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Lung cancer – Impact and diagnosis 
Lung cancer is the leading cause of cancer-related death worldwide, accounting for approximately 5% 

of total mortality in many countries (1, 2). The main types of lung cancer are small cell lung cancer 

(SCLC) and non-small cell lung cancer (NSCLC), accounting for 15% and 85% of the established cases 

respectively. NSCLC can be subdivided into two major subtypes: squamous cell carcinoma (SCC) and 

adenocarcinoma (AC), which differ in clinical, radiological, and histological characteristics (3). Despite 

substantial improvements in treatment options, such as rapidly evolving developments in targeted 

therapies, immune therapy, and surgical procedures, its high mortality rate reflects the large 

proportion of patients that present with advanced-staged disease (>50%), which is not curable. The 

5-year survival rate for localized stage non-small cell lung cancer approximates 60%, whilst the 5-year 

survival rate for metastatic disease equals 5%. In case of SCLC, 5-year survival rate for localized 

disease approximates 30%, whilst the 5-year survival rate for metastatic disease conforms 3%. 

Therefore, an essential step to reduce lung cancer mortality is early detection through non-invasive, 

point-of-care diagnostic strategies (1). Small cell lung cancer (SCLC) substantially differs from non-

small cell lung cancer, i.e. SCLC is characterized by a rapid growth rate, early regional and distant 

dissemination, and high sensitivity to chemo- and radiotherapy, albeit temporary (4). Despite 

significant improvements in the treatment options for NSCLC patients, unfortunately this is not yet 

the case for the small cell lung cancer field. The most important, internationally accepted staging 

system to characterize the extent of the lung cancer is the Tumor, Node, Metastasis (TNM) system as 

issued by the IASLC, where staging depends on the size of the tumor (T), involvement of lymph nodes 

(N), and presence of distant metastases (M) (5, 6). These features, combined as one disease stage at 

time of initial diagnosis, correlate with survival, and determine treatment recommendations (5).  

In case a subject is suspected of lung cancer, based on symptoms or abnormal imaging, a diagnostic 

path is initiated to agree upon a final diagnosis and to determine the most optimal treatment for this 

individual patient. Due to the improvements in directed treatment options, current guidelines 

emphasize the necessity of proper tissue sampling, i.e. invasive diagnostics, in order to provide 

optimal personalized treatment for a patient (7). Tissue sampling can either be performed by 

bronchoscopy in case of a central endobronchial lesion, by endobronchial ultrasound for central 

lesions or lymph node sampling, or by transthoracic biopsy for peripheral intrapulmonary lesions. 

Besides, in case of a suspected distant metastasis, an ultrasound-guided or CT-guided biopsy from a 

liver, brain, or bone lesion can be acquired. In case these diagnostic techniques do not allow for a 

definite diagnosis, more invasive techniques, such as mediastinoscopy or video-assisted 

thoracoscopic surgery (VATS) are performed. However, all invasive diagnostics involve a certain risk 

of complications including pneumothorax, local bleeding, infection, and death (8-10). Therefore, 
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there is an increasing demand for innovative, non-invasive, point-of-care diagnostic tools to detect 

lung cancer at an early stage.  

Exhaled breath analysis 

In the past decades, various non-invasive strategies have been investigated as a potential tool to 

diagnose lung cancer early (11-14). Over the recent years, there has been growing interest using 

exhaled breath in the diagnosis of different diseases. Exhaled breath contains a gas mixture mainly 

composed of inorganic compounds, such as carbon dioxide, water vapour, nitrogen, and inert gases. 

However, it also contains thousands of volatile organic compounds (VOCs) in very low concentrations 

that reflect metabolic processes in the body at tissue level (15-17). Exhaled breath analysis focuses 

on shifts in the composition of these VOCs, indicating biochemical changes at tissue level in different 

(patho)physiological processes, such as infection, inflammation, and malignancy. Breath sampling 

and VOC detection can generally be performed in two ways. It can be performed through pattern 

recognition techniques, using machine learning and artificial intelligence for classification of VOC 

mixtures through cross-reactive, non-specific sensors in electronic noses. Alternatively, it can be 

performed by separation methods for specific identification of individual VOCs (e.g. gas 

chromatography and mass spectrometry). The first mimics human olfaction in which an odorant 

triggers a biochemical cascade to eventually interpret the odorant as a familiar, previously 

recognized smell in a non-invasive way (Figure 1). However, the use of smell as a diagnostic aid is not 

completely innovative. It has been known since ancient times when Hippocrates already mentioned 

the additional value of smell in his work ‘Aphorisms’, written in 400 BC (18). Much later, it was 

Pauling in 1971 who described the presence of VOCs in exhaled-breath (19). Ever since, various 

electronic nose devices with innovative sensor technologies, and improved classification techniques 

have been developed. In the past years, both types of breath sampling techniques have shown 

promising results in pilot studies to diagnose lung cancer and other conditions (20-28). 



10 
 

 

Figure 1. Schematic overview of the working mechanism of the Aeonose™ mimicking human olfaction. Reference: Santos et 
al. Electronic noses Applications in Beer Technology. Chapter 9, July 2017. 

 

Aeonose™ technology 

The Aeonose™ (the eNose Company, Zutphen, the Netherlands) is a handheld electronic nose device 

featuring an array of three metal oxide sensors that offer the opportunity for real-time breath 

analysis (Figure 2). The metal-oxide sensors are mass producible, vary in terms of metal-oxide type 

and catalyst, and, when temperature-controlled properly, enable simple transfer of calibration 

models between Aeonose™ devices (29). When exposed to VOCs at higher temperatures, redox 

reactions can occur leading to consecutive conductivity changes that result into a digital exhaled 

breath profile consisting of conductivity values.  
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Figure 2. Aeonose™ device. 

 

Breath sampling procedure 

A measurement with the Aeonose™ comprises 5 minutes of tidal breathing through the non-

rebreathing Aeonose™ device (29). The Aeonose™ is equipped with a disposable mouthpiece 

containing an active carbon filter to filter inhaled air and a HEPA-filter to prevent contaminating the 

interior of the device. Besides, the subject’s nose is clipped to prevent nose breathing and 

subsequently entrance of unfiltered, environmental air. During the first 2 minutes of use only rinsing 

of the lungs takes place with air guided through the active carbon filter. No measurements are 

recorded then. In the next 3 minutes, the metal-oxide sensors are exposed to exhaled breath and 

conductivity values are recorded. After 5 minutes, the device is put aside, after which the sensors are 

regenerated by guiding clean air through a second carbon active filter. Then, an internal Tenax-tube 

that collected VOCs during the measurement is heated, whilst VOCs are released and recorded. 

Redox reactions of VOCs at the sensor surfaces are recorded as conductivity changes and 

subsequently quantified and displayed as a unique breath signal. A complete breath test cycle 

encompasses 15 minutes in total. 

The Aeonose™ device has been investigated in various studies involving a broad spectrum of 

diseases. Not only lung cancer has shown the ability to be detected by exhaled breath, among others: 

Barrett’s oesophagus, colorectal cancer, head-and-neck cancer, prostate cancer, pancreatic 

adenocarcinoma, respiratory infections in COPD, multiple sclerosis, and tuberculosis have shown the 

potential in training studies to be diagnosed by exhaled-breath analysis based on pattern recognition 

techniques (27, 30-36). 
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Development and validity of prediction models 

Data analysis of the multidimensional breath data obtained, is executed by Aethena, a proprietary 

software package from The eNose Company, incorporating data pre-processing, data compression, 

machine learning algorithms for data classification, internal validation techniques (leave-10%-out 

cross validation and bootstrapping), and model selection. Initially, only artificial neural network 

(ANN) was used as a classification technique to analyse breath data. Neural networks use multiple 

layers of calculations to imitate how the human brain interprets information (37). However, in the 

course of time, the repertoire of machine learning techniques has been enhanced with additional 

machine learning techniques such as Support Vector Machine (SVM), Random Forest (RF), XG Boost, 

and logistic regression, all based on supervised learning of a large amount of data where the 

subject’s outcome is pre-identified to construct a prediction model.  

Evaluation of classification performance (also called accuracy) of a diagnostic tool or prediction 

model is important to determine how well this tool or model distinguishes between subjects with 

and without the condition of concern, compared to the reference test or gold standard. By providing 

an evidence-based evaluation of the accuracy of the diagnostic test, clinicians can carefully consider 

which diagnostic test to subject a patient to, and how to interpret the results of the test.  

Table 1. 2x2 cross table for a diagnostic test 

 Reference standard  

test result positive 

Reference standard  

test result negative 

 

Observed result index 

test positive 

True positive (TP) 

 

False positive (FP) Total positive test 

results index test 

Observed result index 

test negative 

False negative (FN) True negative (TN) Total negative test 

results index test 

 Total positive results 

reference standard test 

Total negative results 

reference standard test 

Total number of 

observations 

 

Important terms to assess diagnostic performance (Table 1): 

Sensitivity (true positive rate):    TP / (TP + FN)  

Specificity (true negative rate):    TN / (FP + TN) 

Positive predictive value:     TP / (TP + FP) 

Negative predictive value:    TN / (FN + TN) 

Accuracy:      (TP + TN) / (TN + FP + FN + TN) 

Receiver operating characteristic curve:   Summary statistic to numerically and graphically  

                                                                                                              represent the performance of an algorithm for a     
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                                                                                                              binary classification (see Figure 3). 

Area under the receiver operating characteristic curve:  Measure of the ability of a classifier to distinguish  

       between classes, i.e. summary of the ROC-curve. 

 

Figure 3. Receiver Operating Characteristic curve (Reference: www.medcalc.org) 
 

An ideal diagnostic test is characterized by a high sensitivity and high specificity in which none of the 

subjects having the condition are missed, and none of the “healthy” subjects are incorrectly classified 

as having the condition. Considering lung cancer being a condition with a high mortality rate when 

not promptly recognized, a tool to diagnose lung cancer primarily has to be characterized by a high 

sensitivity and high negative predictive value in order to miss as few cases as possible, and to exclude 

negatively tested subjects safely from further invasive diagnostics. Besides, subjects without the 

condition should, whenever possible, be prevented from undergoing unnecessary interventions. 

Therefore, a minimum of specificity should also be considered in evaluating the diagnostic test. The 

ROC-curve plots the sensitivity and specificity, whereupon a threshold can be determined that is 

relevant for clinical practice.  

The various machine learning techniques develop thousands of prediction models, eventually one 

being considered the most optimal model for further evaluation based on relevant characteristics. 

Diagnostic performance of this prediction model is assessed on collected breath data as a training or 

pilot model. However, since the proof of the pudding is in the eating, validation of the prediction 

model, i.e. determining the accuracy of a prediction model in a completely new, independent cohort 

with a varying case-mix, that has not yet been exposed to the trained model, is fundamental. This 
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validation tackles the risk of overfitting data and assures reliability of previous study findings and 

generalisability to the overall population. Nevertheless, this ideal design for external validation is not 

always feasible due to the fact that it concerns a time-consuming process or rapidly evolving 

techniques in which the diagnostic tool investigated has already been improved or innovated. 

Clinical parameters 

Various clinical characteristics of subjects are known to be related to an increased risk of developing 

lung cancer. These clinical parameters have extensively been studied in the past in epidemiological, 

multivariate studies to: 1) construct clinical tools for lung cancer risk prediction; 2) determine 

adequate screening criteria for lung cancer screening programmes; and 3) incorporate in guidelines 

on follow up of solitary pulmonary nodules, such as the Brock and Herder model (38, 39). Important 

clinical parameters indicating a higher risk of developing lung cancer are male sex, an active or 

former smoking status and a higher number of pack-years smoked, higher age, presence of 

emphysema, and a positive family history. Addition of biomarker assays, such as exhaled-breath data 

to these easily available clinical parameters might improve the diagnostic performance to diagnose 

lung cancer.  

The aim of the research presented in this thesis is to analyse and validate exhaled breath analysis, 

based on pattern recognition techniques with electronic nose technology, as a non-invasive 

diagnostic method to diagnose lung cancer. 

 

Outline of the thesis 

In Chapter 2 the proposed study design to train the Aeonose™ as a diagnostic tool to diagnose lung 

cancer is described in detail, mainly focusing on the technical working mechanism of the device, as 

well as the statistical analyses in the ‘black box’ of the Aeonose™ measurements to classify subjects 

as having lung cancer or not based on multidimensional data. 

Chapter 3 outlines a proposed stepwise design to simultaneously develop and validate prediction 

models based on machine learning techniques, involving datasets with a large number of data. In this 

chapter the relevance of the study design as proposed in specific situations is discussed, where a 

study design regarding true external validation is possibly inefficient. The proposed study design is 

demonstrated with our previous performed study outlined in Chapter 4 as an example. 

Chapter 4 shows the results of the exploratory multicentre training study performed in four hospitals 

in which exhaled-breath analysis based on pattern recognition techniques with the Aeonose™ 
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distinguishes between subjects with and without lung cancer. Sub-analyses are performed where 

subjects without lung cancer were divided into a group that was suspected of lung cancer, but was 

proven negative, and a group of healthy controls matched on sex and age. Also, sub-analyses are 

performed on histology subtypes of non-small cell lung cancer, such as adenocarcinoma and 

squamous cell carcinoma, and a small subset with small-cell lung cancer (SCLC) patients.  

In Chapter 5 the original prediction model as obtained in the multicentre training study from Chapter 

4 is extended to improve the diagnostic performance to diagnose non-small cell lung cancer by 

adding readily available clinical parameters in two ways. In a multivariate logistic regression analysis, 

the classification value of the Aeonose™, as well as significant clinical parameters for the presence of 

lung cancer, are combined. Furthermore, clinical parameters are a priori added to the artificial neural 

network in the training process of the Aeonose™ as described in Chapter 2.  

Chapter 6 shows the results of the multicentre, multinational validation study in which a prediction 

model is trained and subsequently validated to distinguish non-small cell lung cancer patients from 

subjects without lung cancer based on exhaled-breath patterns. Also, similar to Chapter 4, clinical 

parameters are added to the final prediction model based on exhaled breath data only, to improve to 

accuracy of the diagnosis of lung cancer.  

Finally, in Chapter 7 the general discussion is outlined in which we place the main results of the 

performed studies in a broader context and discuss the relevance of the findings and future 

implications. 
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Abstract 

Introduction: Only 15% of lung cancer cases present with potentially curable disease. Therefore, 

there is large interest in a fast, non-invasive tool to detect lung cancer earlier. Exhaled breath 

analysis by electronic nose technology measures volatile organic compounds (VOC's) in exhaled 

breath which are associated with lung cancer.  

Methods: The diagnostic accuracy of the Aeonose™ is currently being studied in a multi-centre, 

prospective study in 210 subjects suspected for lung cancer, where approximately half will have a 

confirmed diagnosis and the other half will have a rejected diagnosis of lung cancer. We will also 

include 100-150 healthy control subjects. The eNose Company (provider of the Aeonose™) uses a 

software program, called Aethena, comprising pre-processing, data compression and neural 

networks to handle big data analysis. Each individual exhaled-breath measurement comprises a data 

matrix with thousands of conductivity values. This is followed by data compression using a Tucker-3-

like algorithm, resulting in a vector. Subsequently, model selection takes place after entering vectors 

with different presets in an Artificial Neural Network to train and evaluate the results. Next, a “judge 

model” is formed which is a combination of models for optimizing performance. Finally, two types of 

cross-validation, being ‘leave-10%-out’ cross-validation and ‘bagging’, are used when recalculating 

the judge models. These judge models are subsequently used to classify new, blind measurements.  

Discussion: Data analysis in eNose technology is principally based on generating prediction models 

which need to be validated internally and externally for eventual use in clinical practice. This paper 

describes the analysis of big data, captured by eNose technology in lung cancer. This is done by 

means of generating prediction models with Aethena, a data analysis program especially developed 

for analyzing VOC data.  
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Introduction 

Lung cancer is the leading cause of cancer death among males and females worldwide, accounting 

for approximately 5% of total mortality in many countries (1). Lung cancer is not a well-defined single 

entity. It is a heterogeneous disease, arising in many different clinical pathological patterns. The 

World Health Organization classification recognizes 20 different types of malignant lung neoplasms 

(2). The main types of lung cancer are small cell lung cancer (SCLC) and non-small cell lung cancer 

(NSCLC) where the latter can be subdivided into three major histological types: adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma. Chest radiography and computed tomography 

(CT), which are considered non-invasive diagnostic techniques, are the first steps in the diagnostic 

work-up to detect and stage lung cancer. Histopathological diagnosis following an invasive 

bronchoscopic intervention still remains the gold standard to prove or rule out the diagnosis of lung 

cancer. However, this investigation is accompanied by associated risks and substantial costs, which 

makes it not suitable for population-based screening.  

The diagnosis of early stage lung cancer is essential for curative therapy by means of surgery and 

substantially determines life expectancy (3). Five-year survival for those with pathological stage IA 

non-small cell lung cancer is 73%, whereas metastatic disease has a miserable prognosis with a five-

year survival of merely 13% (4;5). Unfortunately, only 15% of the lung cancer cases present with 

localised, potentially curable disease, which means that the majority of the cases is diagnosed in an 

advanced stage with consequently poor survival rates. 

There has been a lot of interest in secondary prevention involving screening tests for the detection of 

early-stage lung cancer. Screening tests using sputum cytology and chest radiography have been 

attempted with unfortunately limited success (6). Although low-dose computed tomography (LDCT) 

is able to detect early-stage lung cancers (3), in practice it does not sufficiently demonstrate a 

survival benefit, reduce the incidence of advanced stage cancers or reduce lung cancer mortality 

(7;8). The observed increased survival time with screening can be overestimated due to lead time 

bias, when survival time is measured from the time of diagnosis. But also, length bias can give an 

overestimation of survival duration among screening detected cases by the relative excess of slowly 

progressing cases. These cases are disproportionately identified by screening because the probability 

of detection is directly proportional to the length of time during which they are detectable (and 

thereby inversely proportional to the rate of progression). Furthermore, maybe less important in 

lung cancer, overdiagnosis bias can play a role in screening research, which could lead to 

overestimation of survival duration among screen-detected cases caused by inclusion of pseudo 

disease—subclinical disease that would not become overt before the patient dies of other causes 
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(9;10). However, there are several lung cancer screening trials by means of CT-scanning ongoing with 

some optimistic results (11-15), but these results still are insufficient for screening to be incorporated 

in clinical practice since high numbers needed to screen and a large number of false positives 

continues to question cost-effectiveness especially concerning determining the definition of the 

screening population and the screening frequency (16-19). Hence, there is large interest in a fast, 

simple, cost-effective and non-invasive tool to detect lung cancer at an early stage, preferably during 

a visit at the general practitioner.  

This has led to the introduction of exhaled breath analysis by means of electronic nose technology. 

This diagnostic approach seems very promising in the lung cancer field, though it is yet far from being 

incorporated in clinical practice (20-23).  

The concept of an electronic nose is based on the availability of powerful personal computing making 

it possible to apply pattern recognition techniques to complex measurement data. The desire is to 

have a general, broadly responsive sensor system that generates complex multidimensional 

measurement data and uses pattern recognition techniques to match measured response patterns to 

previously observed response patterns in order to identify specific scents present within complex 

mixtures. This is analogous to the physiology of the human smell, where the brain combines received 

signals and determines what characteristic scent pattern is smelled, but doesn’t distinguish specific 

components. Hence, the name ‘electronic nose’.  

Electronic nose technology is based on the usability of volatile organic compounds (VOC’s) in exhaled 

breath. Exhaled breath is mainly composed of inorganic compounds, such as nitrogen, oxygen, 

carbon dioxide, water vapour and inert gases. In addition, it contains thousands of VOC’s, which are 

exhaled in very low concentrations, but reflect pathological processes, such as inflammation, 

oxidation, infection and neoplasms, where they can serve as non-invasive biomarkers for certain 

diseases (24). The perspective is that metabolic and biochemical processes that occur in different 

pathological situations cause different endogenous VOCs to arise, which can be detected with 

different chemical sensors and can therefore be promising disease biomarkers. All these methods are 

directed at measurable changes in physical properties of the sensors when being exposed to a gas 

mixture. 

However, the use of VOCs in electronic nose technology is only one method. There are several other 

methods utilized for breath sampling, like Multi-Capillary Column-Ion Mobility Spectrometry or Gas 

Chromatography-Mass Spectrometry that look for specific compounds in exhaled air (25-28). 

Contrary to determining VOCs in exhaled breath, these techniques do not apply pattern recognition 

techniques, since they are aimed at identifying individual molecules in exhaled breath instead of a 
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unique composite breath signal. Recently, Schallschmidt et al. published results of an observational 

study on the profiles of volatile organic compounds where they showed that the use of solid phase 

microextraction-Gas Chromatography-Mass Spectrometry is not reliable enough to discriminate 

between cancer patients and healthy controls (29). An important remark they make relates to the 

limited capability of current analytical procedures to detect unstable marker candidates.   

The use of human breath as a diagnostic tool is not completely innovative. The use of smell as a 

diagnostic aid has been known since ancient times when Hippocrates mentioned the diagnostic value 

of smell in his work ‘Aphorisms’ which was written in 400 BC (30). However, it was Pauling who 

described in 1971 the presence of VOC’s in exhaled breath that this method became of great 

scientific interest (31). Over the last few decades, several electronic nose devices have been 

developed, which contain different sensors to detect the VOC’s and generate a quantifying measure 

for these VOC’s. A lot of research has been performed with the Cyranose 320, and analyses 

performed by Machado et al. and Dragonieri et al. provided some promising results in the lung 

cancer field (26;32). Also promising was the gold particle nanosensor developed by Peng et al (33). 

Peled et al showed an accuracy of the nanoarray in discriminating between malignant and benign 

pulmonary disease of 88% with an area under the curve (AUC) of 0.986 (34). However, these results 

are based on a small study population (n=69) without performed external validation.  

In this manuscript, the Aeonose™, developed by The eNose Company (Zutphen, The Netherlands) will 

be discussed. The Aeonose™ differs from other electronic nose devices that it offers the opportunity 

for transferring calibration models and therefore enables large-scale application (35). 

An important aspect of the electronic nose concept is that a substance, or a mixture of substances 

(VOC’s), can only be recognized after a calibration phase, i.e. the pattern must be known beforehand 

(‘seen’ before). This is why the electronic nose must be trained and a database of patterns, called 

breath prints, must be developed. This searchable, digital database systematically stores previous 

measurements with characteristic scent patterns. In this way, new scent patterns can be matched 

with an existing scent profile through comparative pattern recognition analysis.  

When comparing breath patterns between subjects diagnosed with and without a certain disease, 

the eNose can be trained to distinguish between these two groups. In this way, a new diagnostic 

device can be developed for screening or diagnosing diseases based on people’s exhaled breath. 

The aim of this manuscript is to describe our study concerning the detection of lung cancer with the 

Aeonose™, where we will focus on the statistical analysis in the ‘black box’ of the Aeonose™ 

measurements for classifying whether lung cancer is present or not.  
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Objectives 

The main objective of this study is training the Aeonose™ to build a database for recognition for the 

detection of lung cancer. This study aims to investigate the diagnostic accuracy of exhaled breath 

analysis with the Aeonose™ to distinguish breath of subjects suspected for lung cancer who are truly 

diagnosed with lung cancer from subjects suspected for lung cancer in which this diagnosis is 

rejected after histopathological diagnosis following a bronchoscopic intervention. The obtained 

patterns will also be compared with breath patterns of healthy subjects who are not suspected for 

lung cancer. Additionally, we will investigate whether the Aeonose™ recognizes patterns between 

different types of lung cancer (NSCLC vs. SCLC) and between different lung cancer stages. 

 

Material and Methods 

Design 
It concerns a multi-centre, prospective, non-invasive study in subjects suspected for lung cancer, who 

are referred for a histological biopsy through bronchoscopy. Subjects who are suspected for lung 

cancer will be compared in a cross-sectional design, where breath patterns from those who are truly 

diagnosed with lung cancer are compared to those where this diagnosis is rejected. Also, breath 

patterns of healthy subjects will be compared with confirmed and rejected lung cancer cases. It 

concerns a single measurement in the pulmonology departments of Medisch Spectrum Twente 

Enschede, Ziekenhuis Bernhoven Uden, Medisch Centrum Leeuwarden, and Deventer Ziekenhuis, all 

in the Netherlands.  

Study population 

Adult subjects who have a scheduled visit at the outpatient clinic of the pulmonology departments of 

the participating hospitals due to suspicion of lung cancer will be asked to participate. Suspected 

subjects will be divided in a group with a confirmed diagnosis of lung cancer and a group with a 

rejected diagnosis of lung cancer based on histopathology following a bronchoscopic intervention. 

Healthy subjects will be recruited from partners, relatives or friends of eligible subjects. They will be 

frequency matched on age and gender distribution to the subjects suspected for lung cancer. When 

we calculated a sample size to ensure a study with a reasonable power, we took into account a 

desired sensitivity of 90% with a two-sided confidence interval of 82.5% - 95%. In this way, we 

approximately need 105 subjects diagnosed with lung cancer. When we presume a realistic 1:1 ratio 

of a confirmed versus a rejected diagnosis of lung cancer in suspected subjects, we also 

approximately need 105 subjects with a rejected diagnosis, which gives a total of 210 suspected 

subjects. Given the possibility to observe a bigger contrast between suspected subjects with a 
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confirmed diagnosis of lung cancer and subjects not suspected for lung cancer at all, we also include 

100-150 ‘healthy’ subjects without any suspicion for lung cancer.  

Inclusion criteria 

Recruitment of these subjects has started in June 2015 and is expected to conclude in the winter of 

2016. We aim to include a total of 210 patients where the number of patients per hospital depends 

on the catchment population of each hospital. From these 210 patients, based on hospital data, 

approximately 105 patients will have a confirmed diagnosis of lung cancer and 105 of the suspected 

cases will have a rejected diagnosis of lung cancer. Additionally, we aim to include 100-150 healthy 

subjects. This should be sufficient for training the Aeonose™ and determining whether it can reliably 

detect differences in breathing substances.  

Suspected subjects need to meet the following criteria to be eligible: 

1) Referred for a histological biopsy due to suspicion for lung cancer; 

2) Age ≥ 18 years. 

Eligible healthy subjects need to meet the following criterion: 

1) Age ≥ 18 years. 

The only exclusion criterion for all subjects is: 

1) Known with an active malignancy. 

In setting-up the study protocol, we tried to exclude correlated features between cases and controls 

as much as possible. In an exploratory analysis, however, we have noticed an (unexpected) decrease 

of AUC when we used supposedly healthy partner controls. This might be due to correlated features, 

such as similar diet and smoking behavior, or at least residing in the same indoor atmosphere. In case 

of a suspicion for correlated features, cluster analysis could be helpful using e.g. a software package 

like Carotta (36).  

Aeonose™ technology 

The Aeonose™ consists of three micro hotplate metal-oxide sensors (MOS) that are rigid, mass 

producible, and offer the opportunity for transferring calibration models. This means that once a 

calibration model has been developed, it can easily be transferred to other Aeonose™ devices. 

