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Asthma is a heterogeneous systemic inflammatory disease mainly affecting the airways. It 
is a common disease that affects ~334 million people worldwide 1. Many patients can be 
treated well and reach adequate control with inhaled corticosteroids (ICS) and beta-agonists, 
but 5-10 % suffers from severe disease requiring intensive treatment or remain uncontrolled 
despite treatment 2. In The Netherlands severe-asthma prevalence was found to be a bit 
lower, around 3.6% 3. This small subgroup accounts for most of the morbidity and mortality 
and consumes an estimated 60% of total health care costs of overall asthma care 4. 

Asthma is defined by symptoms and variable expiratory airflow limitation. In the 2015 
guidelines of the Global Initiative for Asthma (GINA) asthma is defined as 1: 

(..) a heterogeneous disease, usually characterized by chronic airway 
inflammation. It is defined by the history of respiratory symptoms such as 
wheeze, shortness of breath, chest tightness and cough that vary over time 
and in intensity, together with variable expiratory airflow limitation. 

Importantly, neither the symptoms nor the variable expiratory airflow limitation are 
uniquely observed in asthma. Respiratory infections (including post-viral wheeze), chronic 
obstructive pulmonary disease (COPD) and heart failure (historically named ‘asthma 
cardiale’) are often characterized by the same clinical symptoms and variable expiratory 
airflow limitation. Therefore, the short definition is further specified within the guideline by 
exclusion of other respiratory diseases based on timing, specific symptoms and additional 
diagnostic tests. Despite adequate elimination of these other airway diseases the remaining 
patients with asthma can be classified in different subtypes, each supposedly with different 
underlying pathophysiological mechanisms. These ‘asthma phenotypes’ are not taken into 
consideration in the GINA guidelines, which is explicitly stated in one of the six key points:

Recognizable clusters of demographic, clinical and/or pathophysiological 
characteristics are often called ‘asthma phenotypes’; however, these do 
not correlate strongly with specific pathological processes or treatment 
responses. 

This is a strong statement indicating that the authors of the guideline choose to ignore 
studies which showed a correlation between biomarker based treatment approaches and 
disease outcome in asthma (Chapter 1.2). Importantly, the biomarker based clinical studies 
that showed a desirable clinical effect identified a subgroup of asthma patients with a 
response to current treatment modalities as will be further explained in this introduction 
and in Chapter 1.2. Such phenotyping of asthma is based on a description of clinical and/
or pathophysiological markers associated with the disease 5. The term ‘asthma endotype’ 
that is alternatively used to describe asthma, refers to the hypothetical situation in which a 
disease marker is linked to the pathophysiological background of the disease 6. Endotypes 
are therefore theoretically superior to phenotypes, but have not yet been truly identified for 
asthma. Finally, the term ‘treatable traits’ has been launched to identify aspects of airway 
disease, which are identifiable and responsive to treatment 7. 
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Currently, asthma is divided into eosinophilic and non-eosinophilic asthma, either by sputum 
eosinophilia (≥3%) or by blood eosinophilia (≥0.3x109/L). It is clinically relevant to separate 
patients suffering from eosinophilic inflammation versus non-eosinophilic inflammation 
for three reasons: (i) patients with airway eosinophilia have a high risk of exacerbations 
including those requiring ventilation 5; (ii) corticosteroid treatment adjusted to normalize 
airway eosinophil counts has been shown to result in reduced exacerbations compared 
to standard management 8–10; and (iii) patients with airway and/or blood eosinophilia can 
benefit from oral prednisolone, anti-IgE and anti-IL-5 treatment 11–14. 

Furthermore asthma can be divided into mild/moderate and severe or uncontrolled 
asthma, with severe/uncontrolled asthma defined as a disease requiring extensive 
treatment to control it or remaining uncontrolled despite extensive treatment (Table 1) 2. 
This specification has prognostic implications and is relevant for study purposes, yet it is 
not a specification by disease mechanism.

Disease markers in asthma

In the past 15 years multiple RCTs have demonstrated certain biomarkers correlate strongly 
with treatment responses. These clinically validated biomarkers are sputum eosinophilia, 
peripheral blood eosinophil count and to a lesser extent FeNO (Fraction of exhaled Nitric 
Oxide), with the latter only tested in primary care setting and secondary care with mild-
asthma patients. The identification of biomarkers that correlate with treatment responses 
has been an important breakthrough in a disease that (i) is poorly defined, (ii) holds several 
phenotypes and (iii) is treated irrespective of underlying pathophysiology with increasing 
dosages of corticosteroids, beta-agonists and leukotriene-antagonists. A perfect biomarker 
for asthma would have three features: (i) high diagnostic value, (ii) be suitable for disease 
monitoring and (iii) needs to be easily measurable, without patient discomfort. 

Table 1: ERS/ATS criteria for uncontrolled asthma. All criteria mentioned in the table are 
required for the diagnosis of uncontrolled asthma 2.

