden ook ventilatoire parameters op gelijke 

tijdstippen tijdens de inspanningduurtest vergeleken tussen de eerste en de tweede 

test: iso-time vergelijking. Parameters werden vergeleken op 80% van de tijd welke 

behaald was bij de eerste inspanningsduurtest. Een dergelijke vergelijking geeft 

inspanningsonafhankelijke informatie met betrekking tot eventueel behaalde 

trainingseffecten. In de RMET-groep daalde het ademminuut volume van 43 naar 40 

liter, p=0.03. De ademhalingsfrequentie daalde van 37 naar 30 teugen per minuut, 

p<0,001 en het teugvolume steeg van 1,2 naar 1,4 liter, p=0,04. De Borg-score 

daalde van 8 naar 5, p<0,001. De controle groep toonde geen significante 

verschillen. Derhalve werd geconcludeerd dat RMET door middel van tube-breathing 

leidt tot een verbetering van het inspanningsduurvermogen, een afname van 
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dyspnoe sensatie en een verbetering van de ademspierfunctie bij patiënten met 

matig en ernstig COPD. 

 

Hoofdstuk 5 

Bij het evalueren van COPD patiënten zijn niet alleen fysiologische parameters van 

belang. Steeds meer belang wordt gehecht aan parameters als dyspnoe en kwaliteit 

van leven. In dit hoofdstuk worden de effecten van RMET op dyspnoe en kwaliteit 

van leven beschreven in dezelfde populatie als beschreven in het vorige hoofdstuk. 

36 patiënten met matig en ernstig COPD werden gerandomiseerd over twee 

groepen: RMET door middel van tube-breathing (n=18) en placebo-training met een 

incentive spirometer (controle n=18). Alle patiënten trainden twee maal daags 

gedurende 15 minuten, 7 dagen per week gedurende 5 weken. Longfunctie 

onderzoek en ademspiertesten werden verricht. Dyspnoe werd gemeten met behulp 

van Mahler’s Baseline Dyspnea Index en Transition Dyspnea Index (BDI en TDI). 

Kwaliteit van leven werd gemeten door middel van de Chronic Respiratory Disease 

Questionnaire (CRQ). Patiënten in de RMET-groep toonden een significante 

verbetering van het ademspier-duurvermogen. Ook dyspnoe en kwaliteit van leven 

verbeterden significant in de RMET-groep: TDI toonde een toename van 2,8 punten, 

p=0,001 en CRQ nam toe van 78,7 naar 86,6, p=0,001. De controle groep toonde 

geen significante veranderingen. Deze data bevestigen de hypothese dat RMET door 

middel van tube-breathing leidt tot een afname van dyspnoe en een verbetering van 

de kwaliteit van leven. Bovendien blijkt dat RMET de neerwaartse spiraal met 

betrekking tot verslechtering van dyspnoe en kwaliteit van leven, die bij vele 

patiënten met COPD ontstaat, kan doorbreken. Deconditionering van de 

ademhalingsspieren draagt bij aan dyspnoe, hetgeen de kwaliteit van leven negatief 
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beïnvloedt. Dyspnoe leidt tot een afname van fysieke activiteiten, hetgeen ook weer 

negatief werkt op kwaliteit van leven. Een afname van fysieke activiteiten leidt tot een 

verdere deconditionering van het gehele organisme, en daarmee gepaard gaande 

een verdere achteruitgang van de respiratoire spieren. Beide aspecten leiden tot een 

verslechtering van de kwaliteit van leven. 

De resultaten van hoofdstuk 4 en 5 zouden consequenties kunnen hebben voor de 

niet-farmacologische behandeling van patiënten met matig en ernstig COPD. Met de 

wetenschap dat RMET door middel van tube-breathing een goedkope en makkelijk 

toepasbare trainingsmethodiek is, kan gespeculeerd worden over de plaatsbepaling 

in de behandeling van COPD. Men zou kunnen stellen dat deze trainingsvorm, die op 

deze manier voor bijna iedereen beschikbaar is, niet alleen gereserveerd zou moeten 

worden voor toepassing in een revalidatieprogramma. RMET zou zelfs, indien 

revalidatie of inspanningstraining niet beschikbaar is, een goed alternatief kunnen 

zijn. 