Several metal-oxides behave as semi-conductors at higher temperatures. The sensors vary in terms 

of metal oxide type and catalysing agent. Redox reactions occurring at the sensor surface result in 

changes in conductivity that can be measured and quantified resulting in a unique breath signal. 

These redox reactions depend on the type of metal oxide and catalyst, the reacting gas(es), and the 

temperature. A broad range of VOCs in exhaled breath will give a redox reaction. 
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Thermal cycling 

Redox reactions are temperature dependent, and by using thermal cycling this temperature 

dependency can be determined as a function of time. Different VOC’s show different responses at 

varying temperatures for the same chemical sensor type (figure 1A). The breath patterns are 

obtained by taking the response of a complete cycle and can be presented as a function of the 

temperature (figure 1B). In this way the temperature dependency of the redox reactions is acquired 

on a single sensor. The patterns obtained by thermal cycling do not only depend on the applied 

temperatures, but also on the dynamics of the temperature, because intermediate products created 

at the sensor surface have limited life times. 

 

Figure 1. A: Measuring principle of the Aeonose™: A continuous sinusoidal temperature cycle in which the heater is 

thermally cycled (top) and the conductivity of the sensor (bottom) is recorded as a function of momentary temperature. 

The temperature profile is applied to the heater while the response is recorded at the sensor. Substances can show 

temperature-dependent responses for the same chemical sensor type. (Blanc = clean air, H2S = hydrogen sulphide, MEA = 

methylamine, NH3 = ammonia). B: Thermal response loops resulting from the normalized conductivity of the sensor plotted 

as a function of the heater temperature during a full period. (Blanc = clean air, H2S = hydrogen sulphide, MEA = 

methylamine, NH3 = ammonia). (Taken from: Bruins et al. Transferable odour differentiation models for infectious disease 

diagnostics, 2014 (48)) 

Statistical analysis 

Predictive models are important tools to provide estimations of diagnostic outcomes. There are 

various resampling methods to estimate the performance of a model in a new sample of 

independent subjects (the test set) after a training set of observations has been created, i.e. these 

methods refit a model of interest to samples formed from the training set, in order to obtain 

additional information about the fitted model. The resampling methods provide estimates of the 

test-set prediction error (test error) and error of the parameter estimates for future observations 



28 
 

(prediction error).  

First, it is important to know whether a data set is either low-dimensional or high-dimensional. Low-

dimensional implies that there are more subjects present than parameters in a data set (n>p). In 

contrast, high-dimensional implies having more parameters than subjects in a dataset (p>n). A high 

dimensional data set, as obtained with the Aeonose™, poses statistical challenges where too many 

predictors will overfit the data and result in a model that looks appropriate on the training data used 

to develop it, but will poorly perform on future observations from the test data. This problem of 

overfitting can be avoided by using a combination of analytical techniques such as data compression, 

cross-validation and bootstrapping. In statistics, cross-validation is a model validation technique for 

assessing how the results of a prediction model will generalise to a new independent data set 

(37;38). Bootstrapping is a useful technique to get an idea of the variability or standard deviation of 

an estimate and its bias (39;40).  

The eNose Company uses a proprietary software for data analysis, called ‘Aethena’. This package 

retrieves raw data from a database and takes care of data compression, data analysis and data 

reporting. In this section we will illustrate the methods used to obtain the best prediction models.  

During an exhaled breath measurement, for each sensor, 64 * 36 data points are being recorded. In 

this way, each individual patient measurement comprises of a data matrix with thousands of records. 

In the course of the data analysis and pattern recognition, the following steps can be distinguished: 

Pre-processing 

As mentioned before, the sensor’s temperature control enables accurate reproducibility of the 

results. However, slight variations between sensors among Aeonoses™ can be seen. In order to cope 

with these variations, the data are being standardized in several ways, creating multiple 

representations of the same dataset. 

1. Data of a measurement are scaled between 0 and 1 per measurement cycle. 

2. Data of the full measurement are scaled between 0 and 1. 

Data compression 

As the matrix sizes are too large for classification, the data are compressed using a Tucker3-solution 

(41). This needs to be done to avoid the so-called spurious correlations. Spurious correlations 

become of greater importance since modern eNoses collect increasing amount of data. The 

compression results into a vector for one of the seven sensor combinations of the three metal-oxide 

sensors (A, B, C, AB, AC, BC and ABC). In the case of lung cancer this results in 11 components per 

patient in which redundant information and noise is removed, but in which information concerning 

the distinction between healthy and sick subjects is maintained. 
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We start with all subjects, called dataset A. When classifying subjects, we set aside 20% of the data in 

a blinded fashion in order to create a test set for external validation (dataset C, also called test set). 

Of the remaining 80% (dataset B, also called training set) the true lung cancer status based on 

pathology is known. The vectors generated in the study will be entered into an artificial neural 

network (ANN). Figure 2 describes the principle of an artificial neural network. There is one input 

layer consisting of the obtained vector in the compression phase. By means of algorithms based on 

trial and error the components of the input layer and hidden layer will be given different weights to 

determine the best output.  

 

Figure 2. General structure of an artificial neural network (ANN). A feed-forward neural network with one input layer 

consisting of four nodes (x), one hidden layer with two nodes (Σ), and one output layer (y), The connections between the 

layers have associated connection strengths or weights (wi),which can be varied. (Taken from: Genet. Epidemiol. 2008 

May;32(4):325-40. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-

gene interactions in genetic epidemiology. Motsinger-Reif AA, Dudek SM, Hahn LW, Ritchie MD) (49).  

Several statistical learning methods could be applied for data classification. For optimal results all of 

them require fine-tuning. Up till now we have been focusing on applying neural networks. However, 

also other methods like Random Forest and Support Vector Machine could be applied. Actually, in 

another study (submitted for publication), the neural network results were compared to results 

obtained from Random Forest, Support Vector Machine, and Gaussian Process showing comparable 

AUC values. Hauschild et al. have described different classification methods as well (42). Up till now 

we have no compelling evidence that other classification techniques will show better results than 

neural networks. However, for specific diseases, it could be favorable to use other classification 

techniques (e.g. Random Forest). Therefore, we intend extending our software package with other 

classification techniques in the near future. 
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10-Fold cross-validation or Leave-10%-Out cross validation 

Cross-validation is a model validation technique for assessing how the results of a statistical analysis 

will generalize to an independent data set. It is mainly used when one wants to estimate how 

accurately a predictive model will perform in practice.  

10-fold cross-validation comprises 10 rounds of validation (figure 3). One round of cross-validation 

involves partitioning the training set (dataset B) into complementary subsets (80% (dataset D), 10% 

(dataset E), 10% (dataset F)), performing the analysis on dataset D, and validating the analysis on the 

10% in subset E. Dataset F is used as a stop criterion in order to decide how long the model needs to 

be trained. To reduce variability, 10 rounds of cross-validation are performed using different 

partitions in such a way that after 10 rounds all data have been used once in dataset D, E, and F, and 

all patients are predicted once. The validation results are averaged over the 10 rounds, resulting in 

one combined AUC. 

 

Figure 3. First round cross-validation. 

Model selection 

The process described is executed for all 7 sensor combinations and for different pre-processing 

techniques. In this way, a large number of possible ANN-models are being generated, each with its 

specific performance measures. The output consists of a list including ranked ROCs with performance 

calculated by means of the Area Under the Curve (AUC), sensitivity and specificity. Higher AUCs 

usually indicate better performance.  

Subsequently, based on ranked AUC’s, various models will be selected for optimizing diagnostic 

performance. First, a model is selected that is able to properly separate positive and negative 
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subjects (figure 4). Subsequently, for both negative and positive subjects, two different 

complementary combined models are constructed, based on single models, which minimize the 

number of false positives and false negatives. For positive subjects we use models that accurately 

predict positives and for negative subjects models are used that accurately predict negatives.  

 

Figure 4. Mechanism of judge models.  

A combination of the best models showing the smallest error is called a “judge” model. Smallest 

error is defined as the sum of false positives and false negatives. Every judge model gives one AUC 

and all models are independent from each other. The next step will be to fine-tune and validate 

these selected models. 

Two sets of ROC plots can be constructed: at first, the neural network is being trained using samples 

with known classifications, and applying leave-10%-out cross validation. The results can be 

represented in a ROC plot that should be representative for blind samples as well because of the 

cross validation process. Secondly, blind samples are classified using the trained neural network. 

When these classifications are compared with the gold standard results, threshold dependent 

confusion matrices can be constructed followed by a corresponding ROC plot. If the blind samples 

have similar characteristics as the training set, the ROC curves of training set and blind samples can 

be expected being almost identical. 

Subsequent cross-validation 

In our analysis, two types of cross-validation techniques are used: ‘Leave-10%-Out’ and ‘Bagging’ 

(bootstrap aggregation) (43;44). When using the ‘Leave-10%-Out’ method, the selected single 

models and obtained judge models are recalculated as previously described. However, fine-tuning of 
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the ANN’s is being applied for optimal performance where new weights for every model are 

calculated, which means that the ANN’s are generated a few more times from scratch to determine 

whether the ANN’s are stable; i.e. whether comparable ROC-curves are derived. However, the input 

is not the full dataset. Only the positives from the first separation are entered in the upper models 

and only the negatives from the first separation are entered in de lower models, which eventually 

lead to one AUC.  

Bagging is an alternative cross-validation technique to provide stable networks. From dataset B, a 

random sample of measurements is chosen, used for training an ANN, and this sample is 

subsequently replaced, contrary to 10-fold cross-validation. This procedure is repeated many times 

(i.e. >1000). Per person a large number of calculated risks for lung cancer are derived and are 

averaged to one chance which is used to calculate the AUC. This obtained AUC will be compared with 

the obtained AUC from the 10-fold cross-validation. Finally, the best ANN’s generated by bagging will 

be used to classify the blind measurements from dataset C, the test set.  

The bagging technique is mainly used to check whether the leave-10%-out procedure succeeded and 

gives a smoother model fit with a better balance between potential bias and variance. An important 

difference compared with 10-fold cross-validation is that in bagging models are not further adapted 

and no judge models are constructed. The calculated weight remains constant. 

Example 

 

Figure 5A. Separation plot 
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Figure 5B. ROC curve 

Figures 5A shows a separation plot, based on training data, showing predicted values for 50 patients 

with lung cancer (pos) and 60 healthy controls (neg), according to the statistical procedures as 

described in this manuscript, representing a demonstration of the principle. Figure 5B shows the 

corresponding ROC curve, again based on preliminary training data.  

Discussion 

Despite modest advances in the treatment of lung cancer, it remains a fatal disease with overall 5 

year survival rates having not increased over a few decades (45;46). Therefore, it is of great matter to 

detect lung cancer at an early, potentially curable state. Screening programs concerning lung cancer 

have proven evidence of reducing lung cancer-specific mortality, but results must be implemented 

carefully. There should be a clear balance between maximizing benefits and minimizing harms with 

acceptable costs. As seen with lung cancer screening, the high amount of false positives involves 

substantial costs and therefore drives the cost-effectiveness of lung cancer screening downward. A 

positive CT-scan triggers additional diagnostics ranging from rather easily repeating the CT-scan to 

invasive diagnostics like biopsy and surgical resection. These interventions however also involve 

associated risks, such as morbidity and mortality from complications and high emotional stress.  

Therefore, the lung cancer screening field can be extended with alternative forms of diagnostics 

instead of just focusing on imaging techniques.  

Exhaled breath analysis by means of electronic nose technology is a young field of research, but has 

been of great scientific interest the last few years and is a rapid emerging field of medical 

diagnostics. However, it has not yet been implemented in clinical practice. Several electronic noses 

with varying underlying technologies have been tried with some promising results, but the limited 
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amount external validation studies have not yet given sufficient trust in these methods. Recently, 

Leopold et al. have published an article concerning external validation in studies using various 

methods of electronic nose technology in lung cancer (47). They evaluated 46 studies regarding 

different approaches to dimension reduction, classification and validation in electronic nose 

technology. Only 7 studies performed external validation on an independent dataset with rather 4 

datasets available for re-analysis. External validation resulted in a lower area under the receiver 

operating characteristics curve (ROC-AUC) compared to the internal validation in 2 out of 4 datasets. 

The other 2 datasets did not show decreased ROC-AUC’s when applying external validation. 

However, no single combination of dimension reduction and classification methods gave consistent 

results between internal and external validation sets in these 4 datasets. Therefore, to show accurate 

diagnostic performance, it is important to estimate diagnostic performance on an independent 

dataset (external validation). Robustness of the models is important indeed, especially when one 

plans on classifying blind samples. Next to high overall AUC, we therefore also require models to 

show a small AUC standard deviation between the 10 consecutive steps during the 10-fold Leave-

10%-Out cross validation. 

The ideal diagnostic test should be both sensitive (a high percentage of sick subjects who are 

correctly identified as having the condition) and specific (a high percentage of healthy subjects who 

are correctly identified as not having the condition). This overall percentage of correctly diagnosed 

subjects determines the test accuracy. The results of the new diagnostic test are compared to the 

results of the reference test called the gold standard.  

The Aeonose™ used in our study is a hand-held electronic nose device, which is convenient to use, 

includes non-invasiveness and gives fast results with consistent copy-and-paste between different 

Aeonoses™. However, possible disadvantages which need to be taken into account are the inability 

to differentiate between endogenous and exogenous compounds and the influence of many 

exogenous factors, such as smoking, diet and other scents. In this study, we investigate whether 

exhaled breath patterns from patients with lung cancer can be distinguished from healthy subjects. 

After completing the training phase with approximately 350 subjects, we should have an idea 

whether the Aeonose™ can reliably detect differences in breath patterns of patients with lung cancer 

and subjects without lung cancer. After the training phase, an external validation phase must follow 

with an independent group of sick and healthy subjects in a different setting.  
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Abstract  

Accurate diagnosis of a disease is essential in healthcare. Prediction models, based on classical 

regression techniques, are widely used in clinical practice. Machine Learning (ML) techniques might 

be preferred in case of a large amount of data per patient and relatively limited numbers of subjects. 

However, this increases the risk of overfitting, and external validation is imperative. However, in the 

field of ML, new and more efficient techniques are developed rapidly, and if recruiting patients for a 

validation study is time consuming, the ML technique used to develop the first model might have 

been surpassed by more efficient ML techniques, rendering this original model no longer relevant. 

We demonstrate a stepwise design for simultaneous development and validation of prediction 

models based on ML techniques. The design enables – in one study - evaluation of the stability and 

robustness of a prediction model over increasing sample size as well as assessment of the stability of 

sensitivity/specificity at a chosen cut-off. This will shorten the time to introduction of a new test in 

health care. We finally describe how to use regular clinical parameters in conjunction with ML based 

predictions, to further enhance differentiation between subjects with and without a disease. 

 

WHAT IS NEW? 

• Validation of clinically relevant prediction models is an essential step. 

• Traditional external validation can be too time-consuming for diagnostic tests that evolve 

over time. 

• Stepwise development and validation is useful for highly relevant and rapidly changing 

diagnostic tests. 

• Our design facilitates using promising emerging less-traditional diagnostic techniques in 

clinical practice. 

• Evaluation of final model stability should prevent using suboptimal and overfitted models. 
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Introduction 

Accurate and preferably fast diagnosis of a disease is essential in healthcare. Without an accurate 

diagnosis, health care providers are not able to provide the appropriate treatment to cure, or 

prevent progression of the disease and further complications. 

During the diagnostic process, a medical doctor often combines a variety of data to determine which 

disease or condition is present, e.g. anamnesis, physical examination, laboratory measurements, 

imaging techniques. It can, however, be difficult to combine all available data and provide a clear and 

rational diagnosis. The increase in available tests and measurements only further complicates this. As 

a tool, statistical models can be useful to combine test results and predict whether a disease is 

present or not. These so-called prediction models are already widely used in clinical practice, such as 

PREDICT (www.predictcancer.org). Most prediction models in healthcare are based on classical 

statistical regression techniques to model data, such as logistic regression, resulting in a probability 

of the disease. Based on a chosen cut-off of the probability of the presence or absence of the disease 

under investigation, sensitivity, specificity, positive predicted value, and negative predicted value can 

be calculated. However, if the amount of available data per patient increases drastically, modern and 

more flexible modelling techniques such as machine learning techniques might be preferred 1. An 

example of a situation where the amount of available data becomes too large for classical regression 

techniques is for example in the diagnosis of sleep apnoea, where not only the number of apnoea’s 

or hypopnoea’s is used for the diagnosis, but where the raw oxygen saturation signal during the 

entire night is used.  

The most often used machine learning approach in diagnostic research is so-called supervised 

machine learning. In supervised machine learning, the diagnosis of patients is known, based on the 

regular diagnostic process, and this is used as the “gold standard”. This is similar to logistic 

regression, where the outcome as a binary variable (the disease is present or not) also needs to be 

known to construct a prediction model. However, in contrast to logistic regression, machine learning 

builds very many (many thousands is not uncommon) models, using all the available information in a 

huge variety of combinations, and trying different weights for all these parameters, to find models 

that best predict the diagnosis 2,3. This also results in a probability of the disease being present, but 

what parameters are used in this model and what weight is assigned to them, is not known, as it 

works like a “black box”. Also, it is data-driven and not hypothesis-driven and this data-driven 

construction of prediction models hugely increases the risk of overfitting 4. Therefore, machine 

learning approaches always include statistical methods to reduce the chances of ending up with 

spurious models, that are based on chance only. Some of these statistical methods are cross-

validations and bootstrapping techniques 5. Nevertheless, due to the nature of machine learning, 
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overfitting is still likely to be present, just as in logistic regression, because it is fitted on a specific set 

of data. A statistically overfitted model can provide accurate diagnoses for the studied patient 

population, based on the data used to develop the model but will not perform as well in new 

patients. Therefore, external validation, in which the accuracy of a model is determined in a 

completely new, independent study population with a slightly different case-mix, is an essential step 

to determine the usability in clinical practice 6. It is therefore striking that many prediction models 

based on classical regression techniques have not been (appropriately) externally validated 7,8. For 

prediction models based on machine learning, this is not different. 

A major challenge in external validation studies is that it is often a time-consuming process to 

properly design and conduct such a study, while it is known that the study result, i.e. the 

performance of the model, will probably be lower than the results from the original study 8. 

Moreover, in machine learning-based prediction models, the original machine learning technique 

used to develop the model might have been improved in the intervening time. In the relatively new 

field of machine learning, new and more efficient techniques are developed rapidly, and if recruiting 

patients for an external validation study is time consuming, the machine learning technique used to 

develop the first model might have been surpassed by more efficient machine learning techniques, 

rendering this original model no longer relevant. This might motivate researchers that use machine 

learning to rather develop a new model based on improved modelling techniques than to externally 

validate the original model.  

Another challenge in external validation studies is the difficulty to determine the appropriate sample 

size to accurately determine the performance of the model in a slightly different setting 7. Although 

the importance of an appropriate sample size in external validation studies has been advocated over 

the past years, clear guidance on how to determine the sample size is missing. Vergouwe et al. (2005) 

and Collins, Ogundimu and Altman (2015) suggested to include at least 100 events and 100 non-

events in an external validation study, but they also point out that specific hypotheses may require 

substantially larger sample sizes 9,10. Especially in the case of screening, where the prevalence of a 

disease is relatively low, the total sample size will be very large to obtain sufficient cases with a 

positive diagnosis. 

Both in classical regression techniques and in machine learning techniques, predictions become more 

accurate when the number of available patients increases. For logistic regression it is relatively 

simple to see what the effect of adding more patients is. In machine learning this is not the case, 

because many machine learning techniques, such as artificial neural networks, are like black boxes. 
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When data of additional patients is added, new predictions can be based on completely different 

underlying models, which are not visible.  

In this article, we demonstrate a design in which one can simultaneously develop and validate 

prediction models based on machine learning techniques. Furthermore, the design enables the 

evaluation of the stability and robustness of the models over increasing sample size.  

We will use the external validation of the prediction model developed by Kort et al. (2018) 11 as a 

clinical example to explain our proposed design. Kort et al. (2018) developed a prediction model 

using machine learning techniques (artificial neural network) to discriminate between subjects with 

and without non-small cell lung cancer. Of all patients in the study breath data was collected through 

an electronic nose: the Aeonose™ (The Enose Company, Zutphen, the Netherlands). Human breath 

contains thousands of volatile organic compounds (VOCs). The idea is that the mixture of VOCs 

changes when a particular disease (here: lung cancer) is present. This VOCs mixture is measured by 

the Aeonose™ and used as input for the machine learning algorithms 12. Including many hundreds of 

subjects, suspected of lung cancer, in an external validation study, is time consuming. In the 

meantime more efficient machine learning techniques were adopted by the Enose Company. Next to 

artificial neural networks, analysis techniques now also included Support Vector Machine, XGBoost, 

Random Forest, but also classical logistic regression and linear discriminant analysis. Furthermore, in 

the process of CE certification, some small changes were introduced in the hardware of the 

Aeonose™. This led to the assumption that the data that was collected by Kort et al. in 2018 for 

building the original model with the non-CE certified Aeonose™ was not compatible to new 

Aeonose™ data collected during the external validation study. This is not only relevant for changes in 

hardware, but also for changes in software. Think of machine learning prediction models based on 

MRI imaging data or continuous EEG signals. If the method to obtain MRI or EEG data is slightly 

changed due to e.g. a software update, this might also influence the collected data, and thus the 

machine learning-based prediction models. 

 

Methods 

2.1 Artificial Intelligence approach 

Data of exhaled breath are analysed by Aethena, a big-data software package, which includes data 

pre-processing, data compression, and building models based on the aforementioned analysis 

techniques, including artificial neural networks, Support Vector Machine, XGBoost, Random Forest, 

logistic regression, and linear discriminant analysis. Many thousands prediction models are obtained 

that show varying degrees of separation between subjects with and without lung cancer. Statistical 

validation techniques are employed to prevent overfitting of models, such as leave-10%-out cross 
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validation and bootstrapping techniques. This results in a “best” model, that predicts the presence of 

lung cancer. 

2.2 Stepwise validation design 

We have created a stepwise design (Figure 1 and Table 1) to enable 1) the development of new 

prediction models based on improved machine learning modelling techniques; 2) the validation of 

these new models; 3) evaluation of the increase in predictive power and stability of the new 

modelling technique over an increasing sample size; 4) a (split-sample) validation of the final new 

model; 5) the assessment of the stability of the sensitivity and specificity at a chosen cut-off value of 

the probability of having the disease.  

Our stepwise design starts with a large study population containing both subjects with and without 

the disease. This population will be split into a training cohort for the development of new machine 

leaning based models and a test cohort for the external validation of these models. For clarity: the 

test cohort is kept blinded, while the data of the training cohort are unblinded for supervised 

machine learning. The sizes of the test and training cohort depend on the prevalence of the disease, 

estimated sensitivity/specificity and desired accuracy. In our example, we estimated a sample size of 

350 subjects for the external validation of the prediction model developed by Kort et al. (2018) 11 (i.e. 

the test cohort) based on an estimated sensitivity of 90%, specificity of 75%, a prevalence of 40% and 

desired accuracy of 5% of sensitivity. Based on experience, it was estimated that 400 subjects in our 

training cohort should be adequate for developing new machine learning based models. 

During the first step, the first many thousands models will be developed based on data from 100 

subjects (training set) from the training cohort. Statistical cross-validation is employed as a statistical 

validation technique at this point and this will already eliminate the vast majority of these models. 

The models that pass the internal cross-validation phase are validated by using blinded data from the 

next 50 patients from the training cohort. Subsequently, these 50 patients are unblinded and are 

added to the training set, the ‘best’ model can be based on a different analysis technique (e.g. 

artificial neural network, XGBoost or Random Forest). These steps are repeated until all 400 patients 

from the training cohort have been added, in steps of 50, to the training set. Note that the step size 

can vary depending on disease prevalence; approximately 20-25 subjects need to be present for each 

disease state to obtain meaningful improvements in the models. After each step of adding another 

50 subjects, the new models are again first internally validated using cross-validations, and 

subsequently validated on the next 50 blinded subjects from the training cohort, and the Area Under 

the Curve (AUC) is calculated to observe the improvement in diagnostic performance of the “best” 
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model. By inspecting the change in AUC after each step, an impression of the stability of the models 

over increasing sample size can be obtained.  

During the last step (Table 1, step 7), the final model will be validated (split-sample validation) on the 

test cohort (n = 350). Moreover, the final model can be “validated” on the smaller training sets from 

previous steps to see how stable this final model is (Table 1). If the final model is still an overfitted 

model, it will not perform consistently on these smaller datasets from which it had been developed. 

If the final model performs similarly well in all these steps, this will enhance the believability of the 

machine learning based model for use in clinical practice. 
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Table 1. Stepwise development and validation of prediction models 

Step 1a. Develop new models based on the data of the first 100 subjects (training set) from the 

training cohort. 

Step 1b. Use the ‘best’ model (1) from step 1a to predict the next 50 subjects from the training 

cohort in a blinded fashion and determine model performance (e.g. the AUC) 

Step 2a. Unblind these 50 subjects and add them to the training set (n=150) to develop new 

models. 

Step 2b. Use the ‘best’ model (2) from step 2a to predict the next 50 subjects from the training 

cohort in a blinded fashion and determine model performance (e.g. the AUC) 

Step 3a. Unblind these 50 subjects and add them to the training set (n=200) to develop new 

models. 

Step 3b. Use the ‘best’ model (3) from step 3a to predict the next 50 subjects from the training 

cohort in a blinded fashion and determine model performance (e.g. the AUC) 

Step 4a. Unblind these 50 subjects and add them to the training set (n=250) to develop new 

models. 

Step 4b. Use the ‘best’ model (4) from step 4a to predict the next 50 subjects from the training 

cohort in a blinded fashion and determine model performance (e.g. the AUC) 

Step 5a. Unblind these 50 subjects and add them to the training set (n=300) to develop new 

models. 

Step 5b. Use the ‘best’ model (5) from step 5a to predict the next 50 subjects from the training 

cohort in a blinded fashion and determine model performance (e.g. the AUC) 

Step 6a. Unblind these 50 subjects and add them to the training set (n=350) to develop new 

models. 

Step 6b. Use the ‘best’ model (6) from step 6a to predict the next 50 subjects from the training 

cohort in a blinded fashion and determine model performance (e.g. the AUC) 

Step 7a. Unblind these 50 subjects and add them to the training set (n=400) to develop new 

models. 

Step 7b. Validate the ‘best’ final model (7) from step 7a to predict the 350 subjects from the test 

cohort in a blinded fashion and determine model performance (e.g. the AUC) 

Step 8. Evaluate the stability of the final model over increasing sample size by predicting the 

subjects in the training sets used in steps “a” (1a, 2a, etc) in a blinded fashion and determine 

relevant performance measures )e.g. AUC, sensitivity/specificity) of the final model for each 

training set (n=100, n=150, …., n=400). 
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Figure 1. Stepwise model development and validation design 

 

Discussion  

The strategy we propose has several advantages, but also requirements. The traditional external 

validation strategy is time-consuming, as a first study is needed for model development and a 

separate, completely new, second study is needed for external validation. Our strategy allows for 

simultaneously developing and validating prediction models, based on data collected in one study, 

which will shorten the time to the introduction of a new test in health care. Especially when patient 

recruitment is slow and therefore time-consuming, the proposed strategy will aid in new tests to 

become available much sooner. 