 

Hoofdstuk 6 

In dit hoofdstuk worden de effecten van RMET op de uitkomsten van een revalidatie 

programma beschreven. RMET leidt tot een verbetering van het 

inspanningsvermogen en tot een afname van dyspnoe sensatie. Derhalve werd de 

volgende hypothese opgesteld: het optimaliseren van de ademhalingsspieren door 

middel van RMET, vóór de start van een revalidatie programma, leidt tot een betere 

uitkomst van een dergelijk programma. Primaire uitkomst parameters waren 

inspannings-duur-vermogen en dyspnoe sensatie. De effecten van deze interventie 

op kwaliteit van leven en dyspnoe tijdens activiteiten van het dagelijks leven werden 

ook gemeten. De patiënten, beschreven in hoofdstuk 4 en 5, starten na 5 weken 
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thuistraining met het revalidatie programma. Tijdens deze revalidatie periode 

continueerden zij hun eigen ademspiertraining (hetzij RMET, hetzij placebo-training). 

De patiënten hadden matig tot ernstig COPD, en zij waren reeds (at random) 

verdeeld in 2 groepen: Respiratory Muscle Endurance Training (RMET: n=18) door 

middel van tube-breathing of placebo training (controle: n=18) met een incentive 

flowmeter. Beide groepen trainden 2 maal per dag 15 minuten, gedurende 17 weken. 

De ademspiertraining startte 5 weken voor de start van de longrevalidatie en werd 

gecontinueerd tot het einde van de revalidatie. Tijdens de revalidatie periode was er 

geen statistisch significant verschil tussen beide groepen met betrekking tot de 

verbetering van het ademspierduurvermogen en inspanningsduurvermogen. Kwaliteit 

ven leven en dyspnoe tijdens activiteiten van het dagelijks leven verbeterden ook, 

statistisch en klinisch relevant, in gelijke mate. Echter, ten gevolge van de 5 weken 

RMET in de thuissituatie voorafgaand aan de revalidatie, bereikten patiënten in de 

RMET-groep significant betere toename tijdens de gehele trainingsperiode 

(ademspiertraining thuis en daarop volgende longrevalidatie) in vergelijking met de 

controle-groep ten aanzien van de volgende variabelen: ademspierduurvermogen, 

p<0,001; inspanningsduurvermogen, p=0,03; en dyspnoe sensatie (Borg-score), 

p=0,01. Derhalve luidt de conclusie dat RMET door middel van tube-breathing leidt 

tot een beter resultaat van een longrevalidatie programma met betrekking tot 

ademspierfunctie en inspanningsduurvermogen en een afname van dyspnoe bij 

patiënten met matig en ernstig COPD. 

 

 

 149



Chapter 8 

DISCUSSIE 

Ademspiertraining wordt sinds enkele decennia toegepast, met als doel verbetering 

van ademspierfunctie en inspanningsvermogen. Deze ademspiertraining werd 

meestal verricht door middel van inspiratoire weerstands-training en threshold 

loading. Deze beide trainingsmethodieken zijn met name gebaseerd op de 

fysiologische principes van krachttraining. Inspiratoire manoeuvres tegen een 

bepaalde weerstand worden gedaan in een lage frequentie en met een hoge kracht. 