By using a stepwise approach with ever increasing sample size, the trend in the change in AUC after 

each step can be seen as an indication of whether the performance of the “best” model is plateauing 

or not. If this is the case, this will lead to a larger confidence in the obtained final model. It should be 

noted that this is only a qualitative impression. 

Ideally one pre-specifies the number of steps to be taken in advance. However, it would be wise to 

also pre-specify an interim decision moment to adjust the number of steps, based on a minimal or 

maximal AUC. E.g. if after already a few steps a very high AUC is achieved, larger than a prespecified 

threshold, one can decide to reduce the number of steps, resulting in a larger test set to validate the 

final model on. This will lead to smaller 95% confidence intervals around the test parameters: 
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sensitivity, specificity, positive predicted values (PPV) and negative predicted values (NPV) and AUC. 

Conversely, if after the prespecified number of steps the minimal requested AUC has not yet been 

reached, and a plateau has also not yet been reached, one can decide to increase the number of 

steps, at the cost of the size of the test cohort, with resulting wider 95% confidence intervals around 

the test parameters. To be able to make a valid comparison of the AUC over the subsequent (larger 

number of) steps, one should estimate how many steps will be necessary, and reduce the size of test 

cohort accordingly. Then, one should restart at step 1. 

The focus should not only be on the AUC, but also on sensitivity and specificity. In practice, one 

chooses a cut-off value of the probability to have the disease or not, based on the consequences of a 

false positive or false negative diagnosis. By choosing a specific cut-off value, one can choose to focus 

on a higher sensitivity or specificity, and therewith, given a certain prevalence of the disease, also the 

PPV and NPV. It should be noted, however, that at each step from step 1 through 7, new models are 

built, based on increasing sample sizes and that the best models can - and in all likelihood will - result 

from different analysis techniques. The best model after step one can e.g. be based on a Random 

Forest analysis, while after step 2 XGBoost might produce the best model. If the researchers a-priori 

wish to obtain a model that has at least e.g. 90% sensitivity, a cut-off can be chosen to result in this 

high sensitivity. However, the chosen cut-off based on the best model in step 1 will invariably be 

different from the cut-off after step 2, if a different analysis technique has resulted in a new “best” 

model. This can be remedied following the final model developing step 7 (and as described in step 8 

in our example). Based on the final “best" model resulting from step 7 (n=400), a preferred cut-off 

value should be determined that results in the desired sensitivity or NPV (or alternatively specificity 

and PPV). Then, this final “best” model should be “retrofitted” to the training sets from steps 1 

through 7 to evaluate the stability of this final “best” model over increasing sample sizes by 

predicting the subjects in the training sets used in steps “a” (1a, 2a, etc) in a blinded fashion and 

determine the AUC of the final “best” model for each training set (n=100, n=150, …., n=400). One can 

now see whether the chosen cut-off results in a similar sensitivity and NPV at each “retrofitted” step. 

The variation in sensitivity and NPV at each step will provide an indication whether the cut-off value 

chosen after step 7 is indeed a valid and stable cut-off value, which can be used in clinical practice.  

Because PPV and NPV depend on the prevalence of the disease, one should ensure that during each 

step where new data is added to build new models, the prevalence of the disease is constant by 

sampling a fixed ratio of subjects with and without the disease. 

Next to the data on which the prediction models are based (e.g. breath data), relatively easily 

obtainable clinical parameters are often also available, such as age, gender, smoking behaviour and 
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the presence of e.g. relevant comorbidities. These variables can be used to further enhance the 

differentiation between subjects with and without lung cancer, as already has been show by Kort et 

al 13. A straightforward multivariate logistic regression analysis, including these clinical parameters 

plus the probability of disease resulting from the final “best” model, will produce a probability of 

having lung cancer or not for each subject. Again a cut-off can be chosen that will result in the 

desired sensitivity and NPV or specificity with corresponding PPV. This logistic regression model can 

also be retrofitted again to the smaller dataset from steps 1a, 2a, 3a, 4a and so on, to assess whether 

the chosen cut-off results in a sensitivity or specificity that is stable enough to be used in clinical 

practice. 

Of course, our proposed validation design is still a form of “split-file” validation and not a true 

substitute for a classical external validation study in which one recruits a complete new study 

population. However, when the validation steps as described above have led to the implementation 

of the test in clinical practice, routine data collection will result in an ever increasing number of 

subjects with a positive or negative diagnosis of the disease of interest. This offers the opportunity to 

do a classical external validation study or to further improve the diagnostic potential of the test with 

multi-centre or even multi-national data with a variety of case-mixes. The choice to redo the analyses 

as described in figure 1 and table 1, but with larger numbers and/or with more or fewer steps 

depends on how well the test already performs after the original validation. If the results are already 

excellent, not much is to be gained. If there is still room for improvement, one can go through the 

same validation steps again and see whether much larger numbers provide better and more robust 

models. Whether the same or new analysis techniques are used is moot, as long as a good and stable 

“best” model with a stable cut-off point results from the analyses. 

In summary, validation of any new diagnostic test is imperative, and given the unique circumstances 

surrounding prediction models based on machine learning techniques, a clear testing and validation 

strategy needs to be described upfront, prior to actually performing the analyses. The steps 

described in this manuscript might provide guidance as how to do this.  
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Abstract 

Objectives: Lung cancer is a leading cause of mortality. Exhaled-breath analysis of volatile organic 

compounds (VOC’s) might detect lung cancer early in the course of the disease, which may improve 

outcomes. Subtyping lung cancers could be helpful in further clinical decisions. 

Materials and Methods: In a prospective, multi-centre study, using 10 electronic nose devices, 144 

subjects diagnosed with NSCLC and 146 healthy subjects, including subjects considered negative for 

NSCLC after investigation, breathed into the Aeonose™ (The eNose Company, Zutphen, Netherlands). 

Also, analyses into subtypes of NSCLC, such as adenocarcinoma (AC) and squamous cell carcinoma 

(SCC), and analyses of patients with small cell lung cancer (SCLC) were performed.  

Results: Choosing a cut-off point to predominantly rule out cancer resulted for NSCLC in a sensitivity 

of 94.4%, a specificity of 32.9%, a positive predictive value of 58.1%, a negative predictive value 

(NPV) of 85.7%, and an area under the curve (AUC) of 0.76. For AC sensitivity, PPV, NPV, and AUC 

were 81.5%, 56.4%, 79.5%, and 0.74, respectively, while for SCC these numbers were 80.8%, 45.7%, 

93.0%, and 0.77, respectively. SCLC could be ruled out with a sensitivity of 88.9% and an NPV of 

96.8% with an AUC of 0.86. 

Conclusion: Electronic nose technology with the Aeonose™ can play an important role in rapidly 

excluding lung cancer due to the high negative predictive value for various, but not all types of lung 

cancer. Patients showing positive breath tests should still be subjected to further diagnostic testing. 
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Introduction 

Lung cancer is the leading cause of cancer-related deaths worldwide (1). The main types of lung 

cancer are small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), accounting for 15% 

and 85% of the established cases respectively. NSCLC can be subdivided into two major subtypes: 

squamous cell carcinoma (SCC) and adenocarcinoma (AC), which differ in clinical, radiological, and 

histological characteristics (2). The diagnosis of early-stage lung cancer is crucial for successful 

curative therapy, because treatment options and prognosis directly depend on tumour size and 

metastatic spread at the time of diagnosis (3). Five-year survival rates for those with pathological 

stage IA NSCLC is 73%, whereas metastatic disease has a five-year overall survival rate of only 29% 

with local lymphatic spread and 4.5% for patients with distant metastases (4-6). SCLC is associated 

with even worse survival rates where limited disease has a five-year survival of 10-20%, and 

metastatic disease <1%. Unfortunately, only 16% of lung cancer cases present with localised, 

potentially curable disease, which explains the poor survival rates (6).  

The current gold standard for diagnosing lung cancer is a histological or cytological proof, either from 

the primary or metastatic lesion.  

There have been many attempts to develop screening tests in order to detect early-stage lung 

cancer. Currently, the only screening method implying reduced lung cancer mortality in high-risk 

groups is annual low-dose computed tomography (LDCT) (7;8). However, several issues still need to 

be addressed, such as the high rate of false positives cases (up to 96.4%) in the National Lung 

Screening Trial (NLST), leading to unnecessary invasive procedures, radiation risk, and unnecessary 

anxiety. In most countries in Europe, results of the Dutch-Belgian lung cancer screening trial 

(NELSON) are awaited before a decision on implementation of screening programs will be made 

(7;9). One approach could be adding a simple, non-invasive and reliable test to reduce the number of 

false positives and consequently unnecessary invasive interventions. 

Lately, sensor technologies based on pattern recognition in exhaled breath have been developed. 

These so-called electronic noses allow fast, low-cost, and non-invasive analysis of exhaled breath. 

Although this diagnostic approach seems very promising in the lung cancer field, it has not been 

incorporated in clinical practice so far (10-16). This can partly be explained by the fact that in most 

cases, calibration models for electronic noses aren’t transferrable among different devices. On the 

other hand, the negative predictive value (NPV) of electronic noses is still too low to allow clinical 

implementation.  

The concept of the electronic nose as described in this manuscript, the Aeonose™ (the Enose 

Company, Zutphen, the Netherlands), is based on the availability of powerful IT solutions, allowing 

the application of pattern recognition techniques to complex measurement data without the need of 
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specific identification of individual molecules. An electronic nose can measure low concentrations of 

volatile organic compounds (VOC’s) in exhaled breath, that represent a breath print and reflect 

pathological processes in the body on tissue level, such as inflammation, infection, and neoplasms 

(17). In this way, a combination of VOC’s can serve as a non-invasive, diagnostic biomarker for 

metabolic changes associated with different pathological conditions. These VOC’s can be detected 

with multiple, highly-sensitive electro-chemical sensors. This detection method is directed at changes 

in physical properties of the sensors, such as surface conductivity when being exposed to VOC’s (18).  

Recently, a pilot study on detecting lung cancer using the Aeonose™ was reported by van de Goor et 

al (19). In this study, the Aeonose™ was used to distinguish between patients with lung cancer and 

healthy controls. A total of 167 subjects were included of whom 107 were diagnosed with lung 

cancer. They found a promising sensitivity of 83%, a specificity of 84% with an area under the curve 

(AUC) of 0.83. However, this study was single center, and the researchers did not distinguish 

between various types of lung cancer. 

Goals and objectives 

The aims of this multi-centre study were: 1) to rapidly prove or reject the diagnosis of lung cancer in 

a cohort of patients suspected of lung cancer and healthy controls, 2) to discriminate between the 

subtypes of NSCLC: adenocarcinoma and squamous cell carcinoma, and 3) to distinguish SCLC 

patients from non-SCLC subjects in patients suspected of lung cancer and healthy controls. 

 

Material and methods 

It concerns a multi-centre, prospective diagnostic study in subjects suspected for lung cancer who 

were referred for a histological biopsy, as well as in healthy volunteers. The four secondary teaching 

hospitals participating in this study were Medisch Spectrum Twente Enschede, Ziekenhuis Bernhoven 

Uden, Medisch Centrum Leeuwarden, and Deventer Ziekenhuis, all in the Netherlands. Each hospital 

weekly diagnoses approximately 2-3 patients with lung cancer. For patients who turned out to have 

lung cancer, staging was established according to the 7th edition of the American Joint Committee on 

Cancer TNM staging system (5). For all subjects, demographic parameters (e.g age), smoking status, 

amount of packyears, and comorbidities were recorded. 

Participants with suspected lung cancer visiting the outpatient clinic of the pulmonology 

departments of the participating hospitals were included between June 2015 and December 2017. 

Suspected subjects were divided into a group with confirmed lung cancer and a group with a rejected 

diagnosis of lung cancer, based on imaging and/or derived histopathology. Subjects with a suspicion 
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of lung cancer were not biopsied when the CT-scan showed no evidence of lung cancer, even when 

the chest X-ray did. Also, some subjects showed a spontaneous decrease in nodule size without any 

treatment, which does not fit with the suspicion of lung cancer. A few patients with a high suspicion 

of lung cancer did not undergo biopsy because of their weak condition, but these subjects were 

excluded from the analyses. Finally, subjects who had a negative biopsy, but still a very high clinical 

suspicion of lung cancer were directed for a re-biopsy that eventually led to a confirmed diagnosis 

lung cancer. Healthy volunteers with a minimum age of 50 were recruited through an advertisement 

at the hospitals’ website. The only exclusion criterion for all subjects was being diagnosed with an 

other active malignancy. We compared breath patterns from patients with a proven diagnosis of lung 

cancer prior to initiation of treatment with subjects without lung cancer, i.e. healthy volunteers and 

suspected subjects with a rejected diagnosis of lung cancer. The study protocol was approved by the 

medical ethics committee of Medisch Spectrum Twente, and the board of directors at each 

participating centre. All patients provided written informed consent. 

Aeonose™ technology and procedure of breath sampling 

The Aeonose™ is a hand-held electronic nose, containing three micro-hotplate metal-oxide sensors 

(MOS) that are mass producible, and offer the opportunity for transferring calibration models. This 

means that once a calibration model for a specific indication has been developed, it can easily be 

transferred to other Aeonose™ devices (20). In this study we used 10 Aeonose™ devices which were 

randomly applied to subjects to avoid specific device dependent variations. Patients were instructed 

to perform tidal breathing through the non-rebreathing Aeonose™ device for 5 minutes during a 

single visit. A disposable mouthpiece with a carbon active filter was used (filtering inhaled air) and 

the patient’s nose was clipped to prevent nose breathing. A washout period during the first 2 

minutes was used for clearing the lungs from ambient, possibly polluted air with a carbon filter and 

the nose clip, without recording any measurements. During the next 3 minutes, metal-oxide sensors 

were exposed to exhaled breath and conductivity values of the sensors were recorded.  

Redox reactions of VOCs at the sensor surfaces were recorded in terms of conductivity changes. After 

these 5 minutes, the Aeonose™ was put aside, and the sensors were regenerated by guiding clean air 

to them through another active carbon filter. Then, a build-in Tenax-tube that collected VOC’s 

during the measurement was heated, and these VOCs released were guided over the sensors and 

recorded, providing additional information on the breath profile. Finally, another regeneration step 

with clean air was enforced. Using this protocol, the total breath-test cycle took approximately 15 

minutes. 



62 
 

Sample size 

We calculated a sample size taking into account a required sensitivity of 90% with a confidence 

interval of 82.5% - 95%. Therefore, approximately 105 subjects diagnosed with lung cancer must be 

included. Presuming a 1:1 ratio of a confirmed versus a rejected diagnosis of lung cancer in suspected 

subjects, we also needed 105 subjects with a rejected diagnosis. We also planned to include 

approximately 75 ‘healthy’ subjects without any suspicion for lung cancer. 

Statistical analysis 

Clinical characteristics are reported as means with standard deviations when normally distributed or 

as medians with interquartile range (IQR). Nominal variables are reported as numbers with 

corresponding percentages. To assess differences between the different groups, either the ANOVA 

test for normally distributed continuous variables, Kruskall Wallis non-parametric test for skewed 

distributed continuous or ordinal variables, or chi-squared test (x2) for nominal and categorical 

variables were applied. We used the Bonferroni Holm correction to adjust for multiple testing. 

Data of exhaled breath were analysed by Aethena, a proprietary big-data software package from The 

eNose Company (21). In the course of the big data analysis and pattern recognition (using artificial 

neural networks), several steps can be distinguished such as pre-processing of data, data 

compression, leave-10%-out cross-validation, model selection, and combining prediction models with 

promising AUC’s.  

Sensitivity, specificity, positive predictive value (PPV) and (NPV) were calculated for the diagnosis of 

lung cancer and its subtypes. Receiver operating characteristics (ROC) curves were composed and 

AUCs were calculated with 95% confidence intervals. A scatter plot showing values between -1 and 

+1 was calculated for each subject indicating the degree to which the subject was classified as 

positive (maximum value +1) or negative (minimum value -1) for lung cancer. During the analysis, a 

cut-off value was chosen, which showed best separation between the two groups in terms of optimal 

sensitivity and NPV to exclude lung cancer early, together with an acceptable number of false 

positives. All analyses were based on the complete dataset after including all participating subjects. 

In order to rule out any influence of device characteristics on results during the training phase, it was 

required for every Aeonose™ to measure at least four positive and four negative samples. If this 

condition was not met, some measurements from that specific device were excluded from the 

analysis. No Aeonose™ device was excluded during the study.  

All statistical tests were two-sided with a significance level at 0.05. SPSS V.22.0 was used.  
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Results 

Of the 308 subjects included, 144 had confirmed NSCLC, 18 had confirmed SCLC, 61 were suspected 

for lung cancer due to complaints or an abnormal chest X-ray, but were considered negative after 

investigation, and 85 subjects were healthy volunteers (Figure 1). No adverse effects were found 

when performing the breath measurements. Clinical characteristics of the subjects are described in 

Table 1. Healthy volunteers were significantly younger, more likely to be female and non-smoker, 

had smoked less packyears, and did not have COPD (all p<0.001). Suspected patients without lung 

cancer were more often never-smokers and had smoked less pack-years than confirmed NSCLC 

patients (p<0.001). Out of the 144 NSCLC patients, 93 had AC, 42 had SCC, 4 had large cell carcinoma 

and 5 were NSCLC not otherwise specified (Figure 1). Approximately 75% of the lung cancer patients 

were classified as stage III or IV disease.  

 

Figure 1. Flow chart showing the different groups. NOS: not otherwise specified. 
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Table 2 summarizes the diagnostic performance of the Aeonose™ for the different groups in terms of 

sensitivity, specificity, PPV, NPV, and AUC with corresponding 95% confidence intervals. Limited case 

sample sizes resulted in different group sizes for healthy subjects.  

When focusing on a high sensitivity and NPV, a high-sensitivity point was chosen, based on the ROC-

curve to distinguish between NSCLC and all negatives, which led to a sensitivity of 94.4%, an NPV of 

85.7%, at an AUC of 0.76.  

 

 

 

 

 

 

 

 

Table 1. Clinical characteristics of subjects. 
 
 

All subjects 
 
N=308 

Confirmed 
NSCLC 
N=144 

Confirmed 
non-NSCLC 
N=61 

Confirmed 
SCLC 
N=18 

Healthy 
 
N=85 

P-value 

Age in years, 
mean (SD) 

64.6 (8.5) 67.1 (9.0) 65.1 (8.8) 63.2 (8.2) 60.0 (4.4) <0.001a 

Sex, number of 
males (%) 

142 (49%) 83 (57.6) 32 (52.5) 10 (55.6) 27 (31.8) 0.001b 

BMI, mean (SD) 25.6 (5.2) 25.3 (5.5) 27.0 (5.9) 28.0 (4.8) 25.2 (3.8) 0.056 
Smoking status, N 
(%) 
Current smoker 
Ex-smoker 
Never smoked 

 
 
71 (24.5) 
164 (56.6) 
55 (19) 

 
 
51 (35.4) 
86 (59.7) 
7 (4.9) 

 
 
13 (21.3) 
33 (54.1) 
15 (24.6) 

 
 
7 (38.9) 
10 (55.6) 
1 (5.6) 

 
 
7 (8.2) 
45 (52.9) 
33 (38.8) 

 
 
<0.001c 

Pack yearsd, 
median (IQR) 

21.5 (3.25-
40.0) 

35.0 (20.0-
46.75) 

20.0 (1.25-
32.75) 

45.0 (27.75-
52-75) 

2.0 (0.0-
14.5) 

<0.001c 

COPD, N (%) 89 (37) 
 

66 (46.5) 
 

21 (34.4) 
 

8 (44.4) 1 (1.2) 
 

<0.001b 
 

aAfter Games-Howell correction, there was a significant difference between healthy volunteers and confirmed NSCLC and healthy 
volunteers and confirmed non-NSCLC. b After Holm-Bonferroni correction there was a significant difference between healthy volunteers 
and confirmed NSCLC, confirmed non-NSCLC and confirmed SCLC. c Between all 4 groups. d 5 subjects missing pack years. 
Abbreviations: BMI, body mass index; COPD: chronic obstructive pulmonary disease 
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When only suspected subjects with a rejected diagnosis of NSCLC were distinguished from NSCLC 

patients, we observed a relatively decreased performance when compared to all negatives and when 

compared to healthy volunteers only. This analysis revealed a sensitivity of 90.5%, an NPV of 52.4%, 

and an AUC of 0.73. At the same time, diagnostic performance improved when discriminating breath 

prints of NSCLC patients from healthy volunteers, resulting in a sensitivity of 92.2%, an NPV of 84.3%. 

an AUC of 0.85. The corresponding scatterplots are presented in figure 2A-C.  

Table 2. Diagnostic performance of the Aeonose™. 
Groups N Cut-off 

chosen 
TP TN FP FN Sensitivity 

(%) 
Specificity 
(%) 

PPV 
(%) 

NPV 
(%) 

AUC (95% 
CI) 

NSCLC vs. all 
negativesa 

144 
vs. 
146 

-0.265 136 48 98 8 94.4 32.9 58.1 85.7 0.76  
(0.71-0.82) 

NSCLC vs 
considered 
negative after 
investigation 

105 
vs. 
43*  

-0.350 95 11 32 10 90.5 25.6 74.8 52.4 0.73  
(0.64-0.82) 

NSCLC vs 
healthy 
volunteers 

103 
vs. 
84b  

-0.295 95 43 41 8 92.2 51.2 69.9 84.3 0.85  
(0.79-0.90) 

Adenocarcinoma 
vs all negativesa 

81 vs 
109* 

-0.365 66 58 51 15 81.5 53.2 56.4 79.5 0.74  
(0.67-0.82) 

Squamous cell 
carcinoma vs all 
negativesa 

26 vs 
91* 

-0.015 21 66 25 5 80.8 72.5 45.7 93.0 0.78  
(0.67-0.88) 

SCLC vs. all 
negativesa 

18 vs. 
75 

-0.575 16 60 15 2 88.9 80.0 51.6 96.8 0.86  
(0.78-0.95) 

TP, true positive; TN, true negative; FP, false positive; FN, false negative; PPV, positive predictive value; NPV, negative 
predictive value; AUC, area under the curve;  NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer. 
a All negatives include suspected subjects considered negative after investigation and healthy volunteers. 

bLimited case sample sizes resulted in different group sizes 



66 
 

 

Figure 2. Scatterplots with chosen optimal cut-off values. 2A. NSCLC vs all negatives (AUC 0.76). 2B. NSCLC vs proven 
negatives (AUC 0.73). 2C. NSCLC vs healthy volunteers (AUC 0.85). 

 

We investigated whether the most prevalent subtypes of NSCLC, being AC and SCC could be 

discriminated more accurately compared to the combined group of NSCLC patients. The results are 

presented in Table 2. The diagnostic accuracy in diagnosing AC from healthy subjects resulted into a 

sensitivity of 81.5% with an NPV of 79.5% and a corresponding AUC of 0.74.  

When discriminating SCC patients from healthy subjects, we found an interesting performance of the 

Aeonose™ to rule out SCC with a sensitivity of 80.8%, an NPV of 93.0% and a corresponding AUC of 

0.77.  

The corresponding scatterplots of the analyses of the subtypes are presented in figure 3. 
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Figure 3. Scatterplots with chosen optimal cut-off values. 3A. Adenocarcinoma vs. all negatives (AUC 0.74). 3B. Squamous 
cell carcinoma vs all negatives (AUC 0.77). 

 

Due to the lower prevalence of SCLC, analyses could only be performed in a limited number of 

patients to distinguish SCLC-patients from healthy controls (Table 2). Ninety-three subjects of whom 

18 had pathologically confirmed SCLC were included (Figure 4). The diagnostic accuracy in diagnosing 

SCLC resulted in a sensitivity of 88.9%, a specificity of 80.0% with a PPV of 51.6%, an NPV of 96.8%, 

and an AUC of 0.86.  

 

Figure 4. Scatterplot with a chosen optimal cut-off value. SCLC vs. all negatives 
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Discussion 

This exploratory study showed that exhaled-breath analysis with the Aeonose™ can differentiate 

between patients with lung cancer and healthy subjects, including suspected subjects that are 

considered negative after investigation. The Aeonose™ could discriminate between breath prints of 

NSCLC patients and all negatives with a high sensitivity and high NPV for various, but not all types of 

lung cancer, implying that many subjects could be prevented from undergoing unnecessary invasive 

diagnostic procedures. These results are in agreement with results published previously (13;19;22-

24).  

The Aeonose™ was also able to distinguish NSCLC patients from patients who were suspected for 

lung cancer. However, the diagnostic performance of the Aeonose™ differed when negative subjects 

were split in suspected, but considered negative after investigation, and healthy volunteers with an 

AUC of 0.73 and 0.85 respectively, showing a remarkable decline in performance for the suspected 

subjects. This could be explained by the fact that not lung cancer caused complaints, leading to 

referral, but other diseases such as COPD or pneumonia. These other diseases could lead to different 

breath prints, possibly more resembling lung cancer patterns, and could therefore not properly be 

distinguished by the pattern recognition software. The Aeonose™ could likely be trained to 

distinguish these other diseases as well, when the number of participants in these groups are 

sufficiently large. Another explanation could be the overlap in smoking behaviour between the 

suspected patients without lung cancer and patients with lung cancer, which could lead to a 

considerable resemblance in metabolism and breath pattern. 

From Table 1 it can be seen that the healthy volunteers are more often female and never smokers. 

What effect this might have on the diagnostic parameters of the Aeonose™ is unknown and needs to 

be investigated in a larger study.  

We found better sensitivity (94.4%), at a noticeable lower specificity (32.9%) in our analyses than 

reported in other eNose studies (13;25). This might be explained by the fact that in clinical use high 

NPV and sensitivity are essential when using Enose technology in an early diagnostic stage, on which 

we based our position at the ROC-curve. As a consequence, this leads to a lower specificity in our 

study.  

The Aeonose™ was able to exclude SCC with a NPV of 93%, which accounts for a clinical relevant 

diagnostic power. This could be explained by the often central origin of this type of tumour (2). 

However, the incidence of SCC was lower than in the other groups. Therefore, including more 

subjects should prove the validity of this high NPV. AC itself could also be distinguished significantly 

from non-adenocarcinoma, but with lesser performance than SCC. Since AC’s are known for their 

histological heterogeneity, these tumours could probably be subclassified further into tumours with 
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similar characteristics and consequently improved performance in Aeonose™ diagnostics (26). This 

hypothesis is supported further by findings of Shlomi et al. who showed a diagnostic accuracy of 83% 

to discriminate between AC patients with and without an EGFR mutation (27). Findings of improved 

performance of exhaled-breath analysis in lung cancer when subdividing tumours on histological or 

molecular biological grounds have also been presented by Barash et al (28). They reported an 

accuracy of 96% when discriminating adenocarcinoma from squamous cell carcinoma when using 

gold nanoparticle sensors, albeit with fewer number of patients and the need to use multiple 

different sensors.  

Next to this, we found promising results in excluding SCLC from healthy controls with a high NPV of 

96.8%, taking into consideration that this analysis was performed with a relatively low number of 

subjects due to the lower prevalence of SCLC. 

Pattern recognition of a large amount of VOC’s leading to a breath signature is only one of the 

methods used in electronic nose technology. Other methods used for breath sampling in lung cancer, 

such as gas chromatography-mass spectrometry (GCMS) or multicapillary column-ion mobility 

spectrometry aim for the detection, identification and quantification of specific, individual chemical 

compounds in exhaled breath (29-31). In principle, these complex methods are sensitive, but more 

expensive and time-consuming, and require a specialized operator for the system. When looking for 

a convenient and low-cost tool to detect lung cancer, point-of-care VOC pattern recognition 

techniques are favourable.  

We performed a study with a relative large study population in a multi-centre setting where we 

observed an acceptable difference in breath prints of lung cancer patients versus subjects without 

lung cancer, despite different environments. Next to this, we showed that subdivision of NSCLC types 

can improve performance and requires further investigation, as earlier shown by Peled et al (32). This 

was however analysed with GCMS. Our findings further support the transferability of calibration 

models between different Aeonose™ devices, which supports the results of a smaller, single-centre 

study of van de Goor et al (22).  

Results from this multi-centre study are promising. The technique seems especially valuable in 

addition to a screening trial based on periodical low dose CT scanning. Electronic nose technology 

could be able to diminish the number of false positive cases by choosing a cut-off point resulting in 

an NPV of nearly 100%. Subjects with a false positive diagnosis according to LDCT can subsequently 

be excluded without having to undergo an invasive bronchoscopy. However, it must be noted that 

our study population with subjects suspected of lung cancer differs from the high-risk subjects 

included in LDCT-screening.  
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This point of view can be seen as a limitation of our study since the majority of the included NSCLC 

patients was classified as stage III and stage IV disease. These are not the patients that would benefit 

most from screening programs. However, screening is mostly aimed at patients without symptoms, 

so when introducing a screening program, probably more cases of stage I and stage II disease can be 

detected. In this study, the prevalence of stage I and II lung cancer was too low to draw firm 

conclusions about the detection rates in early stage lung cancer. In future, larger studies, it should 

become clear if stage I and II tumours could be detected by exhaled-breath analysis as well. In such 

studies, really large numbers of participants will be required, including supposingly healthy persons. 

In this study we showed the training phase of the Aeonose™ to detect or exclude NSCLC with 

promising results. Including more subjects for training the artificial neural network will likely lead to 

improved stability, and a better prediction model. Especially differentiation of lung cancer from other 

lung diseases is expected to improve when data of more patients are analysed, and breath profiles 

relating to other lung diseases can be taken into account. 

Next to further training of the predictive performance, external validation of the obtained results 

needs to take place in a new study population, preferably in a multi-centre setting as well. It should 

be noted, however, that all results presented in this study were obtained using leave-10%-out cross 

validation. This implies in fact that -in 10 consecutive steps- all data were predicted as if they were 

blind data, based on a training model built from the remaining 90% of data. So, it is to be expected, 

true blind data will be predicted with similar results as in the cross validation, provided the cohorts 

are similar. 

 

Conclusion 

Exhaled breath analysis is a rapidly developing field. Electronic nose technology with the Aeonose™ is 

a non-invasive diagnostic tool that can discriminate between patients with lung cancer and healthy 

subjects, including subjects suspected of lung cancer with a rejected diagnosis and healthy 

volunteers. The Aeonose™ is also able to discriminate between lung cancer patients with different 

subtypes of NSCLC, such as adenocarcinoma and squamous cell carcinoma from healthy subjects, and 

SCLC from healthy subjects. The data suggest that the Aeonose™ can contribute to the early 

diagnostic workup of lung cancer where it could provide added value in screening for lung cancer. 

However, the results must first be validated externally in a new multi-center study with a larger study 

population.  
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Abstract 

Introduction: Exhaled-breath analysis of volatile organic compounds (VOC’s) could detect lung cancer 

earlier, possibly leading to improved outcomes. Combining exhaled-breath data with clinical 

parameters may improve lung cancer diagnosis. 

Methods: Based on data of a previous performed multi-centre study, the current manuscript reports 

on additional analyses. 138 subjects with non-small cell lung cancer (NSCLC) and 143 controls 

without NSCLC breathed into the Aeonose™. The diagnostic accuracy, presented as area under the 

receiver operating characteristic curve (AUC-ROC), of the Aeonose™ itself was compared with a) 

performing a multivariate logistic regression analysis of the distinct clinical parameters obtained, and 

b) by using this clinical information beforehand in the training process of the artificial neural network 

(ANN) for the breath analysis. 

Results: NSCLC patients (67.1 (9.1) years; 58% male) were compared with controls (62.1 (7.0) years; 

40.6% male). The AUC-ROC of the classification value of the Aeonose™ itself was 0.75 (95% CI: 0.69-

0.81). Adding age, number of pack years, and presence of COPD to this value in a multivariate 

regression analysis resulted in an improved performance with an AUC-ROC of 0.86 (95% CI: 0.81-

0.90). Adding these clinical variables beforehand to the ANN for classifying the breath print also led 

to an improved performance with an AUC-ROC of 0.84 (95% CI 0.79-0.89). 

Conclusions: Adding readily available clinical information to the classification value of exhaled-breath 

analysis with the Aeonose™, either post-hoc in a multivariate regression analysis or a-priori to the 

ANN, significantly improves the diagnostic accuracy to detect the presence or absence of lung cancer. 
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Introduction 

Lung cancer remains the leading cause of cancer-related death worldwide, accounting for 

approximately 5% of total mortality in many countries (1). Unfortunately, the majority of patients 

presents with late-stage disease (stage III and IV) accompanied by limited effective treatment options 

and consequently high mortality rates with a five-year survival rate of less than 10% (2;3).  

Currently, the only screening method leading to reduced lung cancer mortality in high-risk groups is 

annual low-dose computed tomography (LDCT) (4;5). However, LDCT-screening for lung cancer has 

also resulted in a notable rate of false positive cases leading to unnecessary invasive procedures, 

risks due to radiation exposure, and unnecessary anxiety (4-8). In Europe results of the Dutch-Belgian 

lung cancer screening trial (NELSON) are awaited before a decision on implementation of screening 

programs in Europe will be made (9). Hence, there is an increasing demand for innovative, non-

invasive, point-of-care diagnostic tools to detect lung cancer at an early stage.  

Exhaled-breath analysis with electronic nose technology is a technique based on detecting 

combinations of volatile organic compounds (VOC’s) that are exhaled in very low concentrations. 

These VOC's reflect pathophysiological processes, such as infection, inflammation and neoplasms 

(10-12). VOCs are of interest since they might be directly related to the presence of diseases and can 

test non-invasively by pattern recognition techniques serving as classifiers for diseases. Several 

studies on exhaled-breath analysis have supported the hypothesis that VOC-patterns alter when lung 

cancer is present (13-20).  

Recently, we reported results of a study (including 290 subjects) differentiating subjects with lung 

cancer, including classification into subtypes of lung cancer, and healthy individuals by means of 

exhaled-breath analysis with the Aeonose™ (13). In this study, the artificial neural network (ANN) 

was trained using exhaled-breath data only.  

The Aeonose™ was able to diagnose patients with non-small cell lung cancer (NSCLC) with a 

sensitivity of 94%, a negative predictive value (NPV) of 85%, and an area under the receiver operating 

characteristic curve (AUC-ROC) of 0.76. Also subtyping NSCLC into adenocarcinoma and squamous 

cell carcinoma showed promising results. These diagnostic parameters were based on the analysis of 

exhaled VOC’s only and did not take into account any subjects’ risk factors, such as age, gender, 

smoking status (number of pack years), and presence of chronic obstructive pulmonary disease 

(COPD). This paper describes the potential of adding specific clinical information to the classification 

value obtained from the Aeonose™ on the diagnostic accuracy to diagnose lung cancer. The 

hypothesis is that adding clinical information would improve the diagnostic performance. This was 

assessed in two ways: First, the clinical information was added afterwards to the classification value 
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of the Aeonose™ as obtained from the ANN by applying multivariate logistic regression analysis, and 

second, by using this clinical information a-priori in the training process of the ANN.  

 

Methods 

Data were obtained from a previous performed prospective, multi-centre study where subjects 

suspected for lung cancer, as well as healthy volunteers were asked to participate (13). The originally 

collected breath samples were currently used for additional analyses. The four secondary teaching 

hospitals participating were Medisch Spectrum Twente Enschede, Bernhoven Uden, Medisch 

Centrum Leeuwarden, and Deventer Ziekenhuis. For patients with confirmed lung cancer based on 

histopathology, staging was established according to the 7th edition of the American Joint Committee 

on Cancer TNM staging system (21). The control group consisted of suspected subjects with a 

rejected diagnosis based on imaging and/or derived histopathology and healthy volunteers. Healthy 

volunteers with a minimum age of 50 were recruited through an advertisement at the hospitals’ 

website. There were two exclusion criteria for all subjects: another active malignancy in the past five 

years or the inability to perform a complete Aeonose™ measurement. Demographic data were 

collected including age, gender, body mass index (BMI), smoking status, number of pack years, and 

presence of COPD, hypertension and diabetes mellitus.  

The Aeonose™ is a hand-held electronic-nose device containing three metal-oxide sensors (13;22;23). 

This device is a non-invasive, easy-to-use, low-cost tool that is, once trained and validated, able to 

perform real-time analysis to detect lung cancer. Temporary storage of the breath sample is not 

required. Subjects were instructed to breathe through the Aeonose™ for five minutes with their nose 

clipped to prevent nose breathing.  

The study protocol was approved by the medical ethics committee of Medisch Spectrum Twente, and 

by the board of directors at each participating centre. All subjects signed an informed consent. 

Statistical analysis 

Continuous variables are reported as mean with corresponding standard deviation (SD) or as median 

with interquartile range (IQR). Nominal variables are reported as numbers with corresponding 

percentages. To assess differences between the groups, either the T-test for normally distributed 

continuous variables, Mann-Whitney U test for skewed distributed continuous or ordinal variables, 

or chi-squared test (x2) for nominal and categorical variables was applied. Number of pack years was 

categorized as none, up to 20 pack years, between 21 and 40 pack years, and more than 40 pack 

years. Based on clinical reasoning we assumed a strong relationship between smoking status and 

number of pack years, which was confirmed (p<0.001). Number of pack years contained most 
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relevant information. Therefore, we excluded smoking status as clinical variable from the 

multivariate analysis.  

Data of exhaled breath were analysed by Aethena, a proprietary, dedicated software package from 

The eNose Company. The software package comprises techniques for data pre-treatment, data 

compression methods, ANN training and classification to assess the probability of lung cancer, 

ranging a single value between -1 and +1 (23). ANN’s have been developed as an alternative 

statistical technique to perform multifactorial analyses by interconnecting nodes by weighted 

connection lines to predict outcomes or classifying values on an individualized basis (24).    

Sensitivity, specificity, positive predictive value (PPV) and NPV were calculated for the diagnosis of 

lung cancer based on the classification by the Aeonose™, and receiver operating characteristics (ROC) 

curves were composed with a corresponding AUC-ROC with 95% confidence interval.  

Clinical variables that were univariately associated with the presence of lung cancer (p<0.15) were 

entered in a multivariate logistic regression analysis where variables with the highest p-values were 

eliminated step-by-step (backward method), until the fit of the model decreased significantly, based 

on the -2 log likelihood. This analysis was based on clinical variables only.  

Subsequently, two types of multivariate analysis were performed where breath data were included: 

First, another multivariate logistic regression analysis, consistent with the abovementioned method, 

was performed together with the classification value of the Aeonose™ as obtained from the ANN.  

Second, clinical variables that were univariately associated with the presence of lung cancer (p<0.15) 

were added to the vector containing breath profile information once data compression had been 

realised. These extended vectors (one per subject) were used for training the ANN.  

Sensitivity, specificity, PPV, NPV and AUC-ROC were then calculated for the diagnosis of lung cancer 

according to the selected multivariate logistic regression model and the extended ANN. These 

outcomes were compared with the diagnostic accuracy obtained by the classification result of the 

exhaled-breath analysis only. 

The multivariate regression model was internally validated by 1000 iterations of bootstrap.  

All statistical tests were two-sided with a significance level at 0.05. SPSS V.24.0 was used to perform 

statistical mathematics.  
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Results 

A total of 281 subjects were included, of whom 138 had confirmed NSCLC. The control group 

consisted of 143 subjects without lung cancer of whom 59 were suspected for lung cancer, but were 

considered negative after investigation, and 84 subjects were healthy volunteers (Figure 1). Table 1 

provides a description of the study participants including clinical characteristics for both groups. 

 

 

Figure 1. Flow chart showing the different groups. NSCLC: non-small cell lung cancer. 
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Table 1. Clinical characteristics of subjects. 
 
 

Confirmed 
NSCLC 
N=138 

Total control 
group 
N=143 

Suspected, 
proven negative 

N=59 

Healthy 
volunteer 

N=84 

P-value 

Age in years, mean 
(SD) 

67.1 (9.1) 62.1 (7.0) 65.2 (8.8) 59.8 (4.3) <0.001a 

Sex, number of males 
(%) 

80 (58.0) 58 (40.6) 31 (52.5) 27 (32.1) <0.001b 

Smoking status, N (%) 
Current smoker 
Ex-smoker 
Never smoked 

 
49 (35.5) 
82 (59.4) 
7 (5.1) 

 
19 (13.3) 
76 (53.1) 
48 (33.6) 

 
13 (22.0) 
32 (54.2) 
14 (23.7) 

 
6 (7.1) 
44 (52.4) 
34 (40.5) 

 
<0.001b 

Pack years, N (%) 
0 
1-20 
21-40 
>40 

 
7 (5.1) 
30 (21.7) 
53 (38.4) 
48 (34.8) 

 
48 (33.6) 
53 (37.1) 
25 (17.5) 
17 (11.9) 

 
14 (23.7) 
18 (30.5) 
17 (28.8) 
10 (16.9) 

 
34 (40.5) 
35 (41.7) 
8 (9.5) 
7 (8.3) 

 
 
<0.001b 

COPD, N (%) 66 (47.8) 22 (15.4) 21 (35.6) 1 (1.2) <0.001b 
BMI, mean (SD) 25.6 (4.6) 25.9 (4.8) 26.9 (5.9) 25.2 (3.8) 0.104 
Type of NSCLC, N (%) 
Adenocarcinoma 
Squamous cell 
carcinoma 
Large cell carcinoma 
NOS 

 
88 (63.8) 
41 (29.7) 
 
4 (2.9) 
5 (3.6) 

    

NSCLC stage, N (%)# 
I 
II 
III 
IV 

 
25 (14.5) 
15 (10.8) 
39 (28.3) 
64 (46.4) 

    

a After Games-Howell correction, there was a significant difference between healthy volunteers and confirmed NSCLC and healthy 
volunteers and suspected, proven negative subjects. 
b After Holm-Bonferroni correction there was a significant difference between healthy volunteers and confirmed NSCLC and 
suspected proven negative subjects.   
# Staging established according to the 7th edition of the American Joint Committee on Cancer TNM staging system  
Abbreviations: COPD: chronic obstructive pulmonary disease; BMI, body mass index; NSCLC, non-small cell lung cancer; NOS, not 
otherwise specified 

 

Lung cancer patients were significantly older (mean age 67.1 ± 9.1 years), more likely to be male and 

current or ex-smoker, had smoked more pack years and were more often diagnosed with COPD than 

subjects in the control group. Almost 75% of the NSCLC patients were classified as stage III or IV 

disease. 

Table 2 shows that sex, age, smoking status, number of pack years, presence of COPD and the 

classification value obtained by the Aeonose™ were univariately associated with the presence of lung 

cancer. Subsequently, we added these candidate variables to a multivariate regression analysis which 

showed that age, number of pack years, presence of COPD and the value of the Aeonose™ remained 
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significantly predictive for the presence of lung cancer.  

 

Each additional year of age was associated with a 5% higher chance of having lung cancer (OR 1.05, 

95% CI: 1.02-1.09). Subjects who have smoked up to 20 pack years have a 3.5-fold higher chance of 

developing lung cancer (OR 3.5, 95% CI 1.25-9.66), whereas those who have smoked more than 40 

pack years have a 11.7-fold higher chance (OR 11.7, 95% CI: 4.04-33.87). Patients with COPD had a 

2.3-fold increased risk of having lung cancer (OR 2.27, 95% CI: 1.18-4.43). The classification value of 

the Aeonose™ was also strongly associated with the presence of lung cancer (OR 12.7, 95% CI: 4.48-

35.83).  

The multivariate logistic regression analysis based on clinical variables only showed a sensitivity of 

93.5%, a specificity of 50%, a PPV of 64.5% and an NPV of 88.8%. This corresponded with an AUC-

ROC of 0.80 (95% CI: 0.75-0.85). 

When the ANN was trained with exhaled-breath data from the Aeonose™ only, we found a sensitivity 

of 94.2%, a specificity of 44.1%, and a PPV and NPV of respectively 61.9% and 88.7% with an AUC-

ROC of 0.75 (95% CI 0.69-0.81) (Table 3). When applying the multivariate logistic regression model 

including the resulting value (-1 to +1) of the exhaled breath data from the ANN in the exact same 

study population, we found an improved performance to distinguish NSCLC patients from controls 

with an AUC-ROC of 0.86 (95% CI: 0.81-0.90). By choosing a relevant threshold value in the ROC-

Table 2. Results of the univariate and multivariate logistic regression analyses for diagnosing 
lung cancer.  
Variable Univariate analysis  

Odds ratio (95% CI) 
Multivariate analysis  
Odds ratio (95% CI) 

Regression 
coefficient (B) 

   Constant: -5.54 
Sex 2.01 (1.26-3.20) 1.42 (0.76-2.58) 0.34 
Age 1.08 (1.05-1.11) 1.05 (1.02-1.09) 0.05 
BMI 0.99 (0.94-1.04) -  
Smoking status 
Current smoker 
Ex-smoker 
Never smoked 

 
17.49 (6.79-45.06) 
7.56 (3.23-17.69) 
Reference 

- 
 

 

Pack years 
0 
1-20 
21-40 
>40 

 
Reference 
3.88 (1.56-9.65) 
14.77 (5.89-37.04) 
19.36 (7.36-50.91) 

 
Reference 
3.48 (1.25-9.66) 
10.20 (3.66-28.46) 
11.69 (4.04-33.87) 

 
 
1.25 
2.32 
2.46 

COPD 4.90 (2.80-8.58) 2.29 (1.18-4.43) 0.83 
Diabetes mellitus 0.70 (0.30-1.64) -  
Classification value 
Aeonose™(13) 

24.20 (9.71-60.33) 12.67 (4.48-35.83) 2.54 

Abbreviations: CI: confidence interval; BMI: body mass index; COPD: chronic obstructive pulmonary 
disease; -: not added to the multivariate model. 
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curve focusing on high sensitivity and high NPV, the analysis showed a sensitivity of 95.7%, a 

specificity of 59.7%, and a PPV and NPV of 69.5% and 92.5%, respectively. The bootstrap analysis for 

internal validation showed similar regression coefficients compared to our original model showing 

robustness of the model.   

When training the ANN with exhaled breath data combined with the clinical variables that were 

univariately associated with the presence of lung cancer, we found an improved diagnostic 

performance as well to distinguish NSCLC patients from controls, showing an AUC-ROC of 0.84 (95% 

CI: 0.79-0.89). By choosing an appropriate threshold value in the ROC-diagram, we observed a 

sensitivity of 94.2%, a specificity of 49.0%, and a PPV and NPV of 64.0% and 89.7% respectively. 

Figure 2 shows the combined ROC-curve showing the improved performance of both multivariate 

models. 

 

 

 

Table 3. Diagnostic performance of the three investigated prediction models. 

 N  
(positive vs 
negative 

Optimal 
cut-off  

Sensitivity 
(%) 

Specificity 
(%) 

PPV (%) NPV (%) AUC (95% CI) 

Clinical variables 
only 

138 vs 143 0.32 93.5 50.0 64.5 88.8 0.80 (0.75-
0.85) 

Aeonose™ result 
only 

138 vs 143 -0.38 94.2 44.1 61.9 88.7 0.75 (0.69-
0.81) 

Multivariate 
logistic regression 
model 

138 vs 143 0.27 95.7 59.7 69.5 92.5 0.86 (0.81-
0.90) 

Extended ANN 138 vs 143 -0.65 94.2 49.0 64.0 89.7 0.84 (0.79-
0.89) 

Abbreviations: ANN, artificial neural network; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the 
curve; CI, confidence interval. 
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Figure 2. Combined ROC-curve showing four predictive algorithms: Logistic regression clinical variables, Single Aeonose™ 
value, extended ANN and logistic regression including Aeonose™ value. ANN: artificial neural network. 

 

Discussion 

This study assessed the impact of combining exhaled-breath analysis and clinical parameters in 

diagnosing lung cancer. We showed that adding readily available clinical information to the 

classification value of exhaled-breath analysis by the Aeonose™ in a relatively easy-to-perform 

multivariate regression model improved the diagnostic accuracy, expressed as AUC-ROC, from 0.75 

to 0.86 to diagnose lung cancer in a non-invasive way. When extending the vector containing 

compressed breath data with clinical variables, and in this way training the ANN to distinguish 

between sick and healthy individuals, the diagnostic accuracy, expressed as AUC-ROC, increased from 

0.75 to 0.84. Minor differences were observed compared to our previous performed analysis due to 

the somewhat smaller sample size because of missing information on pack years (previous study 

n=290, AUC-ROC=0.76) and the fact that outcomes of frequently training an ANN can slightly 

fluctuate.  

It turns out that logistic regression analysis and ANN are equally capable of increasing classification 

quality of lung cancer diagnosis. We expected to see rather improved accuracy when entering a 

combination of clinical and exhaled-breath data directly to the yet untrained ANN, because it 

considers possible interactions. Independency of parameters, like breath profile, COPD and pack 

years cannot be fully assumed so far. As extending exhaled-breath data with clinical parameters 
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followed by classification by an ANN is more complex than building a multivariate regression model 

out of single clinical parameters, the latter is to be recommended for practical use. 

Besides ANN and logistic regression analysis, other statistical learning methods for classifying exhaled 

breath data are available, such as Random Forest and Support Vector Machines (25). In a previous 

study, results from neural network analysis were compared to results obtained from Random Forest 

and Support Vector Machine showing comparable diagnostic performance (26). In this study we only 

focused on the two statistical learning methods described: logistic regression analysis and neural 

network analysis. 

Previous studies have shown that electronic nose technology based on pattern recognition of VOC’s, 

or identifying VOC’s with gas chromatography/mass spectrometry (GC/MS) can differentiate 

between subjects with and without lung cancer (13;14;17;20;27-29). Several studies using techniques 

for VOC-identification have used logistic regression analysis to identify lung cancer-specific VOC’s 

(30;31). However, logistic regression analysis including clinical parameters in studies using pattern 

recognition techniques has not been shown often yet. Tirzïte et al. used logistic regression analysis to 

predict the presence of lung cancer with the Cyranose 320 electronic nose mainly using segments of 

exhaled breath as input variables for the logistic regression analysis, but also including a few clinical 

parameters, such as age, smoking status, smoking history and ambient temperature (19). They were 

able to distinguish subjects with lung cancer from controls with a sensitivity of 96% in both smokers 

and non-smokers and a specificity >90% in both groups. To our knowledge, no studies have been 

performed using clinical variables and exhaled-breath data based on pattern recognition combined in 

an ANN to diagnose lung cancer. However, several studies have used ANN’s to detect lung cancer, 

but without performing exhaled-breath analysis. These studies mainly focused on clinical parameters 

and biomarkers based on blood and genetic abnormalities (32;33).  

As described in our training study, the optimal cut-off point chosen determines the amount of false 

positive cases contrary to the amount of missed cases concerning lung cancer (13). We focused again 

on a high sensitivity and a high NPV, since lung cancer has an extremely high mortality when not 

detected early. By adding the clinical variables to the exhaled breath data, we saw in both models 

that all diagnostic parameters improved, and thereby reaching higher sensitivity and NPV compared 

to the training study, but we also observed fewer false-positive cases by achieving higher specificity. 

In the near future, the results obtained could be proposed as added value in several ways. First, in 

case of implementation of LDCT in Europe, the Aeonose™ may be deployed after suspicion of lung 

cancer has been raised with LDCT. Due to the high NPV with the Aeonose™, subjects could be 

prevented from undergoing unnecessary invasive interventions, and be monitored with prolonged 

intervals (8). Also, there is current debate about identifying at-risk groups relevant for LDCT-
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screening (34-36). Combining clinical parameters and exhaled-breath data in an ANN could indicate 

the degree of suspicion of lung cancer and therefore serve as an adjunct for risk stratification in lung 

cancer screening supporting clinical decision making.  

Limitations of our study should also be mentioned. We did not analyse subjects with SCLC, nor did we 

analyse differences between the histological subtypes of NSCLC and lung cancer stages, since these 

subgroups were too small to include all relevant variables in the multivariate model. Moreover, we 

do not know the influence of food intake by subjects. Eating and drinking was not restricted before 

the exhaled-breath measurement. However, the neural network is being trained comparing breath 

profiles of positive and negative subjects regardless their food intake. When numbers of subjects are 

sufficiently large, it can be assumed that food intake is not relevant as it averages out. It should also 

be noted that the majority of subjects consisted of stage III and IV lung cancer (75%). This population 

differs from the high-risk asymptomatic subjects suitable for screening where focus lies on early-

stage lung cancer. However, the risk factors included in the multivariate analysis are applicable for 

both early and late-stage lung cancer, so when exhaled-breath analysis is able to detect early-stage 

lung cancer, readily available clinical information should be incorporated in the analysis. Future 

analysis, including sufficient stage I and II NSCLC should indicate whether breath patterns already 

change early in the course of the disease.  

We should also note that in high dimensional data set as obtained with the Aeonose™, the problem 

of overfitting can occur where a prediction model that looks appropriate on training data used to 

develop it, will perform poorly on future observations. Combining analytical techniques, such as data 

compression and cross-validation partly overcomes this issue. Currently, an external validation study 

is performed where a complete new cohort of subjects is included to totally overcome the issue of 

overfitting.  

 

Conclusion 

Due to the aggressive nature of lung cancer, diagnostic accuracy should be as high as possible. This 

diagnostic accuracy to detect the presence or absence of lung cancer by exhaled-breath analysis with 

the Aeonose™ can be improved by adding readily available clinical information either post-hoc in a 

multivariate logistic regression model, or a-priori in the training process to the ANN compared to the 

single classification value based on exhaled-breath data only. As both approaches yield similar 

results, the multivariate logistic regression model should be preferred as its application is more 

convenient. 
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Abstract 

Background: Despite the potential of exhaled-breath analysis of volatile organic compounds to 

diagnose lung cancer, clinical implementation has not been realized partly due to the lack of 

validation studies. 