De studies waarin ademspier-kracht-training werd toegepast, toonden een 

verbetering van de ademspierfunctie. Echter de resultaten met betrekking tot 

inspanningscapaciteit waren niet altijd even eenduidig. Dit is gedeeltelijk toe te 

schrijven aan het feit dat verschillende trainingsschema’s gebruikt werden. Ook 

werden verschillende patiënten groepen geincludeerd. Bovendien pasten 

verschillende studies ademspiertraining toe, tegelijkertijd met algemene 

inspanningstraining. Dit laatste is een belangrijk onderdeel van een longrevalidatie 

programma. Al met al leidden deze observaties tot de aanbeveling dat 

ademspiertraining toegepast kan worden als een onderdeel van een longrevalidatie 

programma, met name voor patiënten met afgenomen ademspierkracht en 

kortademigheid.1 Literatuur uit de sportgeneeskunde2;3 studies verricht bij gezonde 

vrijwilligers,4;5 patiënten met COPD,6 en cystic fibrose,4 tonen dat ademspiertraining 

die met name gebaseerd is op duurprincipes (in plaats van kracht) een 

veelbelovende vorm van training is, vanwege het feit dat zowel 

ademspierduurvermogen als ook inspanningsduurvermogen verbeteren. Deze vorm 

van ademspierduurtraining is gebaseerd op ademen zonder weerstand met een hoge 

frequentie en met grote teugvolumes: normocapnische hyperpnoe. Vanuit 

fysiologisch oogpunt gezien is deze vorm van training veel meer gericht op de 
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situatie in het dagelijks leven; deze duur-training is veel specifieker in vergelijking 

met krachttraining. Slechts één studie heeft RMET in de thuissituatie toegepast bij 

patiënten met COPD.7 Een duur en gecompliceerd apparaat werd gebruikt voor 

training in de thuissituatie. Deze studie toonde een verbetering van het 

ademspierduurvermogen, de 6-minuten looptest en de maximale zuurstof opname 

(VO2-peak). Er werd echter geen verschil gevonden in inspanningsduurvermogen en 

dyspnoe tijdens activiteiten van het dagelijks leven, tussen de studiegroep en de 

controle-groep. 

Met bovenstaande gegevens als basis, hebben wij onderzocht of RMET in de 

thuissituatie verricht zou kunnen worden door middel van tube-breathing, hetgeen 

een gemakkelijk toepasbare en goedkope techniek is en dientengevolge voor vele 

patiënten beschikbaar is. We hebben aangetoond dat tube-breathing een veilige en 

eenvoudige methode is om RMET toe te passen. Bovendien toonden onze studies 

een verbetering van ademspierduurvermogen, een verbetering van 

inspanningsduurvermogen en een afname van dyspnoe sensatie tijdens inspanning 

ten gevolge van RMET. Voorts nam de dyspnoe tijdens activiteiten van het dagelijks 

leven af en verbeterde de kwaliteit van leven. De effecten van training en 

optimalisatie van de ademhalingsspieren door middel van RMET via tube-breathing 

voorafgaand aan een long revalidatieprogramma werden ook geëvalueerd. Zowel 

inspanningsduurvermogen alsook ademspierduurvermogen toonden een significante 

grotere toename gedurende deze periode in de RMET groep, in vergelijking met de 

controle groep. De perceptie van dyspnoe nam significant sterker af in de RMET 

groep in vergelijking met de controle groep. Er werd overigens geen verschil 

gevonden met betrekking tot dyspnoe en kwaliteit van leven. 
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Gezien bovenstaande gegevens kan geconcludeerd worden dat ademhalingsspieren 

op meerdere manieren getraind kunnen worden. Zowel kracht-training, alsook duur-

training zijn in dit kader onderzocht. Echter duur-training heeft slechts een beperkte 

interesse gewekt, met name ten aanzien van het gebruik in de dagelijkse praktijk. Dit 

was mede het gevolg van praktische problemen in de zin van dure en 

gecompliceerde apparatuur, welke nodig was om deze vorm van training uit te 

kunnen voeren. Dit heeft geleid tot een afname van de interesse voor deze techniek 