Research question: This study addressed two questions: 1) Can we simultaneously train and validate 

a prediction model to distinguish non-small cell lung cancer (NSCLC) patients from non-lung cancer 

subjects based on exhaled-breath patterns? 2) Does addition of clinical variables to exhaled-breath 

data improve the diagnosis of lung cancer? 

Study design and methods: In this multicentre study, subjects with NSCLC and control subjects, 

performed a measurement of 5 minutes of breathing in the Aeonose™. A training cohort was used 

for developing a prediction model based on breath data, whereas a blinded cohort was used for 

validation. Multivariate logistic regression analysis was performed including breath data and clinical 

variables, where the formula and cut-off value for the probability of lung cancer were applied on the 

validation data. 

Results: 376 Subjects formed the training, and 199 subjects formed the validation set. The full 

training model, including clinical parameters and breath data showed, at a cut-off probability of 16% 

for lung cancer, a sensitivity of 95%, specificity of 51%, a negative predictive value (NPV) of 94% with 

an area under the receiver operating characteristic curve (AUC) of 0.87. Performance of the 

prediction model on the validation cohort showed corresponding results with a sensitivity of 95%, 

specificity of 49%, NPV of 94%, and an AUC of 0.86. 

Interpretation: Combining exhaled-breath data and clinical variables in a multicentre, multi-device 

validation study can adequately distinguish lung cancer patients from subjects without lung cancer in 

a non-invasive manner. This study paves the way to implement exhaled-breath analysis in the daily 

practice of diagnosing lung cancer. 

Trial Registration Number: The Netherlands Trial Register, NL7025 
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Background 

Lung cancer is the leading cause of cancer mortality worldwide 1,2. Its high mortality rate is generally 

a consequence of advanced-stage disease at the time of initial diagnosis. Despite striking progress in 

treatment options in advanced-stage lung cancer, such as molecular-targeted therapies and 

immunotherapy, an essential step to reduce lung cancer mortality is early detection through non-

invasive, point-of-care strategies3-6.  

Exhaled-breath contains a gas mixture of thousands of volatile organic compounds (VOCs) in low 

concentrations that reflect metabolic processes at tissue level 7,8. Exhaled-breath analysis is based on 

shifts of this VOCs composition due to biochemical changes in different (patho)physiologic processes. 

This method has extensively been investigated in clinical research as a non-invasive tool to diagnose 

a variety of conditions 9,10. Studies on pattern recognition for classification of VOC mixtures through 

non-specific cross-reactive sensors mimicking human and animal olfaction (e.g. electronic noses) as 

well as identifying individual VOCs by separation methods (e.g. gas chromatography mass 

spectrometry) have shown promising results in pilot studies to diagnose lung cancer 11-17. 

Besides, studies based on imaging techniques have shown to be effective in screening purposes to 

diagnose lung cancer in high-risk asymptomatic subjects. Significant mortality reduction in high-risk 

subjects was observed by the National Lung Screening Trial (NLST), and the Dutch-Belgian lung cancer 

screening trial (NELSON) 18,19. However, screening of high-risk subjects has not yet been implemented 

in Europe. Furthermore, determination of accurate screening criteria remains debatable since only 

subjects at the highest risk for lung cancer are targeted in current screening programmes. 

The Aeonose™ (the eNose Company, Zutphen, the Netherlands) is a handheld electronic nose device 

featuring an array of three metal-oxide sensors that enables real-time breath analysis. The 

technology and breath sampling method have previously been described in detail 20,21. After 

exposure to VOCs, consecutive conductivity changes at the sensors are recorded resulting in a digital 

exhaled-breath profile consisting of conductivity values. Exhaled-breath profiles of lung cancer 

patients can then be distinguished from profiles of non-lung cancer subjects using Artificial 

Intelligence (AI) techniques. Once a model has been developed for separating the groups, a new 

breath profile can be classified using this model. In previous studies, several malignant and non-

malignant conditions have been investigated using the Aeonose™ 12,22-24. 

We have previously reported the results of a proof-of-concept multicentre study performed with the 

Aeonose™, in which a prediction model, based on exhaled-breath profiles, was developed using 

supervised machine-learning techniques to discriminate subjects with and without non-small cell 

lung cancer (NSCLC) in a hospital setting 12. An artificial neural network (ANN) trained with 290 
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subjects was able to classify breath samples with a sensitivity of 94%, a specificity of 33%, and an 

area under the receiver operating characteristic curve (AUC-ROC) of 0.76. Resampling techniques 

including leave-10%-out cross validation and bootstrapping were incorporated to reduce the risk of 

overfitting of the diagnostic model. Adding readily available clinical information, i.e. sex, age, number 

of pack-years, smoking status, and COPD-status to the exhaled-breath data resulted in a relevant 

improvement in diagnosing lung cancer patients 25.  

To date, no single breath test has yet been approved for clinical practice to diagnose lung cancer. For 

this, validation studies are required, preferably involving multiple devices in multiple centres, where 

part of the data is used for developing a diagnostic model, and the remainder remains blinded to 

validate this model. Several studies on external validation of breath biomarkers in lung cancer have 

been performed, however these studies are aimed at identification of specific VOCs rather than 

exhaled-breath patterns 13,26,27. Regarding pattern recognition techniques, Fens et al. and Bos et al. 

assessed validation of exhaled-breath molecular patterns in pulmonary diseases other than lung 

cancer, based on previous created training sets, showing moderate to high accuracy 28,29. 

The objective of this prospective multicentre study using multiple devices is to train and 

subsequently validate a prediction model to distinguish NSCLC patients from subjects, initially 

suspected of lung cancer, but considered negative, and healthy control subjects, based on their 

exhaled-breath patterns.  

 

Study design and methods 

Study design and participants 

Participants suspected of lung cancer were recruited from 7 outpatient pulmonary departments 

between May 2018 and April 2020. The participating hospitals included Medisch Spectrum Twente 

Enschede, Radboud UMC Nijmegen, Medisch Centrum Leeuwarden, Martini Ziekenhuis Groningen, 

Catharina Ziekenhuis Eindhoven, Sint Antonius Ziekenhuis Utrecht (all in the Netherlands), and 

Universitätsspital Basel (Switzerland). Each centre used one Aeonose™ device, except for Basel using 

two devices. Since a single Aeonose™ device needs, as a rule of thumb, a minimum number of 30 

observations in the smallest group (in this case positive measurements) to calibrate the device, and 

hence form reliable conclusions considering the training data, data from devices with an insufficient 

number of measurements were not used for further analyses.  

Subjects suspected of lung cancer were divided into a group with confirmed NSCLC based on 

pathology and a group with a rejected diagnosis of lung cancer (control subjects), based on imaging 

and/or pathology. Types of lung cancer other than NSCLC were excluded. Additional healthy control 
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subjects with a minimum age of 55 years were recruited through an alert at the hospitals’ websites. 

In case of pathologically confirmed lung cancer, staging was established according to the 8th edition 

of the American Joint Committee on Cancer TNM staging system 30. Patients suspected of lung cancer 

in whom pathology (gold standard) was not performed due to insufficient clinical performance were 

excluded from the analyses. Demographic data and data on comorbidities were collected for all 

subjects. All participants were asked to complete a short questionnaire on recent smoking, eating, 

and alcohol intake, and were instructed to perform tidal breathing through the non-rebreathing 

Aeonose™ device for 5 minutes with their nose clipped.  

The study protocol was approved by the institutional review board of Medisch Spectrum Twente and 

the board of directors of all participating institutions (eAppendix). All eligible patients provided 

written informed consent.  

In this study we made use of the second generation, CE-certified Aeonose™ device. Since the training 

study was performed with the first generation, CE-uncertified device, these previously collected data 

were deemed not compatible, and therefore not used 12. Instead, we decided to create a split-sample 

study design in which we enabled development and subsequent validation of new prediction models, 

which conforms to the European Respiratory Society (ERS) criteria for exhaled biomarkers 31. 

Collected breath data were split into a training cohort for supervised learning and internal cross-

validation, and a validation cohort, which was kept blinded, for model validation. Subjects were 

randomly assigned to the training and validation set, taking into consideration an equal prevalence of 

lung cancer patients in both sets. 

Statistical analysis 

Clinical characteristics are reported as means with standard deviations (SD) in case of a normal 

distribution, or as medians with interquartile ranges (IQR). Nominal variables are reported as 

numbers with corresponding percentages. To assess differences between the groups, T-tests, Mann-

Whitney U tests, or Chi-squared-tests (X2) were applied, as appropriate.  

Analysis of exhaled-breath data was executed by Aethena™, a proprietary software package, 

incorporating data pre-processing, data compression, machine learning algorithms for classification 

(e.g. ANN, Support Vector Machine (SVM), Random Forest (RF), XGBoost, logistic regression), internal 

validation techniques (leave-10%-out cross validation and bootstrapping), and model selection. 

Analyses yielded values between -1 and +1 per subject, indicating the degree to which the subject 

was classified as having lung cancer (maximum value +1) or not having lung cancer (minimum value -

1). Details on the software package Aethena™ have been published previously 21.  

We selected and trained five different models (each using a different classifier: ANN, Logistic 

Regression, RF, RF Extreme, and XGBoost, respectively) each showing proper discriminative 
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performance. As the different classifying techniques could interpret the data differently, we 

envisioned that averaging results over these five models would increase classification robustness. A 

cut-off value for the probability of lung cancer was determined for the training set to obtain a high 

sensitivity and negative predictive value (NPV), together with an acceptable number of false positive 

cases, as deemed relevant for clinical practice. Receiver operating characteristics (ROC) curves were 

composed and AUCs were calculated with 95% confidence intervals.  

Subsequently, clinical variables, i.e. sex, age, number of pack-years, COPD, diabetes, hypertension, 

BMI, and the absolute value obtained from the Aeonose™ (between -1 and +1) were entered in a 

multivariate logistic regression analysis. Non-significant variables were eliminated according to the 

backward method until the fit of the model decreased significantly, based on the -2-log likelihood. 

Age and sex were included regardless of their significance. A cut-off value for the probability of lung 

cancer based on this multivariate model was again chosen to obtain a high sensitivity and NPV 

together with an acceptable number of false positive cases. 

The diagnostic performance of this final logistic regression model, based on the training data, was 

validated on the blinded data set, where the β-coefficients were fixed. The same cut-off value, 

chosen for the training data to determine the presence of lung cancer, was applied to the logistic 

regression analysis in the validation set. Results are expressed as sensitivity, specificity, predictive 

values, and AUC. 

A calibration plot was constructed to demonstrate how well the predicted probability of lung cancer 

matches the observed probability of lung cancer. 

Stratification for variables to evaluate possible influences on exhaled-breath outcomes was 

performed in explorative analyses for sex, age, presence of COPD, lung cancer stage, and type of 

histology. Early-stage lung cancer was classified as either stage I or II, whereas late-stage lung cancer 

was classified as stage III or IV. 

SPSS version 24.0 was used. All statistical tests were two-sided with a significance level at 0.05. 

 

Results 

A total of 575 subjects were enrolled in the analyses (Figure 1). Approximately two-thirds formed the 

training set (376 subjects; 160 lung cancer patients, 51 suspected, but negative, and 165 healthy 

control subjects), whereas the remaining one-third comprised the validation set (199 subjects; 79 

lung cancer patients, 32 suspected, but negative, and 88 healthy control subjects). Subject 

characteristics are described in Table 1. Data were obtained using 5 Aeonose™ devices. 
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Figure 1. Flow chart study cohort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

 

 

Table 1. Clinical characteristics of all enrolled subjects. 
 Training set (N = 376)  Validation set (N = 199)  
 Lung cancer 

(N = 160) 
Control 
subjects 
(N = 216) 

P-value Lung cancer 
(N = 79) 

Control 
subjects 
(N = 120) 

P-value 

Age in years, mean (SD) 68.4 (8.6) 64.6 (8.2) <0.001 69.0 (7.9) 63.4 (9.4) <0.001 
Sex (males), N (%) 97 (60.6) 131 (60.6) 0.996 49 (62.0) 59 (49.2) 0.075 
Smoking status, N (%) 

Current smoker 
Ex-smoker 
Never smoker 

 
48 (30.0) 
103 (64.4) 
9 (5.6) 

 
41 (19.0) 
130 (60.2) 
45 (20.8) 

<0.001   
30 (38.0) 
45 (57.0) 
4 (5.1) 

 
27 (22.5) 
65 (54.2) 
28 (23.3) 

0.001  

Pack-years, N (%)# 
0 
1-20 
21-40 
>40 

 
8 (5.1) 
37 (23.4) 
52 (32.9) 
61 (38.6) 

 
45 (20.8) 
56 (25.9) 
55 (25.5) 
60 (27.8) 

<0.001   
2 (2.6) 
14 (18.4) 
28 (36.8) 
32 (42.1) 

 
28 (23.3) 
38 (31.7) 
19 (15.8) 
35 (29.2) 

<0.001  

COPD, N (%) 71 (44.4) 94 (43.5) 0.869 37 (46.8) 52 (43.3) 0.627 
Hypertension, N (%)$ 66 (41.3) 74 (34.3) 0.166 27 (34.6) 38 (31.9) 0.695 
Diabetes, N (%)$ 15 (9.4) 22 (10.2) 0.794 11 (13.9) 10 (8.4) 0.217 
BMI, mean (SD) 26.4 (4.4) 25.8 (4.7) 0.210 26.2 (5.0) 25.7 (4.4) 0.402 
Type of NSCLC, N (%) 

Adenocarcinoma 
Squamous cell 
carcinoma 
Large cell 
carcinoma 
NOS 

 
101 (63.1) 
43 (26.9) 
 
6 (3.8) 
 
10 (6.3) 

   
39 (50.0) 
32 (41.0) 
 
4 (5.1) 
 
3 (3.8) 

  

Stage*, N (%) 
I 
II 
III 
IV 

 
54 (33.8) 
23 (14.4) 
38 (23.8) 
45 (28.2) 

   
21 (26.6) 
15 (19.0) 
19 (24.1) 
24 (30.4) 

  

Hospital, N (%) 
MST 
Radboud UMC 
MCL 
Leeuwarden 
US Basel 

 
66 (41.3) 
31 (19.4) 
29 (18.1) 
 
34 (21.3) 

 
69 (31.9) 
29 (13.4) 
34 (15.7) 
 
84 (38.9) 

 
 

 
30 (38.0) 
20 (25.3) 
17 (21.5) 
 
12 (15.2) 

 
30 (25.0) 
12 (10.0) 
33 (27.5) 
 
45 (37.5) 

 

BMI: Body mass index, NSCLC: Non-small cell lung cancer, NOS: Not otherwise specified, # 5 missing subjects, $ 1 
missing subject, * according to the eighth edition of the American Joint Committee on Cancer TNM staging system 
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The training model, exclusively based on breath data from the Aeonose™, showed, at a cut-off value 

of -0.36, an AUC of 0.83 (95% CI 0.79-0.87), a sensitivity of 91%, a specificity of 54%, and an NPV of 

89%. The diagnostic performance of the Aeonose™, maintaining the same cut-off value in the 

validation set, reached an AUC of 0.79 (95% CI 0.72-0.85), with a sensitivity of 88%, a specificity of 

52%, and an NPV of 87%, which conforms to the training model. 

Due to the multicollinearity of smoking status and number of pack-years, we chose to include 

number of pack-years in our analyses, because this parameter contained the most detailed 

information. The multivariate analysis based on solely clinical data from the training set, including 

sex, age, and number of pack-years, showed an AUC of 0.67 (95% CI 0.61-0.72), while the validation 

set showed an AUC of 0.75 (95% CI 0.68-0.82). 

Exhaled-breath data and clinical parameters from the training set were combined in a multivariate 

logistic regression analysis, maintaining a cut-off of 16% probability of lung cancer, resulting in a 

sensitivity of 95%, a specificity of 51%, and an NPV of 94%, which was based on clinical relevance 

(Tables 2 and 3). This corresponded to an AUC of 0.87 (95% CI 0.83-0.90). When applying the 

identical multivariate logistic regression model on the validation set, maintaining the selected cut-off 

probability of 16%, we observed a sensitivity of 95%, a specificity of 49%, a PPV of 54%, and an NPV 

of 94%, with a corresponding AUC of 0.86 (0.81-0.91) (Table 3 and Figure 2). In case of this cut-off 

probability of 16%, 63 of the 196 subjects (32%) were classified as “no lung cancer” (Table 4). 

Corresponding performance of breath data only, with an equal cut-off probability of lung cancer in 

the training and validation set is also displayed in Table 3. 
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Figure 2. Combined ROC curve of the validation models based on either exhaled-breath data only and a prediction model 
including clinical parameters. 

 

Table 2. Results of the univariate and multivariate logistic regression analysis for diagnosing 
lung cancer. 
Variable Univariate analysis  

Odds ratio (95% CI) 
Multivariate analysis  
Odds ratio (95% CI) 

Regression 
coefficient (B) 

   -4.949 (intercept) 
Sex (ref female) 1.01 (0.66-1.53) 0.68 (0.38-1.19) -0.393 
Age 1.06 (1.03-1.08) 1.05 (1.02-1.09) 0.049 
BMI 1.03 (0.98-1.08) -  
Smoking status 
Current smoker 
Ex-smoker 
Never smoked 

 
7.53 (3.06-18.49) 
5.09 (2.21-11.77) 
Ref 

 
- 

 

Pack years 
0 
1-20 
21-40 
>40 

 
Ref 
3.72 (1.57-8.77) 
5.32 (2.29-12.35) 
5.72 (2.49-13.14) 

 
Ref 
5.19 (1.91-14.1) 
8.11 (3.02-21.76) 
8.69 (3.22-23.50) 

 
 
1.647 
2.092 
2.162 

COPD 1.06 (0.70-1.60) -  
Hypertension 1.35 (0.88-2.06) -  
Diabetes mellitus 0.86 (0.42-1.73) -  
Classification value 
Aeonose™ 

22.8 (12.0-43.3) 27.9 (14.0-55.5) 3.328 

CI: confidence interval; BMI: body mass index; COPD: chronic obstructive 
pulmonary disease; -: not added to the multivariate model. 
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A calibration plot with the predicted probability of lung cancer in deciles of the validation cohort is 

shown in e-Figure 1. The figure shows good concordance between the predicted probability of lung 

cancer in each decile, and the observed prevalence of lung cancer the same decile. 

Explorative subgroup analyses show equal performance of the Aeonose™ in early and late-stage lung 

cancer, in both sexes, different age groups, and different types of histology (e-Tables 1-12). In stage I 

and II lung cancer, sensitivity and NPV were 94% and 97%, respectively, while in stage III and IV lung 

cancer, sensitivity and NPV were 84% and 90%, respectively. 

 

 

Table 3. Diagnostic accuracy of exhaled breath analysis in the training and validation set 

 Cut-off 

probability* 

Sensitivity Specificity PPV NPV AUC (95% CI) 

Training breath data only$ 20%  93.0 54.2 59.8 91.4 0.83 (0.79-0.87) 

Validation breath data only*$  20% 88.2 48.3 51.9 86.6 0.79 (0.72-0.85) 

Training clinical parameters + 

breath data$  

16% 94.9 50.5 58.4 93.2 0.87 (0.83-0.90) 

Validation clinical 

parameters + breath data*$  

16% 94.7 49.2 54.1 93.7 0.86 (0.81-0.91) 

*Corresponding cut-off values and fixed β-coefficients based on logistic regression analyses in the training set. 
$All analyses are performed in subjects without missing data (Training data: N=374, validation data: N=196). 
PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve 

Table 4. 2x2 table of the final multivariate prediction model including clinical parameters + 
breath data, and a cut-off probability of 16%. 
 Lung cancer  

(gold standard) 
No lung cancer  
(gold standard) 

 

Lung cancer  
(final model) 

72 61 133 

No lung cancer  
(final model) 

4 59 63 

 76 120 196 
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Discussion 

In this study, we trained and subsequently validated exhaled-breath data to distinguish between 

patients with NSCLC and clinically relevant control subjects in a multicentre setting using multiple 

devices. Our findings show that patients with NSCLC can successfully be discriminated from subjects 

without NSCLC using exhaled-breath patterns based on a training set concentrating on a high NPV to 

exclude the diagnosis of lung cancer in a non-invasive manner. Discrimination between both groups 

improves significantly when readily available clinical variables, i.e. age, sex, and number of pack-

years are added to the prediction model. Classifying new subjects, not used for training of the 

Aeonose™, shows excellent performance.  

Our previously performed training study indicated that exhaled-breath patterns differ between 

patients with lung cancer and subjects without lung cancer 12. The current study provided the 

necessary essential step where a prediction model based on a training set was validated on “blind” 

subjects in a multicentre and multinational setting, using multiple devices. 

To our knowledge, this is the first NSCLC study to validate blinded exhaled-breath profiles based on 

pattern recognition techniques in a multicentre split-sample design, including readily available 

clinical variables, whilst using multiple electronic nose devices.  

In the past, Machado et al. performed a similar study in which they used a split-sample design to 

validate a prediction model to distinguish lung cancer patients from control subjects 32. However, as 

they showed promising results, the study was performed in a single centre setting and had a very 

small study population (14 individuals with bronchogenic carcinoma in both the training phase and 

validation phase, respectively). Also, Mazzone et al. performed a split-sample study design using 

pattern recognition techniques based on exhaled-breath to distinguish lung cancer patients from 

control subjects 15. This concerned a two-centre study with the application of only one electronic 

nose device, and diagnostic performance in the validation set could be considered moderate. A 

recent study of Long et al. showed interesting results in an external validation study of exhaled-

breath biomarkers to diagnose lung cancer 26. Although they made use of the GC-MS technique, with 

several Tedlar bags and one GC-MS station, to identify molecules in exhaled-breath, they also 

focused on the possible origin of breath biomarkers by explaining specific metabolic processes in 

lung cancer pathogenesis. This strict study protocol may, however, be not easily implemented in 

daily clinical practice and contrary to the Aeonose™, it does not offer a point-of-care solution. 

The reported AUC of 0.86 in our study as obtained by the multivariate validation model provides very 

good accuracy, but is lower than some of the reported accuracies by other studies using pattern 

recognition techniques in exhaled-breath analysis to diagnose lung cancer 11,17,33-35. Possible 
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explanations for these discrepancies are incomparable study designs and control groups, a single 

centre versus multicentre setting, small datasets with the inherent risk of overfitting of models, the 

use different sensor technologies, use of a single device, and reporting results based on training data 

that are not validated. 

Validation of a prediction model, as performed in this study, is a pivotal step for clinical integration of 

exhaled-breath analysis in the diagnostic path of lung cancer. To assess the feasibility and 

acceptability of the electronic nose in clinical practice, we envision using the Aeonose™ in parallel 

with current practice in a hospital setting. Although based on an exploratory analysis, the validated 

model seems to be able to distinguish early-stage lung cancer from non-lung cancer with relatively 

high accuracy. In case of doubt, e.g. based on CT-scans, and a low probability of lung cancer, based 

on the validated model, a wait and see strategy could be employed. 

Exhaled-breath analysis might have promise as an element in an integral lung cancer screening 

program, most likely combined with other non-invasive tests such as low dose CT (LDCT) screening. 

However, the Aeonose™ should then be trained on a sample of subjects with an increased probability 

of lung cancer, such as heavy smokers. Despite the fair number of early-stage lung cancer cases in 

our cohort, we did not specifically analyse pulmonary nodules, which has been inherently the focus 

of LDCT screening. Future studies should focus on solitary pulmonary nodules and assess whether 

exhaled-breath analysis can fulfil a substantial role in lung cancer screening, possibly serving a 

synergistic role combined with LDCT and guide risk assessment prior to LDCT screening as a pre-

selection tool or after LDCT screening to determine surveillance intervals (6). However, in such a 

setting new prediction models must be built with data based on current screening criteria. Besides 

assessment of lung cancer risk, exhaled-breath analysis could also serve as a prognostic biomarker to 

predict response on therapies and possible recurrence risk 36,37.  

A notable strength of this study is the addition of clinical variables to the prediction model. This easily 

available information has previously shown to be informative, including development of clinical 

prediction scores in lung cancer screening based on imaging 38,39. Our results show significant 

improvement of the prediction model when adding clinical variables, which was confirmed in the 

validation cohort. 

Another strength is the excellent match between training and validation results. This is not 

straightforward as AI techniques are usually applied with far larger datasets.  

The Aeonose™ device not only features the possibility to perform real-time analysis of breath data 

without the necessity of breath sample storage; it has also incorporated a wash-out period of 2 

minutes where the lungs are fully cleared of dead space ventilation and analysis is solely performed 
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on VOC’s originating from metabolic processes in peripheral tissues. 

Other strong points worth mentioning are the multicentre and multinational design. Multiple devices 

were used for gathering training data, leading to a prediction model capable of classifying blinded 

samples, also collected with multiple devices. 

The study follows the recommendations of the TRIPOD statement (Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis) 40. Unfortunately, in our case, 

due to the use of the second generation, CE-certified Aeonose™ device, we could not use previously 

collected data. Given the long timeframe of collecting the necessary data, we decided to use a split-

sample study design in which we simultaneously trained and validated a prediction model. We 

intended to use breath data from all 8 Aeonoses™ (7 hospitals) to create a training cohort for 

supervised learning and cross-validation, and a validation cohort, which was kept blinded, for 

validation. However, it turned out that in some of the participating hospitals the amount of breath 

data, due to limited positive and negative lung cancer diagnoses, was not sufficient for adequate 

data analysis.  

 

Interpretation 

In summary, combining exhaled-breath data and clinical parameters in a multicentre, multi-device 

validation study can adequately distinguish lung cancer patients from subjects without lung cancer in 

a non-invasive manner. This study paves the way to implement exhaled-breath analysis in the daily 

practice of diagnosing lung cancer.  
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Take home points 

Study Question: Can exhaled-breath patterns of patients with non-small cell lung cancer (NSCLC) and 

without NSCLC adequately be discriminated with an electronic nose in a multicentre, multi-device 

validation study? 

Results: Exhaled-breath data can adequately distinguish lung cancer patients from subjects without 

lung cancer in a non-invasive manner in this multicentre, multi-device study including 575 subjects. 

Adding clinical variables relevantly improves the diagnostic performance to diagnose lung cancer. 

Interpretation: Validation of a prediction model, as performed in this study, is a pivotal step for 

clinical integration of exhaled-breath analysis in the diagnostic path of lung cancer. 
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e-Figure 1. Calibration plot with predicted probability of lung cancer, in deciles, in the validation cohort, and the 
corresponding observed lung cancer prevalence (in %) for the same decile. 
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e-Tables 1-12. Explorative subgroup analyses, displayed in 2x2 tables. They each show the diagnostic performance in terms 
of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and Area under the Receiving 
Operator Characteristic Curve (AUC). 
Sensitivity, specificity, PPV, and NPV are expressed as percentages. 

e-Table 1. Early-stage non-small cell lung cancer (NSCLC) (Stage I and II) 

 NSCLC + NSCLC -  
Aeonose + 31 58 89 
Aeonose - 2 62 64 
 33 120 153 

Sensitivity: 93.9 
Specificity: 51.2 
PPV: 34.8 
NPV: 96.9 
AUC: 0.83 (0.75-0.91) 

 
 
e-Table 2. Late-stage non-small cell lung cancer (NSCLC) (Stage III and IV) 

 NSCLC + NSCLC -  
Aeonose + 36 58 94 
Aeonose - 7 62 69 
 43 120 163 

Sensitivity: 83.7 
Specificity: 51.2 
PPV: 38.3 
NPV: 89.9 
AUC: 0.75 (0.67-0.84) 

 
 
e-Table 3. Males 

 NSCLC + NSCLC -  
Aeonose + 45 33 78 
Aeonose - 4 26 30 
 49 59 108 

Sensitivity: 91.8 
Specificity: 44.1 
PPV: 57.7 
NPV: 86.7 
AUC: 0.83 (0.75-0.91) 
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e-Table 4. Females 

 NSCLC + NSCLC -  
Aeonose + 27 28 55 
Aeonose - 0 33 33 
 27 61 88 

Sensitivity: 100 
Specificity: 54.1 
PPV: 49.1 
NPV: 100 
AUC: 0.90 (0.83-0.96) 

 
 
e-Table 5. Age ≥65.3 (median age) 

 NSCLC + NSCLC -  
Aeonose + 47 33 80 
Aeonose - 3 14 17 
 50 47 97 

Sensitivity: 94.0 
Specificity: 29.8 
PPV: 58.8 
NPV: 82.4 
AUC: 0.80 (0.71-0.89) 

 
 
e-Table 6. Age <65.3 (median age) 

 NSCLC + NSCLC -  
Aeonose + 25 28 53 
Aeonose - 1 45 46 
 26 73 99 

Sensitivity: 96.2 
Specificity: 61.6 
PPV: 47.2 
NPV: 97.8 
AUC: 0.89 (0.83-0.96) 
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e-Table 7. COPD + 

 NSCLC + NSCLC -  
Aeonose + 37 36 73 
Aeonose - 0 16 16 
 37 52 89 

Sensitivity: 100 
Specificity: 30.8 
PPV: 50.7 
NPV: 100 
AUC: 0.81 (0.72-0.90) 

 
 
e-Table 8. COPD- 

 NSCLC + NSCLC -  
Aeonose + 35 25 60 
Aeonose - 4 43 47 
 39 68 107 

Sensitivity: 89.7 
Specificity: 63.2 
PPV: 58.3 
NPV: 91.4 
AUC: 0.90 (0.84-0.96) 

 
 
e-Table 9. Active smoking 

 NSCLC + NSCLC -  
Aeonose + 28 21 49 
Aeonose - 2 6 9 
 30 27 57 

Sensitivity: 93.3 
Specificity: 22.2 
PPV: 57.1 
NPV: 66.9 
AUC: 0.79 (0.67-0.91) 
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e-Table 10. Ex + never smoking 

 NSCLC + NSCLC -  
Aeonose + 44 40 84 
Aeonose - 2 53 55 
 46 93 139 

Sensitivity: 95.7 
Specificity: 57.0 
PPV: 52.4 
NPV: 96.4 
AUC: 0.88 (0.83-0.94) 

 
 
 
e-Table 11. Adenocarcinoma 

 NSCLC + NSCLC -  
Aeonose + 34 58 92 
Aeonose - 5 62 67 
 39 120 159 

Sensitivity: 87.2 
Specificity: 51.2 
PPV: 37.0 
NPV: 92.5 
AUC: 0.79 (0.71-0.87) 

 
 
e-Table 12. Squamous cell carcinoma 

 NSCLC + NSCLC -  
Aeonose + 28 58 86 
Aeonose - 4 62 66 
 32 120 152 

Sensitivity: 87.5 
Specificity: 51.2 
PPV: 32.6 
NPV: 93.9 
AUC: 0.78 (0.69-0.86) 
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The main objective of this thesis was to investigate and validate exhaled breath analysis based on 

pattern recognition techniques with the Aeonose™, as a non-invasive diagnostic tool to discriminate 

lung cancer patients from non-lung cancer subjects. Since lung cancer is a common type of cancer 

with a high incidence, and an extremely high mortality rate due to late detection, innovative 

diagnostic tools to detect lung cancer are desired, preferably non-invasive, low-cost, and with the 

ability to provide real-time analysis to realise a point-of care diagnosis.  

Various non-invasive diagnostic tools have been investigated in the past decades with a promising 

role for exhaled breath analysis. Exhaled breath analysis is based on the detection of volatile organic 

compounds (VOCs) that reflect metabolic processes in the body, and moreover, changes in metabolic 

states in case of disease. These VOCs can be used as non-invasive biomarkers to identify disease 

activity, but also as prognostic measures in the follow up of a disease after treatment or as an 

indication of treatment efficacy prior to the start of a treatment (1-3). Analysis of these exhaled VOCs 

is generally based on either pattern recognition with electronic nose devices (eNose), such as the 

Aeonose™, or exact identification and quantification of individual VOCs by analytical separation 

methods, such as gas-chromatography-mass spectrometry (GC-MS), or ion-mobility spectrometry 

(IMS). Although both analytical methods are aimed at diagnosing a certain condition in exhaled 

breath, and both make use of highly sensitive sensors that are able to detect VOCs at part per billion 

(ppb) concentration levels, they differ in terms of breath sampling methods, selectivity of VOCs, 

complexity to perform a measurement, costs, and the ability to perform real-time analyses. 

Identification methods involving mass spectrometry are characterized by the ability to identify 

specific VOCs, but are associated with high costs, a time-consuming process, requirement of 

expertise to handle the technique, necessity to store exhaled breath before analyses can be 

performed, and the impossibility to obtain point-of-care results. In contrast, exhaled breath analysis 

based on pattern recognition techniques is generally considered low-cost, convenient to perform, 

and can be performed real-time without the need to store the exhaled breath. However, since 

pattern recognition techniques lack selectivity of the sensors as they are cross-reactive, it is not 

possible to identify or quantify individual molecules as a tool to investigate underlying biological and 

pathophysiological mechanisms. Both types of analytical methods have been extensively investigated 

in the past decades. However, to date, no unique disease-specific VOC or a combination of VOCs, 

indicative for lung cancer, has been identified.  

One of the first studies that used GC-MS to discriminate lung cancer patients from non-lung cancer 

subjects was published by Phillips et al. in 2003. Using nine VOCs, 67 primary lung cancer patients 

could be discriminated from 41 healthy controls with 85% sensitivity and 81% specificity (4). A 

consecutive study of Phillips et al. in 2007, including over 400 subjects, achieved 85% sensitivity and 
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80% specificity to distinguish lung cancer patients from non-lung cancer subjects, based on a 

prediction model including 16 VOCs, with the important remark that the accuracy was not affected 

by TNM stage or tobacco smoking (5). 

In 2009, Bajtarevic et al. used GC-MS to identify VOCs that could differentiate lung cancer patients 

from controls. They found that an increasing number of VOCs resulted in a higher sensitivity for 

discrimination, i.e. the sensitivity for the detection of lung cancer, based on 4 different VOCs present 

in exhaled breath of lung cancer patients, was 52%, whereas this sensitivity improved to 71% when 

the prediction model was based on 15 different VOCs, with both models showing a specificity of 

100% (6). Both studies, however, have not validated their results. A recent study of Long et al. also 

showed interesting results in an external validation study of exhaled breath biomarkers to diagnose 

lung cancer (7). They used the GC-MS technique to identify molecules in exhaled-breath showing a 

very high accuracy to detect lung cancer in the training group, which remained in the validation (over 

90% sensitivity, 88% specificity, and an area under the receiver operating characteristic curve (AUC) 

of 0.93). It must however be noted that the discriminating VOCs, as reported in these three studies of 

Phillips, Bajtarevic, and Long, minimally corresponded. 

Electronic noses mostly vary in terms of sensor type, breath sampling techniques, portability of the 

device, and classification methods, all accompanied by their own advantages and disadvantages. In 

2007, Mazzone et al. investigated the usability of colorimetric sensors to identify lung cancer in 

exhaled breath (8). Colorimetric sensors are characterized by a change in colour after chemically 

sensitive compounds, e.g. VOCs, interact with the sensors. After including 143 subjects, they reached 

a sensitivity of 73% and a specificity of 72% to discriminate lung cancer patients from controls, 

including subjects with other lung diseases and healthy controls. In a consecutive study with a split-

sample design in 2015, they also attempted to distinguish lung cancer patients from controls, 

including subgroups based on histology type and lung cancer stage, reaching accuracies from 79% to 

86% when building prediction models based on exhaled breath only (9).  

Conductive polymer gas sensors are also considered a potential sensor type, which have been 

incorporated in the Cyranose 320, a hand-held electronic nose that has extensively been 

investigated, not only in the lung cancer field. The technical principle is based on a change in the 

sensors’ electrical resistance after exhaled gases are absorbed on the sensor surface. Machado et al. 

used the Cyranose 320 already in 2005 to analyse exhaled breath of 135 subjects (28 patients with 

bronchogenic carcinoma) in which they built a prediction model using 59 subjects and validated this 

prediction model on the remaining subjects (10). Validation of the model resulted in an accuracy of 

85%, a sensitivity of 71%, and a specificity of 92%. Dragonieri et al. used the Cyranose 320 to 

distinguish COPD patients from NSCLC patients and healthy subjects. Based on 30 subjects, patients 
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with COPD and lung cancer patients could be distinguished with an accuracy of 85%, whereas lung 

cancer patients could be distinguished from healthy controls with an accuracy of 90% (11). In 2018, 

Tirzite et al. included 475 subjects (252 lung cancer patients). Based on exhaled breath patterns 

detected with the Cyranose 320, they could separate both groups with a sensitivity of 96%, and a 

specificity ranging from 90.6% to 92.3% depending on smoking status, whereas NSCLC patients and 

healthy controls were discriminated with an accuracy of 90% (12).   

Metal oxide sensors (MOS) are characterized by changes in conductivity when gas molecules interact 

with the sensor surface. Van de Goor et al. used the Aeonose™ in 2018 to distinguish between 

patients with lung cancer and healthy controls. 167 subjects were included of whom 107 were 

diagnosed with lung cancer. They found a sensitivity of 83%, a specificity of 84%, with an AUC of 0.83, 

which remained in their validation cohort (sensitivity 86%, specificity 86%) (13). 

Besides the Aeonose™, the device investigated in this thesis, another electronic nose device based on 

metal oxide sensors concerns the Spironose. In 2015, a study with the Spironose (n=144) investigated 

the possibility to discriminate lung cancer patients from patients with COPD, asthma, and healthy 

controls. Lung cancer patients could be distinguished from patients with COPD with an accuracy of 

87%, from patients with asthma with an accuracy of 68%, and from healthy controls with an accuracy 

of 88% (14). 

Finally, Shlomi et al. investigated exhaled breath in the diagnosis of lung cancer involving gold 

nanoparticle sensors. When exposed to air, electrical properties of the gold nanoparticles change. In 

a study to differentiate between subjects with benign nodules (n=30) and lung cancer patients 

(n=89), they found an accuracy to do so of 83% (15). Discrimination of early lung cancer from benign 

lung nodules showed good performance as well with an accuracy of 87%. 

Considering all features of the abovementioned electronic nose devices, the Aeonose™ is 

characterized by highly sensitive metal-oxide sensors, portability of the device, transferability 

between devices, and without the necessity of temporary storage of the breath sample. These 

device-related features offer an interesting device for potential use in regular clinical practice. 

Chapter 2 and Chapter 3 outlined methodological issues concerning exhaled breath analysis based 

on the principle of pattern recognition with machine learning techniques, where Chapter 3 focused 

more on development and validation of machine learning based prediction models in general.  

In Chapter 2 we focused on the technical working mechanism of the Aeonose™ device, we provided 

a comprehensive overview of the statistical analyses involved in the pattern recognition techniques 

to give insight in the black box behind the Aeonose™, and we proposed a study design to train the 

Aeonose™ in a multicentre setting to discriminate lung cancer patients from non-lung cancer 

subjects.  
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Since a single measurement with the Aeonose™ yields a large number of parameters, exceeding the 

number of cases by far, machine learning techniques for supervised learning of ‘big data’ are 

favoured over conventional statistical methods (16). In supervised learning, training data are entered 

in an algorithm in order to identify links between the entered features and the outcome measures 

(17). However, as machine learning algorithms take into account all available information – also 

called data-driven-, whereas traditional statistical methods are hypothesis-driven, these machine-

learning techniques involve a high risk of overfitting in which a prediction model fits perfectly on the 

specific training data, but possibly reflects noise instead of true relationships of the data. As a 

consequence the prediction model fails to generalize the results on unseen or blind data in a new 

dataset (18). Important techniques and steps to overcome overfitting are internal validation by using 

resampling techniques to estimate model accuracy and model robustness, and the application of 

external validation. It must be noted that in case of low risk of bias, a recent literature review 

showed equal performance of traditional logistic regression models and machine learning models, 

where machine learning models do not always lead to improved performance over traditional 

methods (19). 

Performed studies on pattern recognition of breath data show large heterogeneity in the applied 

techniques to obtain validated classification models from raw sensor data (20). However, all 

techniques require fundamental steps, including data pre-processing, where baseline correction 

occurs, data compression to reduce data dimensions and eliminate useless information, classification 

techniques to build prediction models, and internal validation to estimate the performance and 

stability of the obtained model (21, 22). There are various machine learning techniques available for 

analysing and classifying breath data, e.g. artificial neural network (ANN), support vector machine 

(SVM), linear discriminant analysis (LDA), and random forest (RF). Until now, there is no consensus on 

which statistical techniques for dimension reduction and classification methods should be used and 

combined when analysing breath data (20). This is partly due to the lack of direct comparison of the 

techniques, the use of explorative study designs, and consequently a lack of validation studies to 

prove reproducibility of the obtained results. Hanna et al. have proposed a framework for conducting 

and reporting studies investigating VOCs in cancer diagnosis. However, this framework has been 

arranged for identification studies of VOCs without including studies on pattern recognition (23). An 

overall essential step is proper internal validation by resampling methods to estimate performance 

and robustness of the training set, and estimate the potential of overfitting, preferably followed by 

external validation in an independent dataset (17, 24, 25). Two commonly used resampling methods 

concern cross-validation in which the leave-n-out cross-validation routine uses a part of the training 

data to build a prediction model, and the remaining data are used as a test set. This implies in fact 
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that – e.g. in 10 consecutive steps - all data are predicted as if they were blind data, based on a 

training model built from the remaining 90% of the data. In a second commonly used validation 

method, called bootstrapping, all data are used for model development and resampling a single 

dataset with replacement creates many simulated samples where the performances of all developed 

models are averaged to indicate the optimism of the initially developed prediction model (24). 

Still, not all published eNose studies report on this essential internal validation step to check stability 

and robustness of the obtained prediction model (20). Furthermore, external validation of prediction 

models is lacking in the majority of published eNose studies (20).  

In Chapter 3 we proposed a methodological study design to simultaneously develop and validate  

prediction models based on machine learning techniques in general. We used our training study as 

published in 2018 (Chapter 4) as a demonstration for applying the proposed study design (26). As 

previously mentioned, in case of a large amount of data with a relatively limited number of included 

subjects, machine learning techniques for supervised or unsupervised learning of the training data 

are favoured over traditional statistical methods. We already mentioned the importance of internal 

validation to manage the potential issue of overfitting, but in order to implement new diagnostic 

tools in clinical practice, external validation of prediction models remains fundamental. However, 

diagnostic techniques evolve rapidly nowadays, due to highly innovative technologies, e.g. 

continuous improvements in soft- and hardware, and including subjects for external validation of a 

prediction model might take so much time, that the model under investigation has already been 

surpassed by a more efficient prediction model. The original prediction model would in that case be 

no longer relevant, and new subjects need to be externally validated. The proposed study design as 

outlined in Chapter 3 would be suitable for such study circumstances in which a new diagnostic tool 

seems highly relevant for clinical practice, but can change over time due to rapid technological 

innovations or changes in treatment options. An alternative circumstance where such a study design 

would be applicable is in case of a relatively rare disease where recruitment of subjects, for both the 

training model and the external validation model, takes a lot of time. 

Another important feature of the proposed design is the ability to concurrently evaluate potential 

improvement, stability and robustness of a prediction model when increasing the sample size, 

consequently to discover a plateau at which increasing the sample size no longer results in an 

improvement of the model. Nevertheless, investigators should guard against overoptimistic 

estimates of model performance in the test set, which might be tackled by calibration of the model 

(27).  

It must be noted that there is no intention to replace traditional external validation designs as 

outlined by the STARD and TRIPOD guidelines, which incorporate the important elements such as 
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similar case-mix, temporal validation in a prospective study design, geographical validation to test 

transportability of the model, different investigators and alternative, but related settings (26-29). Our 

goal was to provide an alternative, guiding design in situations where true external validation might 

be inefficient, especially in case of applying machine learning techniques considering a large amount 

of data.  

Chapter 4, 5, and 6 show the results of clinical studies with the application of exhaled breath analysis 

by the Aeonose™ to distinguish lung cancer patients from non-lung cancer subjects. Chapter 4 

reports on the diagnostic performance of the Aeonose™ in an exploratory multicentre training study 

to observe a potential signal in exhaled breath to diagnose lung cancer. Chapter 5 investigated 

whether addition of clinical parameters to the exhaled breath data might improve this potential to 

diagnose lung cancer. Chapter 6 shows an overall validation of a prediction model to diagnose lung 

cancer based on exhaled breath data only, and with the addition of relevant clinical variables to the 

prediction model.  

In Chapter 4 we reported on the diagnostic performance of the Aeonose™ in an exploratory 

multicentre training study including 4 hospitals in the Netherlands, to discriminate non-small cell 

lung cancer patients from subjects without lung cancer. Based on 290 subjects, among which 144 

non-small cell lung cancer patients, and 146 controls (61 suspected of lung cancer, but proven 

negative, and 85 healthy controls), analysis of exhaled breath patterns with the Aeonose™ showed 

the ability to discriminate non-small cell lung cancer patients from non-lung cancer patients with a 

sensitivity of 94%, a specificity of 33%, and an AUC of 0.76 (95% confidence interval (CI): 0.71-0.82). A 

high negative predictive value (NPV) of 86% was observed, implying that a large number of suspected 

subjects can be prevented from undergoing unnecessary interventions. This reported diagnostic 

performance in our study as obtained by the prediction model based on exhaled breath data 

provides fair accuracy, but is lower than some of the earlier reported accuracies in other pattern 

recognition studies to diagnose lung cancer, especially showing a discrepancy in specificity (13, 30-

32). Possible explanations for this discrepancy might be variability in study designs and control 

groups, our use of a multicentre and multidevice setting, small datasets with consequently risk of 

overfitting, focus on high sensitivity, and the use of different breath sampling techniques, different 

sensor technologies, and various statistical methods (33). In order to test generalisability of the 

individual results to the overall lung cancer population, external validation studies of the obtained 

results should be performed. 

In case of differentiating the control subjects into a group that was suspected of lung cancer, due to 

complaints or abnormal imaging, and a group of healthy volunteers, matched on age and sex, the 
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diagnostic performance substantially differed. A decline in diagnostic performance was observed in 

the analysis to discriminate NSCLC patients from suspected subjects that were proven negative, 

showing an AUC of 0.73 (95% CI: 0.64-0.82), whereas a remarkable improvement was seen when 

differentiating NSCLC patients from healthy volunteers, showing an AUC of 0.85 (95% CI: 0.79-0.80). 

A possible explanation for the reduced diagnostic performance in the suspected subjects might be an 

alternative cause for the complaints, such as presence of a pulmonary infection, obstructive lung 

disease or interstitial lung disease that also alter the lung- and airway cell metabolism and the 

biochemical environment, leading to a change in VOC-pattern with a breath print more resembling 

lung cancer. After a follow up of five years, we did not observe a single case in the control group that 

eventually turned out to have lung cancer.  

As suspected subjects of lung cancer generally share more risk factors with lung cancer patients than 

healthy controls do, such as current or past smoking, and presence of COPD, one could discuss the 

influence of intrinsic and extrinsic factors on exhaled-breath patterns. Various studies have 

investigated the influence of age, gender, smoking status, presence of comorbidities, and type of 

tumour stage and histology on the outcomes of exhaled-breath analysis (34-37). Important 

arguments against the influence of environmental factors in our study, including active smoking, are 

the incorporation of a nose clip during the Aeonose™ measurement to prevent breathing of 

environmental air, a 2-minute washout period to rinse the lung from air in the anatomical dead space 

in which no measurements are recorded, and the multicentre study design. However, it must be 

noted that our studies have been performed in controlled circumstances with the use of the same 

room for the measurements and strictly prohibited the use of (hand)alcohol in the room. The 

possible influence of environmental factors in uncontrolled circumstances are still unsure. A possible 

solution to overcome the possible intrinsic influence of concurrent comorbidities is to train the 

Aeonose™ to detect these comorbidities as well. However, these groups need to be sufficiently large 

to build adequate and stable prediction models. One could start with the performance of exploratory 

sub-analyses to obtain an impression of possible influencing variables and to investigate whether 

equal performance is achieved in subgroups, e.g. based on age, sex, presence of comorbidities, and 

smoking status. Another solution might be adequate matching of the lung cancer and control group 

in the training phase on these potential influencing variables to cancel out these influences. We also 

decided not to ask subjects to restrict eating or drinking before a measurement, as the neural 

network is being trained comparing breath profiles of positive and negative subjects for lung cancer, 

regardless of their food intake. Also, when numbers of subjects are sufficiently large, it can be 

assumed that food intake is not relevant as it averages out. However, since not all possible intrinsic 

and extrinsic influences have been investigated, and therefore cannot be excluded with certainty, in 

future studies and in clinical practice we might consider prohibition of certain foods and drinks for a 
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predefined period to standardize the breath sampling procedure. Furthermore, as proposed by 

Hanna et al., in the case of standardization of the breath sampling procedure one could take into 

account patient-related factors, environmental considerations and breath sampling methods (23). 

In this multicentre study we also performed sub-analyses on the two most common NSCLC histology 

types, i.e. adenocarcinoma (AC), and squamous cell carcinoma (SCC). Especially SCC showed a high 

negative predictive value of 93%, indicating that in case of a Aeonose™ value lower than -0.015, 

there is a high certainty, with high clinical relevance, that SCC is absent. Possible explanations for this 

high diagnostic accuracy might be the often-central origin of the tumour, and lower heterogeneity in 

this type of tumour compared to adenocarcinoma (38, 39). However, we observed a low incidence of 

SCC in our study population, and validity of this diagnostic performance should be tested in a larger 

study population. Besides, whole-genome sequencing for SCC is less available compared to AC, 

where potential driver mutations have possibly not been explored yet. Contrary, adenocarcinomas 

are known for their histological and molecular heterogeneity and show a lower diagnostic 

performance of exhaled breath analysis in our sub-analysis (40). These adenocarcinomas should 

probably be further divided based on their tumour and molecular characteristics for proper 

discrimination. Shlomi et al. investigated the difference in exhaled-breath patterns of patients with 

adenocarcinoma with and without an EGFR mutation (15). They found a diagnostic accuracy of 83% 

to discriminate both groups which supports our hypothesis that in adenocarcinoma further 

subdivisions in histology and biochemical features might lead to differences in breath patterns.  

In a small sub-analysis to evaluate differences in breath patterns between small cell lung cancer 

(SCLC) patients and non-lung cancer patients, we found promising results to exclude SCLC with a high 

NPV of 97%. As mentioned before, this also concerns a very small sample size of SCLC patients, 

where the results should be interpreted with caution.  

In Chapter 5, the aforementioned original, multicentre training model as discussed in Chapter 4 was 

extended with relevant clinical parameters to assess improvement of diagnostic performance of the 

prediction model. Various clinical parameters are known as independent risk factors for the 

development of lung cancer, such as age, sex, presence of COPD, smoking status, number of pack-

years smoked, family history, and presence of emphysema (41, 42). Including 281 subjects (138 

NSCLC patients, and 143 subjects without lung cancer), univariate analyses showed age, sex, smoking 

status, number of pack-years, presence of COPD, and the absolute classification value of the 

Aeonose™ to be associated with the presence of lung cancer. These univariately associated clinical 

variables were entered into two types of multivariate analysis: 1) a traditional multivariate logistic 

regression analysis where the absolute classification value of the Aeonose™, as obtained by the 

neural network analysis, was entered as an independent variable together with the univariately 
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associated clinical variables, and 2) addition of the univariately associated clinical variables a priori to 

the artificial neural network, together with the vector containing breath profile data.  

Both types of multivariate analysis showed a remarkable improvement of diagnostic performance 

compared to analysis based on solely exhaled breath data. In case of a prediction model built on this 

current study population based on exhaled breath data only, we found a sensitivity of 94.2%, a 

specificity of 44.1%, and a positive predictive value (PPV) and NPV of 61.9% and 88.7%, respectively, 

with an AUC of 0.75 (95% CI 0.69–0.81). Minor differences were observed compared to our previous 

performed analysis in Chapter 4 due to a somewhat smaller sample size because of missing 

information on pack-years. The multivariate logistic regression analysis including the classification 

value of the Aeonose™ and clinical variables showed, at a chosen cut-off for sensitivity relevant for 

clinical practice, an improved AUC of 0.86 (95% CI: 0.81-0.90), with a sensitivity of 96%, a specificity 

of 60%, and an NPV of 93%. In case of training the ANN with the vector containing exhaled breath 

data together with the univariately associated clinical variables, we observed a relevant 

improvement in diagnostic performance to distinguish NSCLC patients from non-lung cancer subjects 

as well, with a sensitivity of 94%, a specificity of 49%, an NPV of 90%, with an AUC of 0.84 (95% CI: 

0.79-0.89). We concluded that both multivariate methods were equally capable of increasing 

classification quality in diagnosing lung cancer, especially leading to an increase in specificity with 

consequently less false positive diagnoses and unnecessary interventions. Since clinical risk factors 

for developing lung cancer are known, and they are often readily available, combining these variables 

with non-invasive breath data is recommended. Other biomarker studies, including serum 

biomarkers and genetic studies have also used machine learning techniques to build prediction 

models to diagnose lung cancer including clinical variables (43, 44). However, studies on combining 

exhaled breath data and clinical variables are rare. Tirzite et al. used logistic regression analysis to 

predict the presence of lung cancer with the Cyranose 320 mainly using segments of exhaled breath 

as input variables for the logistic regression analysis, but they also included a number of clinical 

parameters, such as age, smoking status, smoking history and ambient temperature (12). They were 

able to distinguish subjects with lung cancer from controls with a sensitivity of 96% in both smokers 

and non-smokers, and a specificity >90% in both groups. Mazzone et al. performed a study with 

colorimetric sensor arrays to analyse exhaled breath to diagnose lung cancer in a split-sample design 

where they found a moderate discriminative performance to diagnose lung cancer (C-statistic of 0.79 

(95% CI: 0.78-0.82)), but addition of clinical parameters, such as age, smoking history, and presence 

of COPD did not lead to a relevant improvement of the prediction model to diagnose lung cancer (C-

statistic of 0.80 (95% CI: 0.78-0.82)) (9). However, they did not report on the univariate influences of 

the clinical variables in their study population. 
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In Chapter 6 we trained and validated a prediction model in a split-sample design based on exhaled 

breath data to distinguish between patients with NSCLC and clinically relevant control subjects in a 

multicentre (7 hospitals) and multi-device setting with and without the addition of clinical variables. 