en dientengevolge weinig klinische studies. Daarentegen werden threshold loaders 

en incentive spirometers ontwikkeld voor kracht-training en door de commerciële 

industrie op de markt gebracht. Sindsdien zijn vele studies met deze apparaten 

verricht en worden zij veelvuldig gebruikt in de dagelijkse praktijk. Echter wanneer we 

kijken naar de situatie in het dagelijkse leven en naar de specificiteit van de training 

dan sluit ademspier-duur-training hier veel beter bij aan. De resultaten van deze 

techniek zijn veelbelovend en met eenvoudige en goedkope uitrusting (± €35,-) welke 

training in de thuissituatie mogelijk maakt kunnen nieuwe studies verricht worden en 

kan routinematig klinisch gebruik van deze techniek geïmplementeerd worden. 
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Training en ademspier-duurtraining in het bijzonder, vergt een behoorlijke 

inspanning, motivatie en doorzettingsvermogen. Het verrichten van wetenschappelijk 

onderzoek doet daar niet voor onder. Derhalve kan promoveren als een 

trainingsprogramma worden gezien. Er is echter een belangrijk verschil: ademspier-

duurtraining betreft een individuele training, daar waar promoveren het karakter van 

een groepstraining heeft. Gaarne wil ik mijn dank betuigen aan de hele groep, die 

met mij dit trainingsprogramma heeft doorlopen: 

- Alle patiënten en vrijwilligers die vele inspannende en benauwende trainingen 

hebben moeten doorstaan.  

- Het Nederlands Astma Fonds voor het ter beschikking stellen van de subsidie. 

- Professor Dr. Folgering, beste Hans, 5 jaar geleden heb je mij enthousiast gemaakt 

voor het verrichten van wetenschappelijk onderzoek. Mede dankzij jou heb ik dit 

traject met veel plezier doorlopen. Naast het feit dat je op elk moment tijd voor mij vrij 

maakte en de afgelopen 2 jaren bij nacht en ontij mailtjes en telefoontjes 

beantwoordde ben ik je met name dankbaar voor het vertrouwen dat je in me gesteld 

hebt. Toen ik 3 jaar geleden naar Leeuwarden vertrok heb je misschien wel eens je 

bedenkingen gehad over de afloop van het project, je hebt dit echter nooit laten 

blijken en altijd een positieve houding aangenomen. Voorts waardeer ik je interesse 

in mijn leven naast het onderzoek! 
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- Dr. Vos, beste Petra, jouw kritische blik en positieve instelling waren (en zijn nog 

steeds) altijd zeer welkom. Onze samenwerking heb ik altijd als buitengewoon 

plezierig ervaren. 

- Dr. Festen, beste Jan, dank voor de inspanningen die je verricht hebt om het 

onderzoek in te passen in het laatste jaar van mijn opleiding.  

- Machteld Jongmans. Ook ik heb mogen profiteren van jouw organisatorische 

kwaliteiten. Dank voor de samenwerking. 

- Afdeling Longfunctie Dekkerswald. Andre, Ger, Kees, Agnes, Petra, Oda, Christel, 

Thea, Irma, Vicky; Dank voor jullie hulp bij de planning en de metingen. Ik heb met 

veel plezier op jullie afdeling gewerkt. 

- Afdeling Longrevalidatie Dekkerswald. Het is goed toeven op een afdeling met een 

prima sfeer. Met veel plezier heb ik mijn onderzoek op jullie afdeling uitgevoerd. 

- Dr. Boot, lieve Cecile, dank voor alles!!! 

- Friese maatschap Longziekten, beste maten, werken vanuit een goede organisatie 

en een plezierige sfeer geeft ruimte voor persoonlijke ontplooiing.  

- Mijn ouders, lieve pap en mam, dank voor jullie interesse, vertrouwen en 

onvoorwaardelijke steun. Hopelijk kan ik nog lang van jullie wijsheden gebruik 

maken. 

- Gijs en Pien, ik vind het prachtig om mijn leven nogmaals te (be-) leven. 

- Helene, samen met jou is alles veel leuker. 
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