Since our previously performed training study indicated a potential signal in the exhaled breath of 

lung cancer patients, the next essential step was to validate these results in a multicentre setting on 

an independent group of subjects. Unfortunately, due to the use of the second generation, CE-

certified Aeonose™ device, we could not use the prediction model based on the previously collected 

data as obtained in Chapter 4. Given the long timeframe of collecting the necessary data, we decided 

to use a split-sample study design in which we enabled development and subsequent validation of a 

new prediction model as outlined in Chapter 3.  

The training set consisted of 376 subjects (160 lung cancer patients, 216 controls) and the validation 

set consisted of 199 subjects (79 lung cancer patients, 120 controls). We observed a moderate model 

performance to discriminate patients with NSCLC and controls based on exhaled breath data only, 

with similar results in the validation set including ‘blind’ subjects. The prediction model based on 

exhaled breath data only, with a cut-off probability of 20% for the diagnosis of lung cancer, showed 

in the validation set a sensitivity of 88%, a specificity of 48%, a PPV of 52%, an NPV of 87%, with an 

AUC of 0.79 (95% CI: 0.72-0.85). Discrimination between both groups improved significantly when 

readily available clinical variables, i.e. age, sex, and number of pack-years were added to the 

prediction model. Classifying new subjects, not used for training of the Aeonose™, maintaining the 

same cut-off probability and regression coefficients as in the training set, showed excellent 

performance with a sensitivity of 95%, a specificity of 49%, a PPV of 54%, an NPV of 94%, and an AUC 

of 0.86 (95% CI: 0.81-0.91). Similar to the training study in Chapter 4, we focused on high sensitivity 

and high NPV based on clinical relevance in order to miss as few lung cancer cases as possible due to 

its high mortality. With the chosen cut-off probability of having lung cancer of 16%, about one third 

of the subjects (63 of the 196 subjects) were classified as not having lung cancer and could be 

refrained from undergoing unnecessary invasive diagnostics based on our prediction model.   

In this validation study, we applied the original developed model, with the same predictors and 

regression coefficients, to measure the outcome values in the test set with new individuals that had 

not been used to develop the original model. Not only did we assess discrimination to test this 

model’s performance, we also assessed calibration in a calibration plot to evaluate the model’s 

predictive performance as a quantitative measure as proposed by Moons et al., showing good 

concordance between the predicted probability of lung cancer in each decile, and the observed 

prevalence of lung cancer the same decile (26).  

To our knowledge, our study as reported above, was the first study to validate “blind” exhaled breath 

profiles of patients with NSCLC and subjects without lung cancer based on pattern recognition 
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techniques in a multicentre, multinational split-sample design, including clinical variables with the 

use of multiple electronic nose devices. As mentioned above, Mazzone et al. performed a split-

sample study design using pattern recognition techniques based on exhaled breath to distinguish 

lung cancer patients from control subjects (9). This concerned a two-centre study with the 

application of only one electronic nose device, and diagnostic performance in the validation set could 

be considered moderate. A recent study of Long et al. showed interesting results in an external 

validation study of exhaled breath biomarkers to diagnose lung cancer. Although they made use of 

the GC-MS technique, with several Tedlar bags and one GC-MS station, to identify molecules in 

exhaled breath, they also focused on the possible origin of breath biomarkers by explaining specific 

metabolic processes in lung cancer pathogenesis. In a validation cohort including 156 lung cancer 

patients and 100 controls, eight discriminating VOCs reached an AUC of 0.96 to discriminate between 

the two groups. Sub-analysis on lung cancer stage and histology subtype also showed excellent 

performances. This strict study protocol, as well as the high costs, necessity to temporarily store 

breath samples, and requirement of expertise to handle the technique, may not be easily 

implemented in daily clinical practice, and contrary to the Aeonose™, it does not offer a point-of-care 

solution. 

In our validation study, we also performed explorative subgroup analyses on lung cancer stage, 

different sexes and age groups, and different types of histology. An important finding of these 

analyses was the good diagnostic performance in all lung cancer stages, where we found a sensitivity 

and NPV of 94% and 97%, respectively in early-stage lung cancer, while in stage III and IV lung cancer, 

sensitivity and NPV were 84% and 90%, respectively. 

 

Future implications  

The results of these clinical studies pave the way for clinical implementation of exhaled breath 

analysis with electronic nose technology serving as a non-invasive biomarker in the diagnosis of lung 

cancer. As large studies focusing on low-dose computed tomography (LDCT) screening have shown 

reduced lung cancer mortality in high-risk asymptomatic subjects, the potential of combining these 

non-invasive diagnostic tools should be investigated (45, 46). Due to the high sensitivity and high NPV 

to exclude lung cancer, the Aeonose™ may be deployed after suspicion of lung cancer has been 

raised by LDCT, where appropriate monitoring steps, including a watch-and-wait strategy, might be 

applied. Furthermore, determination of accurate screening criteria for LDCT screening remains 

debatable since only subjects at the highest risk for lung cancer are targeted in current screening 

programmes. Combining clinical parameters and exhaled breath data in an ANN could indicate the 

degree of suspicion of lung cancer, and therefore serve as an adjunct for risk stratification in lung 
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cancer screening, supporting clinical decision making. However, an important limitation of our 

training study as discussed in Chapter 4 and 5 was the small population of early-stage lung cancer 

(+/- 25%), which would be the target population of such a lung cancer screening programme. In our 

validation study we included a larger subgroup of early-stage lung cancer (45-50%), that better 

corresponds with the target population in screening programmes. Results of these sub-analyses are 

promising. However, our clinical studies were performed in a hospital setting in subjects with a clear 

suspicion of lung cancer, whereas screening programmes target asymptomatic, high-risk subjects. To 

assess acceptability and feasibility of the exhaled breath analysis with the Aeonose™ in clinical 

practice, we envision to first use the Aeonose™ parallel to current practice in a hospital setting. In 

particular the purpose to prevent subjects to undergo unnecessary invasive interventions could be 

pursued, and more often a wait-and-see strategy could be applied with strict follow-up. In order to 

assess the synergistic role of exhaled breath analysis in screening purposes, guidance of risk 

assessment prior to LDCT as a pre-selection tool, and determination of surveillance intervals in case 

of solitary pulmonary nodules, a new study design should be formatted including asymptomatic, 

high-risk subjects with a considerably lower prevalence of lung cancer compared to a hospital setting.  

Exhaled breath analysis could not only play a substantial role in lung cancer screening, it might also 

serve an important role as a prognostic biomarker to predict effectiveness of proposed treatments, 

and monitor possible disease recurrence after treatment. Especially since lung cancer treatment 

increasingly focuses on the concept of personalized medicine with the current knowledge of the 

importance of driver mutations and PD-L1 status, each individual patient should be evaluated in 

terms of effectiveness of his personalized treatment, possibly based on a combination of biomarkers, 

including radiological and pathological markers, and exhaled breath patterns. Besides, the Aeonose™ 

could be trained to detect recurrent disease after a curative treatment, possibly in a stage where this 

recurrent disease is not yet radiologically visible, or to detect minimal residual disease after an 

intended curative treatment.   

Specifically for the Aeonose™, further improvements in soft- and hardware should provide a higher 

specificity to minimize the number of false-positive subjects and prevent more subjects from 

undergoing unnecessary invasive interventions.  
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Summary 

Lung cancer is the leading cause of cancer-related mortality worldwide. Lung cancer is subdivided in 

two major types: non-small cell lung cancer (NSCLC) and small-cell lung cancer (SCLC), respectively 

accounting for approximately 85% and 15% of the cases. Furthermore, NSCLC can be categorized in 

many subtypes, being the two most common adenocarcinoma and squamous cell carcinoma, each 

with different tumour characteristics, treatment options and prognosis. The 5-year survival rate for 

localized stage NSCLC approximates 60%, whilst the 5-year survival rate for metastatic disease equals 

5%. In case of SCLC, 5-year survival rate for localized disease approximates only 30%, whilst the 5-

year survival rate for metastatic disease conforms 3%. Despite substantial progress in the treatment 

options, such as targeted therapies with tyrosine kinase inhibitors (TKI’s), immune therapy, 

improvements in surgical options, and personalized treatment, this high lung cancer related mortality 

reflects the fact that the majority of the patients present with advanced-stage disease, which is not 

curable.  

In the past decades, various non-invasive technologies have been investigated as a potential tool to 

diagnose lung cancer. One of these technologies concerns exhaled breath analysis based on pattern 

recognition by electronic nose technology. Exhaled breath contains, besides inorganic compounds, 

such as water vapour, nitrogen, and carbon monoxide, also thousands of volatile organic compounds 

(VOCs) reflecting physiological and pathophysiological metabolic processes in the body. In case of a 

disease, metabolism alters leading to exhalation of a different composition of VOCs which can be 

captured by highly sensitive sensors and measured with artificial intelligence techniques. This type of 

technology mimics human olfaction in which one needs to be trained to recognize familiar smells and 

allows the electronic nose to recognize a ‘smell’ that matches lung cancer, or any other condition for 

which the electronic nose has been trained. In order to implement a new diagnostic tool to diagnose 

lung cancer, the technique should first be trained and validated to state whether the new technique 

is of sufficient additional value in clinical practice. 

In this thesis, we investigated the potential of exhaled breath analysis to diagnose lung cancer by 

performing studies in which we trained and validated an electronic nose (Aeonose™) to distinguish 

patients with lung cancer from subjects without lung cancer. Chapter 2 and Chapter 3 mainly focus 

on methodological issues concerning exhaled breath analysis based on pattern recognition with 

machine learning techniques. Chapters 4-6 show results of clinical studies in which the Aeonose™ is 

trained and validated.  

In Chapter 2 we outlined the proposed multicentre study design how to train the Aeonose™ as a 

diagnostic tool to diagnose lung cancer. This manuscript mainly focused on the technical working 
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mechanism of the device and the statistical analyses incorporating artificial intelligence and internal 

validation techniques to classify subjects as having lung cancer or not. We showed how a large 

amount of training data could be handled in such a way to prevent the risk of overfitting the 

prediction model.  

As stated above, after a prediction model has been developed on training data, it is fundamental to 

validate this prediction model on new data in order to assess reproducibility and generizability of this 

prediction model in independent subjects. Since current diagnostic techniques rapidly evolve due to 

highly innovative technologies, inclusion of subjects for external validation often takes too long to 

properly assess the relevance and efficiency of the developed prediction model. In Chapter 3 we 

proposed a methodological study design to simultaneously develop and validate prediction models 

based on machine learning techniques in general. We used our training study as published in 2018 

(Chapter 4) as a demonstration for applying this proposed study design. This type of study design is 

especially suitable in case of an innovative, but highly relevant, diagnostic technique which can 

rapidly change due to technological developments, or in case of a rare disease where inclusion of 

subjects takes a lot of time. 

Chapters 4-6 show results of clinical multicentre studies where the Aeonose™ is trained and 

validated. The prediction model developed on the training data has been extended with clinical data 

to improve the diagnosis of lung cancer. In Chapter 4 we performed an exploratory multicentre study 

to train the Aeonose™ to distinguish non-small cell lung cancer patients from subjects without lung 

cancer based on exhaled breath. Based on 290 subjects (144 NSCLC patients, 146 controls), the 

prediction model was able to discriminate both groups with a sensitivity of 94%, a specificity of 33%, 

a negative predictive value (NPV) of 86%, and an AUC of 0.76 (95% confidence interval (CI): 0.71-

0.82). Since lung cancer is characterized by a high mortality when not timely remarked, we focused 

on a high negative predictive value, which was obtained. This high negative predictive value implies 

that a large number of subjects suspected of lung cancer could be prevented from undergoing 

unnecessary, probably invasive, interventions. Besides evaluation of the discriminative performance 

between NSCLC patients and non-NSCLC subjects, additional sub-analyses were performed on the 

two most common NSCLC histology types, i.e. adenocarcinoma, and squamous cell carcinoma. 

Squamous cell carcinoma showed an impressive high negative predictive value of 93% with an AUC of 

0.78, indicating that in case of an Aeonose™ value lower than -0.015, there is a high certainty, with 

high clinical relevance, that squamous cell carcinoma is absent. Adenocarcinoma showed a slightly 

lower diagnostic accuracy with an AUC of 0.73, which might be explained by the heterogeneity of 

adenocarcinoma tumours. Also, in a small sub-analysis to evaluate differences in breath patterns 

between SCLC patients and non-lung cancer patients, we found promising results to exclude SCLC 
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with a high NPV of 97%, and an AUC of 0.86 (95% CI: 0.78-0.95). However, it must be noted that all 

sub-analyses were performed in a small group of subjects and further research is needed. Besides, all 

analyses in the training study have been performed with a CE-uncertified Aeonose™ device and have 

not been validated on independent data.  

In Chapter 5 we investigated the potential additional value of adding clinical parameters, which are 

also known to be predictive for lung cancer, to the obtained prediction model based on exhaled 

breath data from the training cohort in Chapter 4. We found that variables such as age, sex, smoking 

status, number of pack-years, presence of COPD, and the absolute classification value of the 

Aeonose™ were associated with the presence of lung cancer. Two types of multivariable statistical 

analysis were performed to assess the additional value of the extended prediction models. First, a 

multivariable logistic regression analysis, in which the absolute classification value of the Aeonose™ 

as obtained by the neural network analysis, was entered as an independent variable together with 

the univariately associated clinical variables. This model showed a substantial increase in diagnostic 

performance with an AUC of 0.86, a sensitivity of 96%, a specificity of 60%, and an NPV of 93%, 

compared to the original model based on exhaled breath data only with an AUC of 0.76. Second, we 

added the univariately independent variables a priori as an extension of the vector containing breath 

data defining the input of the artificial neural network, that was used in the training study to build 

the prediction model. This neural network model also showed great improvement of diagnostic 

performance to diagnose lung cancer with an AUC of 0.84, a sensitivity of 94%, a specificity of 49%, 

and an NPV of 90%. 

Not only did sensitivity and NPV increase, also specificity increased in the multivariable models 

meaning a lower number of subjects that are incorrectly classified as having lung cancer. 

Since the training studies, with and without clinical variables, indicated promising results of the 

Aeonose™ to diagnose lung cancer, we performed a large, multicentre, multinational validation study 

with multiple Aeonose™ devices to assess reproducibility and robustness of the obtained results. The 

results of this validation study are presented in Chapter 6. Due to the issue of continuous 

improvements in technology as mentioned in Chapter 3, and therefore the use of a second 

generation, CE-certified, Aeonose™, it was decided not to use the original data from the training 

cohort as described in Chapter 4. Instead, we recruited new subjects and performed a split-sample 

design which enabled development and subsequent validation of a new prediction model. The 

training set consisted of 376 subjects (160 lung cancer patients, 216 clinically relevant controls) and 

the validation set consisted of 199 subjects (79 lung cancer patients, 120 controls). We observed a 

moderate model performance to discriminate patients with NSCLC and controls based on exhaled-

breath data only, at a cut-off probability of 20% for the diagnosis of lung cancer, with similar results 
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in the validation set including ‘blind’ subjects. This prediction model showed a sensitivity of 88%, a 

specificity of 48%, a PPV of 52%, an NPV of 87%, with an AUC of 0.79 (95% CI: 0.72-0.85) in the 

validation set. As seen in Chapter 5, adding relevant clinical variables that are also predictive for lung 

cancer substantially improved the diagnosis of lung cancer. Exhaled-breath data and clinical 

parameters from the training set were combined in a multivariable logistic regression analysis, 

maintaining a cut-off of 16% probability of lung cancer, resulting in a sensitivity of 95%, a specificity 

of 51%, and an NPV of 94%. This corresponded to an AUC of 0.87 (95% CI 0.83-0.90). When applying 

the identical multivariable logistic regression model on the validation set, maintaining the selected 

cut-off probability of 16%, we observed a sensitivity of 95%, a specificity of 49%, a PPV of 54%, and 

an NPV of 94%, with a corresponding AUC of 0.86 (0.81-0.91). This would mean, in case of this cut-off 

probability of 16%, that 63 of the 196 subjects (32%) were classified as “no lung cancer” and could, 

with high certainty, be prevented from undergoing unnecessary interventions. 

In Chapter 7 we place the main results of the performed studies in a broader context to discuss the 

relevance of the findings and future implications. Future research is needed to evaluate the value of 

exhaled breath analysis in lung cancer screening programmes, but also as an application to monitor 

treatment responses and detect early recurrence of the disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  137 
 

Nederlandse samenvatting 

Longkanker is wereldwijd de belangrijkste oorzaak van kanker-gerelateerde mortaliteit. Longkanker 

kan worden onderverdeeld in 2 typen: niet-kleincellig longcarcinoom (NSCLC) en kleincellig 

longcarcinoom (SCLC), welke respectievelijk circa 85% en 15% van de gevallen vormen. Daarnaast 

kan NSCLC verder worden onderverdeeld in meerdere subtypen, waarvan de twee meest 

voorkomende adenocarcinoom en plaveiselcelcarcinoom zijn, met elk hun eigen tumorkenmerken, 

behandelopties en prognose. De 5-jaars overleving van gelokaliseerd NSCLC ligt rond de 60%. 

Daarentegen ligt de 5-jaars overleving van gemetastaseerde ziekte slechts rond de 5%. In het geval 

van SCLC ligt de 5-jaars overleving van gelokaliseerde ziekte rond de 30% en bij gemetastaseerde 

ziekte is dit slechts 3%. Ondanks aanzienlijke verbeteringen in behandelopties de afgelopen jaren, 

zoals gerichte behandeling met tyrosinekinaseremmers (TKI’s), immunotherapie, verbeteringen in 

chirurgische opties en gepersonaliseerde behandeling, reflecteert de hoge mortaliteit het feit dat de 

meeste mensen zich met reeds uitgebreide ziekte presenteren, waarbij curatie niet meer mogelijk is. 

In de afgelopen decennia zijn er diverse niet-invasieve technologieën onderzocht als een potentieel 

diagnosticum voor longkanker. Dit betreft onder andere uitademingsanalyse gebaseerd op 

patroonherkenning door middel van een elektronische neus. Uitademingslucht bevat, naast 

anorganische componenten zoals waterdamp, koolstofdioxide, stikstof en koolstofmonoxide, ook 

duizenden vluchtige organische stoffen (VOC’s) welke fysiologische en pathofysiologische processen 

in het lichaam reflecteren. In het geval van een ziekte verandert het metabolisme waardoor een 

andere samenstelling van VOC’s wordt uitgeademd. Deze uitademingslucht kan worden 

geregistreerd door zeer gevoelige sensoren en vervolgens worden gemeten en geanalyseerd met 

verschillende kunstmatige intelligentie technieken. Dit type technologie komt overeen met de reuk 

bij mensen waarbij iemand eerst moet worden geleerd om een bepaalde geur te herkennen. In het 

geval van een elektronische neus wordt deze neus eerst geleerd en getraind welke ‘geur’ bij 

longkanker, of een andere ziekte past, waarna deze de volgende keer dezelfde geur kan matchen aan 

die specifieke ziekte. Om een dergelijk nieuw diagnosticum te implementeren, moet deze eerst 

getest en gevalideerd worden om te kunnen beoordelen of deze van voldoende additionele waarde 

is in de klinische praktijk. 

In dit proefschrift hebben we de mogelijkheid van uitademingsanalyse om longkanker te 

diagnosticeren onderzocht, waarbij we een elektronische neus (Aeonose™) hebben getraind en 

gevalideerd om patiënten met longkanker te onderscheiden van personen zonder longkanker. 

Hoofdstukken 2 en 3 richten zich met name op methodologische kwesties rondom 

uitademingsanalyses gebaseerd op patroonherkenning met kunstmatige intelligentie technieken. 
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Hoofdstukkers 4-6 laten resultaten zien van klinische studies waarbij de Aeonose™ is getraind en 

gevalideerd. 

In hoofdstuk 2 hebben we in ons voorgestelde multicenter onderzoek uiteengezet hoe de Aeonose™ 

te trainen om longcarcinoom te diagnosticeren. Dit manuscript richt zich met name op de 

technologie achter de Aeonose™ en de statistische analyses gericht op kunstmatige intelligentie 

technieken en interne validatie technieken om personen te classificeren als het hebben van 

longkanker of niet. We laten zien hoe om te gaan met een grote hoeveelheid data om overfitting van 

een predictiemodel te voorkomen.  

Zoals hierboven beschreven, nadat een predictiemodel ontwikkeld is op basis van training data, is het 

noodzakelijk om dit predictiemodel te valideren op nieuwe data om reproduceerbaarheid en 

generaliseerbaarheid van het model te beoordelen in een onafhankelijk groep mensen. Aangezien 

huidige diagnostische technieken zich snel ontwikkelen door uitermate innovatieve technologieën, 

duurt het soms te lang om personen voor een externe validatiestudie te includeren om goed de 

relevantie en efficiëntie van het ontwikkelde predictiemodel te kunnen beoordelen. In hoofdstuk 3 

beschrijven we mogelijke studieopzet om tegelijkertijd een predictiemodel gebaseerd op 

kunstmatige intelligentie technieken te ontwikkelen en te valideren. Als voorbeeld gebruiken we 

onze training studie zoals gepubliceerd in 2018 als toepassing van deze voorgestelde studieopzet. Dit 

type studie design is voornamelijk geschikt in geval van een innovatieve, maar zeer relevante, 

diagnostische techniek die zich snel verder kan ontwikkelen, danwel in geval van zeldzame ziektes 

waarbij inclusie van studiedeelnemers erg lang duurt. 

Hoofdstukken 4-6 laten resultaten zien van klinische multicenter studies waarbij de Aeonose™ is 

getraind en gevalideerd. Het predictiemodel ontwikkeld op de training data is uitgebreid met 

klinische data om longkanker beter te kunnen diagnosticeren. In hoofdstuk 4 hebben we een 

exploratieve multicenter studie uitgevoerd om de Aeonose™ te trainen om mensen met en zonder 

niet-kleincellig longcarcinoom van elkaar te onderscheiden op basis van uitademingsanalyses. Er 

werden 290 mensen geïncludeerd (144 NSCLC patiënten en 146 controles), waarbij het ontwikkelde 

predictiemodel beide groepen kon onderscheiden met een sensitiviteit van 94%, een specificiteit van 

33%, een negatief voorspellende waarde (NPV) van 86%, en een oppervlakte onder de receiver 

operating characteristic curve (AUC) van 0.76 (95% betrouwbaarheidsinterval (CI): 0.71-0.82). 

Aangezien longkanker wordt gekenmerkt door een hoge mortaliteit wanneer dit niet vroegtijdig 

wordt ontdekt, zijn de predictiemodellen gericht op een hoge negatief voorspellende waarde. Deze 

aangetoonde hoge negatief voorspellende waarde impliceert dat bij een groot deel van de personen 

verdacht voor longkanker voorkomen kan worden dat ze onnodig, mogelijk invasief 
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vervolgonderzoek ondergaan. Naast evaluatie van het discriminerend vermogen van het 

predictiemodel tussen patiënten met en zonder niet-kleincellig longcarcinoom werden aanvullende 

sub analyses uitgevoerd gericht op de twee meest voorkomende subtypen van NSCLC: 

adenocarcinoom en plaveiselcelcarcinoom. Analyses gericht op plaveiselcelcarcinoom toonde een 

indrukwekkende hoge negatief voorspellende waarde van 93% met een AUC van 0.78, wat impliceert 

dat in geval van een absolute Aeonose™ waarde van lager dan -0.015, er met grote zekerheid en 

hoge klinische relevantie kan worden gesteld dat er geen sprake is van plaveiselcelcarcinoom. In 

geval van adenocarcinoom werd een iets lagere diagnostische nauwkeurigheid gevonden met een 

AUC van 0.73. Dit kan mogelijk verklaard worden door de heterogeniteit binnen adenocarcinomen. 

Ook werd in een kleine sub analyse gekeken naar verschillen in uitademingspatronen tussen SCLC-

patiënten en personen zonder SCLC. Hierbij werden veelbelovende resultaten gevonden met een 

negatief voorspellende waarde van 97% en een AUC van 0.86 (95% CI: 0.78-0.95). Er moet echter 

worden benoemd dat deze sub analyses uitgevoerd zijn op datasets met een klein aantal inclusies. 

Daarnaast zijn alle analyses in de training studie uitgevoerd met een nog niet CE-gecertificeerd 

Aeonose™ apparaat en nog niet gevalideerd op onafhankelijke data.  

In hoofdstuk 5 is de potentiële waarde onderzocht van het toevoegen van klinische variabelen aan 

het reeds ontwikkelde predictiemodel gebaseerd op de uitademingsdata van het training cohort 

zoals beschreven in hoofdstuk 4. Resultaten lieten zien dat de variabelen leeftijd, geslacht, 

rookstatus, aantal gerookte pakjaren, aanwezigheid van COPD en de absolute classificatiewaarde van 

de Aeonose™ geassocieerd waren met het hebben van longkanker. Vervolgens zijn 2 typen 

multivariabele analyses uitgevoerd om de toegevoegde waarde van de uitgebreide 

predictiemodellen te onderzoeken. Enerzijds is een multivariabele logistische regressieanalyse 

verricht met als input de absolute classificatiewaarde van de Aeonose™, zoals verkregen door de 

neurale netwerkanalyse, samen met de onafhankelijke klinische variabelen. Dit model toonde een 

aanzienlijke verbetering in diagnostische nauwkeurigheid om personen met en zonder NSCLC van 

elkaar te onderscheiden met een AUC van 0.86, een sensitiviteit van 96%, een specificiteit van 60%, 

en een NPV van 93%, vergeleken met het training model gebaseerd op enkel uitademingsdata (AUC 

0.76). Vervolgens is een analyse verricht waarbij de vector van de uitademingsdata, die als input voor 

het neurale netwerk diende in de training studie, uitgebreid werd met de onafhankelijk 

geassocieerde klinische variabelen. Dit neurale netwerkmodel toonde eveneens een evidente 

verbetering in diagnostische nauwkeurigheid met een AUC van 0.84, een sensitiviteit van 94%, een 

specificiteit van 49%, en een NPV van 90%. Beide uitgebreide modellen tonen niet alleen een 

verbetering van sensitiviteit en negatief voorspellende waarde, maar ook een toename van 
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specificiteit wat betekent dat er minder personen onterecht geclassificeerd worden als het hebben 

van longkanker.  

Aangezien de training studies, met en zonder het toevoegen van klinische variabelen, veelbelovende 

resultaten hebben getoond ten aanzien van het diagnosticeren van longkanker met de Aeonose™, is 

vervolgens een grote, multicenter, multinationale validatie studie verricht met meerdere Aeonose™ 

apparaten om reproduceerbaarheid en robuustheid van de verkregen resultaten te beoordelen. De 

resultaten van deze validatiestudie worden gepresenteerd in Hoofdstuk 6. In verband met continue 

verbeteringen in de elektronische neus technologie, zoals beschreven in Hoofdstuk 3, is er gebruik 

gemaakt van een tweede generatie, CE-gecertificeerd, Aeonose™ apparaat. Dit heeft als gevolg 

gehad dat de originele data van de training studie uit Hoofdstuk 4 niet konden worden gebruikt. In 

plaats daarvan zijn nieuwe proefpersonen geïncludeerd en is een split-sample studie design 

uitgevoerd om tegelijkertijd het nieuwe predictiemodel te ontwikkelen en te valideren. De training 

set bestond op 376 proefpersonen (160 NSCLC patiënten, 216 relevante controles) en de validatie set 

bestond uit 199 proefpersonen (79 NSCLC patiënten, 120 controles). In geval van een predictiemodel 

enkel op basis van uitademingsdata, werd een redelijke performance gezien om beide te groepen te 

onderscheiden met daarbij gelijke resultaten in de validatie set. Dit voorspellende model toonde, bij 

een afkapwaarde van 20% kans op longkanker, een sensitiviteit van 88%, een specificiteit van 48%, 

een positief voorspellende waarde van 52%, een negatief voorspellende waarde van 90% en een AUC 

van 0.79 (95% CI: 0.72-0.85) in de validatie set. Zoals ook gezien werd in Hoofdstuk 5, leidde het 

toevoegen van relevante klinische variabelen, die voorspellend zijn voor het hebben van longkanker, 

tot een aanzienlijke verbetering van diagnostische nauwkeurigheid van het predictiemodel. 

Uitademingsdata en klinische variabelen werden geanalyseerd middels een multivariabel logistisch 

regressiemodel op de training data, waarbij – bij een afkapwaarde van 16% kans op longkanker – een 

sensitiviteit van 95%, een specificiteit van 51% en een negatief voorspellende waarde van 94% 

werden gezien. Dit kwam overeen met een AUC van 0.87 (95% CI: 0.83-0.90). In geval van het 

toepassen van precies hetzelfde predictiemodel (gelijke formule met dezelfde B-coëfficiënten en 

handhaving van de afkapwaarde van 16% kans op longkanker) op de validatie set, zagen we 

sensitiviteit van 95%, een specificiteit van 49%, een positief voorspellende waarde van 54% en een 

negatief voorspellende waarde van 94% met een AUC van 0.86 (0.81-0.91). Dit zou betekenen, dat bij 

deze afkapwaarde van 16%, 63 van de 196 proefpersonen (32%) geclassificeerd zouden worden als 

het niet hebben van longkanker waarbij bij deze groep met grote zekerheid longkanker kan worden 

uitgesloten en onnodige invasieve onderzoeken kunnen worden voorkomen.  

In hoofdstuk 7 plaatsen we de belangrijkste resultaten van de verrichte studies in een bredere 

context waarbij de relevantie en toekomstperspectieven worden besproken. Vervolgonderzoek is 
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nodig om de waarde van uitademingsanalyse te beoordelen in longkanker screening programma’s, 

maar ook als toepassing om behandelresponses te beoordelen en vroeg terugkeer van de ziekte op 

te sporen.  
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Dankwoord 

Het avontuur van dit promotieonderzoek begon in 2015 met mijn stage wetenschap voor de Master 

Geneeskunde in het Medisch Spectrum Twente waar ik een half jaar de tijd voor had. Wetenschap en 

het doen van onderzoek vond ik boven verwachting leuk en het verslag was, mede dankzij de goede 

begeleiding, na 10 weken al afgerond. Op dat moment kwam bij de afdeling Longgeneeskunde in 

MST het verzoek om een onderzoeksprotocol te schrijven voor een nieuw promotieonderzoek om 

longkanker op te sporen met een elektronische neus, toen kwam ik voor het eerst in aanraking met 

de Aeonose™. Het opstellen van dit studieprotocol vond ik wel een mooie uitdaging voor de 

resterende 16 weken, niet wetende dat ik 6.5 jaar later zelf dit promotieonderzoek zou afronden.  

Met de finishlijn in zicht, realiseer ik me dat ik de route naar deze bekroning voor jarenlang hard 

werken nooit af had kunnen leggen zonder de hulp, support en uitgebreide inzet van anderen. Het 

dankwoord heb ik dan ook al meermaals geschreven in mijn gedachten en hierbij neem ik op papier 

graag de mogelijkheid om een aantal mensen in het bijzonder te bedanken. 

Allereerst natuurlijk alle patiënten en vrijwilligers die deel hebben genomen aan het onderzoek. In 6 

jaar tijd en in 9 ziekenhuizen hebben ruim 1300 mensen in de Aeonose™ geblazen. Wie had dat van 

tevoren kunnen bedenken?! Wat de setting ook was, na een goed- of slechtnieuwsgesprek, de 

patiënten waren altijd bereid om te blazen en tegelijkertijd ook nog interesse te tonen in het 

onderzoek. ‘Als het geen voordeel meer voor mijzelf oplevert, dan hopelijk wel voor iemand anders’, 

aldus een groot deel van de patiënten. Ook de vrijwilligers die via via bij het onderzoek terecht zijn 

gekomen, wil ik ontzettend bedanken voor hun deelname.  

Dan mijn promotor prof. Dr. Job van der Palen. Job, vanaf het moment dat we elkaar ontmoetten 

heb jij volledig het vertrouwen gehad in mijn kwaliteiten als onderzoekster. Vanaf het begin heb jij 

jouw sprankelende enthousiasme over weten te brengen. Als het op bepaalde momenten even 

tegenzat, wist jij er altijd voor te zorgen dat enthousiasme het won van mijn onzekerheid en stress. Ik 

bewonder jouw positieve drive die je op iedereen uitstraalt enorm. Naast de goede hulp bij het 

analyseren en schrijven heb jij er ook mede voor gezorgd dat ik ben gegroeid als mens. Je hebt me 

met vertrouwen leren presenteren voor volle zalen en we hebben op veel mooie plekken aan diverse 

groepen ons onderzoek mogen toelichten. Samen met Marjolein staan jullie altijd voor iedereen 

klaar, zijn jullie ontzettend laagdrempelig benaderbaar en dit maakt jullie geweldige begeleiders voor 

vele studenten en promovendi. MST mag hier heel trots op zijn! Onder het genot van vele kopjes 

thee en regelmatig een lekkere taart, hebben we een prachtig proefschrift neergezet. Daarnaast 

hebben we de afgelopen jaren ook vele mooie en gezellige uitstapjes gemaakt. Hopelijk kunnen we 
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in de toekomst onze samenwerking voortzetten, want zoals je weet wil ik me graag verder 

ontwikkelen in het vak Epidemiologie. 

Dan mijn eerste co-promotor Dr. Marjolein Brusse. Marjolein, jij hebt me tijdens mijn stage 

wetenschap in 2015 begeleid en mede dankzij jou ben ik destijds zo enthousiast geworden over 

wetenschap. Je hebt altijd een ontzettend goede kijk op de diverse onderzoekslijnen en raakt altijd 

net de kritische snaar waardoor je me goed aan het denken zet en de artikelen kwalitatief beter 

worden. Daarnaast was het natuurlijk ook altijd heel erg gezellig om de congressen samen te 

bezoeken. 

Mijn andere co-promotor, Dr. Hugo Schouwink. Beste Hugo, ik vind het heel bijzonder dat jij mij als 

longarts, naast mijn klinische werk als AIOS, de afgelopen jaren ook hebt begeleid als co-promotor 

van mijn promotieonderzoek. Jouw jarenlange klinische ervaring heeft enorm veel bijgedragen aan 

de artikelen en je hebt me altijd goed laten nadenken over de relevantie van de inhoud. Jouw 

bevlogenheid voor oncologie als vak heeft er mede voor gezorgd dat ik ook erg enthousiast ben 

geworden en ik ben benieuwd of ik mijn pad hierin zal vervolgen. 

Beste leden van de promotiecommissie, Prof. Dr. Baas, Prof. Dr. Ir. van Putten, Prof. Dr. Kusters, Prof. 

Dr. Sonke, Prof. Dr. Van den Heuvel en Dr. Brinkman. Hartelijk dank dat jullie bereid zijn geweest dit 

proefschrift kritisch te beoordelen. Ik voel mij vereerd dit proefschrift tegenover jullie te mogen 

verdedigen. 

Emanuel, naast dat we tegelijkertijd aan onze promotie zijn begonnen, ben jij ook medeauteur op 

meerderheid van de artikelen en als longarts natuurlijk mijn dagelijkse begeleider in de klinische 

praktijk. Ik waardeer je kritische blik enorm, ook al leidde dat wel eens tot weer een tijdrovende 

aanpassing van een artikel, maar daardoor werd deze absoluut beter. Jouw kijk op de resultaten over 

hoe deze passen binnen de longoncologie, heeft ervoor gezorgd dat we continu goed zijn blijven 

nadenken over waar we naar streven en met beide benen op de grond bleven staan. Bedankt 

hiervoor! Ik hoop de komende jaren nog veel met je samen te werken en elkaar te mogen inspireren. 

Beste Frans, nog voordat ik überhaupt van een elektronische neus had gehoord, hield jij je al jaren 

bezig met deze technische ontwikkeling. Je hebt ontzettend veel kennis van lopende onderzoeken en 

neemt altijd uitgebreid de tijd om, met een enorme drive en passie mij hierover te vertellen. Ik heb 

erg veel van je geleerd over ademanalyses, maar ook over het reilen en zeilen in de 

onderzoekswereld. Ontzettend bedankt hiervoor! Daarnaast heb ik natuurlijk het genoegen om als 

AIOS Longziekten in MST veel kennis op te doen van jouw expertise als longfysioloog, een echte pré 

van onze opleiding als je het mij vraagt.  
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De longartsen van MST wil ik bedanken voor hun uitgebreide interesse en steun de afgelopen jaren: 

Ilonka van Veen, Wendy van Beurden, Nicolle Hekelaar, Leonie Imming, Emanuel Citgez, Hugo 

Schouwink, Michiel Wagenaar, Albert Polman en Michiel Eijsvogel. Jullie hebben mij vanaf het begin 

dat ik bij jullie kwam werken een ‘onderzoeksdag’ gegeven en hebben altijd interesse getoond in de 

ontwikkelingen van het onderzoek. Soms waren er in een week wat meer onderzoeksdagen nodig, 

maar als de planning het toeliet, was dit altijd mogelijk. Via deze weg nogmaals bedankt hiervoor. 

Ook is het een fijne gedachte om te weten dat ik de komende jaren tijdens het afronden van de 

opleiding nog met jullie samen kan en mag werken. Ik kan niet anders zeggen dan dat het een 

(h)echte ‘familie’ bij de Longgeneeskunde MST is! 

En natuurlijk niet te vergeten dr. Paul van der Valk. Beste Paul, in 2013 heb jij mij (destijds nog als 

Bachelor Geneeskunde student) al enthousiast gemaakt voor het vak Longgeneeskunde. Door jou en 

Job kwam ik bij het OBL terecht voor vakantiewerk. Hierbij heb ik voor de COPE III studie data 

verzameld en mocht ik als ‘extraatje’ ook aansluiten bij de overdrachten en de onderwijsmomenten. 

Vanaf dit punt is het zaadje voor mijn liefde voor de Longgeneeskunde geplant en ben ik, zoals we 

destijds afspraken, in 2016 als ANIOS bij jullie komen werken. Ik vind je een enorm inspirerend mens, 

vol energie, altijd vrolijk en tot op de dag van vandaag ontzettend ambitieus. Je hebt me zoveel 

geleerd over de Longgeneeskunde en wetenschap, maar ook over het leven en hebt mij altijd van 

goede tips voorzien hoe ik iets het beste aan kon pakken. Ik wil je hiervoor bedanken en hoop dat we 

elkaar de komende jaren nog regelmatig blijven zien.  

Dan dr. Wouter van Geffen. Beste Wouter, als longarts in het MCL ben jij vanaf het validatie gedeelte 

bij dit onderzoek betrokken geweest. Daarvoor heb jij natuurlijk zelf promotieonderzoek gedaan met 

dezelfde elektronische neus bij patiënten met COPD. Ik heb jou leren kennen als een ontzettend 

gedreven, ambitieuze, maar ook zeer toegankelijke longarts. Vanaf het begin heb jij vertrouwen 

gehad in het onderzoek en je oppert regelmatig interessante ideeën die we nog kunnen uitwerken. 

Het is een eer dat jij zo betrokken hebt willen zijn bij mijn promotie en ik hoop dat we de komende 

jaren nog verder samen kunnen werken aan nog meer mooie artikelen.  

Prof. Dr. Michel van den Heuvel. Beste Michel, jij bent als longarts vanuit het Radboud UMC bij het 

onderzoek betrokken geweest. Als hoogleraar in de longoncologie weet jij als geen ander wat nuttige 

en zinnige onderzoeken zijn en het is dan ook een enorme eer is dat jij het vertrouwen hebt gehad 

om bij te willen dragen aan dit onderzoek samen met het Radboud UMC. Ik waardeer je kritische blik, 

je realisme, maar vooral ook je doorzettingsvermogen om verschillende onderzoeken goed op te 

zetten en te laten slagen.   
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Dr. Van den Borne, Dr. Van Putten, Dr. Van den Bogart, Dr. Samii, Dr. Kastelijn en Dr. Van der Maten. 

Als longartsen van de deelnemende ziekenhuizen: Catharina Ziekenhuis Eindhoven, Martini 

Ziekenhuis Groningen, Bernhoven Ziekenhuis Uden, Deventer Ziekenhuis, Antonius Ziekenhuis 

Utrecht en Medisch Centrum Leeuwarden wil ik jullie bedanken voor het vertrouwen deel te nemen 

aan dit onderzoek. Jullie hebben ons de kans gegeven het onderzoek in samenwerking met jullie 

longfunctieanalisten en medewerkers van jullie researchafdelingen op te zetten en door het grote 

aantal deelnemende ziekenhuizen hebben we kunnen laten zien dat deze elektronische neus van 

grote waarde is. Het is geweldig om te zien dat we op deze manier een groot deel van Nederland 

hebben bereikt met het onderzoek. Ik hoop dat we in de toekomst in contact blijven en ik jullie over 

een paar jaar collega-longartsen mag noemen. 

Dear Professor Dr. Daiana Stolz. It was such an honour to work with you and your team in Basel. Due 

to this multinational collaboration, our study is of increased quality and I want to thank you for your 

trust and support. Also, I got to meet the beautiful city of Basel and I will definitely come back. I also 

really want to thank Desiree who constantly helped me to overcome the distance when I needed 

some extra information on the inclusions. This surely saved a lot of travel time! 

Beste Milou, ik wil jou ook ontzettend bedanken voor je uitgebreide hulp vanuit het Radboud UMC. 

Ik vind het heel bijzonder dat we allebei een eigen promotieonderzoek hebben gehad de afgelopen 

jaren, maar door het gemeenschappelijke onderwerp (biomarkers bij longkanker) ook samen een 

mooi artikel over de elektronische neus hebben kunnen schrijven. Heel erg bedankt dat je altijd weer 

snel de nodige informatie opzocht en we op die manier weer snel verder konden. Ik hoop dat we snel 

verder kunnen met ons volgende artikel en wens jou natuurlijk heel veel succes met het afronden 

van je eigen promotie en daarna als AIOS Longziekten.  

Dan natuurlijk alle medewerkers van de Enose Company. Wat bijzonder om dit avontuur met jullie te 

mogen delen. Jullie hebben vanaf het begin vertrouwen in mij gehad en altijd geduld opgebracht 

gezien ook de combinatie met mijn klinische werk als AIOS. Naast dat jullie erg laagdrempelig 

benaderbaar zijn, staan jullie altijd direct klaar als er iets nodig is en is het altijd ook erg gezellig om 

jullie kantoor in Zutphen te bezoeken. Ik heb enorm veel respect voor jullie doorzettingsvermogen, 

kennis en manier van samenwerken in jullie relatief ‘kleine’ groep. Kort nog een paar extra woorden: 

Lieve Jetty, allereerst wil ik jou bedanken voor je onvoorwaardelijke inzet en hulp. Als er iets nodig 

was voor het onderzoek, waarbij het niet uitmaakte of het nou Leeuwarden of Eindhoven was, jij ging 

er direct heen en regelde het. Daardoor konden we altijd met volle vaart doorwerken. Daarnaast zal 

ik nooit meer onze geweldige trip naar Basel vergeten. Naast dat we in één dag honderden inclusies 

hebben gemonitord, was het vooral heel gezellig. We hebben ruim 15 uur samen in de auto gezeten 
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en volgens mij is het haast geen minuut stil geweest. Ik vind het heel bijzonder dat we dit samen 

hebben mogen doen.  

Jan-Willem en Henny, ik wil jullie ook enorm bedanken voor jullie uitgebreide hulp, urenlange geduld 

als jullie voor de zoveelste keer weer moesten uitleggen hoe de analyses tot stand kwamen en jullie 

kritische blik op de inhoud. Ik vind het ontzettend leuk te zien hoe enthousiast jullie zijn en hoe jullie 

dit enthousiasme kunnen overbrengen op onder andere Job en mij.  

André en Geeske, vanaf mijn eerste kennismaking met jullie in 2015 voelde onze samenwerking erg 

vertrouwd. Zonder jullie hulp was dit onderzoek nooit zo goed van de grond gekomen. Hulp bij het 

opstellen van het onderzoeksprotocol, de juiste contacten benaderen, maar ook regelmatig 

laagdrempelig face-to-face overleg heeft ervoor gezorgd dat we altijd goed door konden werken.  

Ik kan niet anders zeggen dat ik een hele prettige samenwerking heb ervaren met jullie bedrijf en ik 

hoop dat we dit nog kunnen voortzetten in de toekomst. 

Dan de longfunctieanalisten en het Onderzoeksbureau Longgeneeskunde (OBL) MST: Sylvia, 

Willemien, Monique, Hans, Marcel, Steffanie, Mirjam, Geke, Petra, Mardy, Merith, Ellen, José, Tanja, 

Anne en Joyce.  

Lieve allen, het grootste deel van de patiënten in het MST zijn door jullie gemeten. Jullie maakten 

altijd tijd vrij als er weer een ‘onverwachte’ meting was en hebben er mede voor gezorgd dat zoveel 

mensen hebben kunnen blazen. Ik wil jullie hier enorm voor bedanken. Zonder jullie hadden we nooit 

zo’n uitgebreid onderzoek neer kunnen zetten in de afgelopen jaren! 

Het grootste deel van de metingen in de overige ziekenhuizen zijn ook verricht door 

longfunctieanalisten en onderzoeksbureaus van de deelnemende ziekenhuizen. Ik wil jullie ook 

bedanken voor jullie hulp en inzet. Zonder jullie had ik alle metingen zelf moeten doen en dat was 

natuurlijk in zoveel ziekenhuizen, toch wel een eindje van Enschede, niet mogelijk. Jullie hebben de 

metingen snel meegenomen in jullie dagelijkse werkzaamheden en hebben in korte tijd veel 

patiënten gemeten. Bedankt hiervoor! 

Nog een extra dankwoord voor Petra Hirmann (research manager MCL). Beste Petra, door jouw inzet 

hebben we in het MCL in korte tijd veel metingen kunnen verrichten. Jij gaf altijd direct aan wat er 

nodig was om het onderzoek zo voorspoedig mogelijk te kunnen laten verlopen en ik moet zeggen 

dat in het MCL altijd alles picobello op orde was als ik kwam monitoren. Ik kon zo achter een 

computer gaan zitten en alles was geregeld. Ik wil je hiervoor heel erg bedanken, het was altijd een 

pretje om Leeuwarden te bezoeken! 

Daarnaast een speciale dank aan de diverse studenten die ik heb mogen begeleiden bij hun 

afstudeeronderzoeken of minor van de studies Geneeskunde en Gezondheidswetenschappen: 
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Mayke, Jesse, Simone, Harm en Melike. Door jullie te begeleiden heb ik zoveel extra geleerd de 

afgelopen jaren. Niet alleen over het onderzoek, maar ook qua organisatie en hoe studenten te 

begeleiden. Jullie eindverslagen waren stuk voor stuk van super goede kwaliteit en ik ben enorm 

trots op jullie dat jullie door mij begeleid wilden worden. Ik heb gemerkt dat het heel leuk is om met 

enthousiaste studenten te werken, dat geeft enorm veel energie! 

Mijn collega AIOS en ANIOS wil ik bedanken voor hun steun en support de afgelopen jaren. Ik kreeg 

van jullie altijd de ruimte om een extra meting te doen, om naar een afspraak te gaan of een extra 

onderzoeksdag in te plannen. Jullie hebben regelmatig de telefoon voor mij vastgehouden, en we 

weten allemaal hoe vaak die gaat… Dus, heel erg bedankt! Ik vind het heel bijzonder deze promotie 

met jullie te mogen vieren. Zoals ik hierboven al schreef, we zijn een echte familie bij de 

Longgeneeskunde. Naast dat jullie collega’s zijn, zijn jullie ook vrienden. Jullie bieden altijd een 

luisterend oor wanneer dit nodig is, maar zorgen vooral voor veel gezelligheid tijdens en buiten 

werktijd. Ik ben heel benieuwd hoe iedereens pad verder vervolgd zal worden, maar ik ben ervan 

overtuigd dat iedereen een hele mooie toekomst tegemoet gaat! 

Beste Timon, samen met Emanuel zijn we tegelijkertijd onze promotie gestart, maar jij ging als een 

speer. Heel leuk dat we samen met de Aeonose™ hebben kunnen werken, maar dan allebei op een 

ander onderwerp. Ik bewonder jouw kennis, geduld en enthousiasme enorm. Je neemt uitgebreid de 

tijd om iets uit te leggen en je bent altijd als eerste op de hoogte van de meest recente artikelen, ook 

over Enose en longkanker als ik dit weer eens niet weet. Daarnaast ken ik niemand die zo enthousiast 

artikelen kan refereren als jij. Het is altijd een feest om naar een referaat van jou te mogen luisteren. 

Ik wil je bedanken voor je support en hulp de afgelopen jaren, dit deed je er ‘maar’ bij. Heel veel 

succes in de toekomst! 

Lieve Jody, Masha danki!! voor dit prachtige artwork van het proefschrift. Jij hebt precies mijn passie 

en enthousiasme voor het onderzoek weten uit te drukken in deze mooi combinatie van 

afbeeldingen en kleuren. Ik hoop dat je hier nog veel meer mensen blij mee kan maken.  

Dan mijn lieve paranimfen Joanne en Eveline. In 2016 zijn wij met zijn drieën begonnen als ANIOS 

Longgeneeskunde, de 3 musketiers. Wat een gezelligheid en wat hebben we veel aan elkaar gehad. 

Van hele drukke diensten tot gezellige avondjes en op de grond van het lachen om ons fictieve kindje 

‘Symbi Kort’. Heel bijzonder dat we na 6 jaar nog steeds dit contact hebben! 

Lieve Joanne, naast dat jij in de dagelijkse praktijk echt mijn werk-maatje bent, ben je vooral de 

afgelopen jaren een super goede vriendin geworden. Als we op werk al veel gekletst hebben, kunnen 

we ’s avonds zo weer aan de telefoon hangen. Jij biedt altijd een luisterend oor en weet altijd de rust 

terug te brengen. Daarnaast is het vooral erg gezellig en heb ik veel zin in toekomstige borrels, 
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fietstochtjes, koffietjes en onze toekomst als longarts. 

Lieve Eveline, jou heb ik leren kennen tijdens ons M2 jaar in het MST. Ik weet nog goed hoe we voor 

het eerst gingen eten en borrelen bij Central Park en het was geen seconde stil. Jij bent pure 

gezelligheid en daarnaast sta jij altijd klaar, no matter wat de afstand is. Geweldig dat jij nu ook als 

AIOS Longziekten bent begonnen en ik hoop dat we ook snel van jouw promotie kunnen genieten! 

Lieve schoonfamilie: Jan, Hettie en Ruud. Ik heb jullie in 2015 leren kennen en ben kort daarna met 

dit avontuur begonnen. Ondanks dat jullie niet precies kunnen weten wat het inhoudt, hebben jullie 

mij altijd gesteund. Als ik op de maandagen weer eens zei dat ik om 17.30 zou aanschuiven voor het 

eten en standaard om 18.00 (of later) binnen kwam lopen, was dit nooit een probleem. Jullie 

wachtten altijd.  

Lieve Ruud, wat kan ik met jou goed reflecteren. Ook al hebben we beide een heel ander vak, jij kan 

HEEL goed luisteren en daardoor goed meedenken over een onderwerp waar jij niet eens helemaal in 

zit. Er zijn op deze manier veel goede ideeën naar boven gekomen en ik heb gemerkt dat we 

daardoor het beste in elkaar naar boven halen. Bedankt hiervoor! (Is de COVID tijd toch nog ergens 

goed geweest…). 

Allerliefste Papa, Mama, Denice, Cherryl, Opa en Oma Kort, Robin, Martijn, James en Novi. Met zo’n 

familie kan ik me niet anders dan ontzettend gesteund, geliefd en dankbaar voelen. Jullie hebben 

altijd interesse getoond in het onderzoek, maar mij vooral continu laten voelen dat ik trots mag zijn 

op wie ik ben en wat ik doe. Soms moet ik even uitrazen en dat mag altijd bij jullie. Papa en mama, 

heerlijk hoe we altijd avonden lang kunnen kletsen over het leven. Zonder jullie hulp had ik 

überhaupt nooit aan de studie Geneeskunde kunnen beginnen. Ik ben zo trots op onze familie! 

Een extra woordje voor mijn Oma van den Berg. Jij bent in 2010 overleden aan COPD. Wij hebben jou 

jarenlang meegemaakt met jouw ziekte en ik weet nog goed dat ik tegen je zei dat ik longarts zou 

worden zodat ik mensen zoals jij kon helpen. En kijk eens, nog even en dan ben ik echt een longarts! 

En dan tot slot Rien, mijn alles! Rien, ik heb jou ontmoet in 2015 en kijk eens waar we nu staan: 

TEAM SHARIEN! Waar het personeelsrestaurant van MST wel niet goed voor is.. Jij bent mijn 

onvoorwaardelijke steun en relativeert voor mij wanneer dat nodig is. Naast dat ben je gewoon de 

allerliefste persoon die ik ken en maak je me altijd aan het lachen, ook al kost het de ene keer meer 

moeite dan de andere keer. Jij hebt er mede voor gezorgd dat ik hoogzwanger in mijn verlof dit 

proefschrift nog af heb gekregen en alle focus op ons prachtige gezin kan leggen. We zijn nu bijna 2 

jaar getrouwd en samen met de allerliefste Isa gaat ons avontuur verder. Ik hou van jullie! 
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