Uncontrolled asthma Objective measures

Poor symptom control ACQ > 1.5 or ACT < 20

Frequent exacerbations Two or more bursts of OCS for at least 3 days in the previous year

Serious exacerbation One or more, defined as hospitalisation, ICU stay or mechanical ventilation 
in the previous year

Airflow limitation FEV1 < 80% predicted and reduced FEV1/FVC

ATS, American Thoracic Society; ACQ, Asthma Control Questionnaire; ACT, Asthma Control Test; ERS, European 
Respiratory Society; FEV1, forced expiratory volume in 1 sec; FVC, Forced Vital Capacity; ICU, intensive care unit; 
OCS, oral corticosteroids.
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1. Sputum eosinophilia

In 2002 Green et al. demonstrated that a corticosteroid treatment strategy aiming at 
reducing sputum eosinophil counts lowered the incidence of asthma exacerbations and 
hospital admissions in patients with moderate to severe asthma 8. In 2006 this finding was 
reproduced and enforced by a study by Jayaram et al., showing the comparison between a 
‘clinical strategy’ (CS) and a ‘sputum strategy’(SS) 10. In the clinical strategy group, treatment 
was provided when symptoms were present ≥4 days per week, night-time symptoms were 
present ≥1 week, there was a need for short acting beta-agonist use (SABA) ≥4 week and 
FEV1 <80% of personal best was measured. In the sputum strategy group, treatment was 
performed when sputum eosinophils were ≤2% or >2%, with step-up corticosteroid therapy 
as long as the sputum eosinophils were >2%. In the sputum strategy group the time to 
exacerbation was significantly longer and the overall number of eosinophilic exacerbations 
was lower. A third RCT from 2006 by Chlumsky et al. was designed in a similar way and 
also concluded that a sputum strategy reduced exacerbation frequency and resulted in a 
longer time to an asthma exacerbation 9. Unfortunately sputum induction is considered to 
be technically challenging, laborious and therefore only suitable for use in tertiary centers. 

2. Fraction of exhaled Nitric Oxide (FeNO)

In the early nineties gaseous levels of nitric oxide were found to be increased in asthma 
patients 15,16. Exhaled nitric oxide (FeNO) is since then considered to be a surrogate marker for 
eosinophilic inflammation in the airways that can be measured quickly and non-invasively. 
Two RCTs tested corticosteroid therapy tapered on FeNO levels in adult patients with asthma. 
In the first RCT by Smith et al. the primary outcome was exacerbation frequency. The study 
showed that this frequency tended to be lower in the FeNO group, but this observation 
did not reach statistical significance 17. In the study by Shaw et al. with a similar design 
the exacerbation frequency and corticosteroid dosage were not lower in the FeNO group 
compared to the clinical decision group 18. Based on these two RCTs, Petsky et al. did not 
recommend the use of FeNO in daily clinical routine of asthma treatment 19. However, recent 
work from McNicholl et al. indicated treatment adherence might have been an important 
confounder in studies with FeNO and asthma 20. In this small study directly observed inhaled 
corticosteroid (DOICS) treatment strongly reduced FeNO levels in patients who were found 
to be non-adherent. In order to conclusively prove the value of FeNO to make treatment 
decisions in asthma a study with focus on adherence would be required. 

3. Blood eosinophil count 

Recent clinical trials with humanized anti-IL-5 antibodies have emphasized the value of 
blood eosinophil count in severe asthma 21,22. The cytokine IL-5 has an important role in 
eosinophil production, differentiation, proliferation, survival, chemotaxis and priming.36 
The initial RCTs testing anti-IL-5 treatment as therapy for asthma failed, likely because of 
(i) the inclusion of mild to moderate asthma patients instead of severe asthma patients, 
(ii) the timing of the study (3 months instead of 12 months), (iii) the clinical endpoints (lung 
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function and bronchial hyper-responsiveness instead of exacerbation frequency) and (iv) 
absence of airway inflammation in the inclusion criteria 23–25. Recent trials included severe 
asthmatic patients with high blood eosinophil levels, high frequency of exacerbations 
in the previous year and low responsiveness to ICS. These studies proved successful in 
preventing asthma exacerbations and in reducing oral glucocorticoid treatment 13,26.  
Although blood eosinophil counts correlate poorly with levels of sputum eosinophilia 
(r=0.59), the predictive value of a cut-off level of 0.27x109/L eosinophils in blood for sputum 
eosinophilia (>3%) is 89% (described as ROC AUC) with 78% sensitivity and 91% specificity 27.  
Therefore, there is indirect suggestion that the threshold of blood eosinophilia >0.27x109 
cells/L can be used to titrate steroid treatment, as was shown in the sputum eosinophilia 
directed corticosteroid treatment studies 8–10. 

Just counting eosinophils?

It is very likely that detailed analysis of eosinophils will provide more relevant information 
than just counts. Several studies looked at eosinophils in more detail and hypothesized that 
the activation state of eosinophils in peripheral blood might provide additional information 
about a patient’s inflammatory status. Johansson and colleagues suggested that priming 
and activation of eosinophils in the peripheral blood is deficient during episodes of tissue 
eosinophilia in severe and uncontrolled asthma 28. This hypothesis was partly founded on 
the upregulation of active FcγRII (CD32) on activated blood eosinophils after segmental lung 
challenge in mild asthmatics (Utrecht laboratory of Respiratory Medicine) 29,30. The latter 
seems to contradict the observation of a deficiency of primed or activated cells in the blood 
of asthmatics. However, in contrast to the situation in mild disease (Utrecht studies) long-
term priming of eosinophils in the peripheral blood of severe asthmatics (Madison study) 
will most likely support migration of these activated cells to the lung and could lead to a 
deficiency of primed cells in the peripheral blood 31. Supportive for this hypothesis is the 
up-regulation of active integrin-receptors and activation- related receptors found on blood 
granulocytes in mild to moderate asthma and the low expression of these markers in severe 
inflammatory disease 32. Therefore, determination of the granulocyte priming and activation 
status could well improve the assessment of the inflammatory status of asthma patients. 

Scope and outline of this thesis

This thesis will test whether asthma phenotypes can be studied by analyzing sputum and 
peripheral blood cells at three levels: 

1. By assessing the activation state of eosinophils and neutrophils
2. By studying cell counts and percentages in blood and sputum
3. By unbiased multidimensional analysis of flow cytometry data including 

correlations between cell types present in certain numbers, in ratios and 
in level of receptor expression
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In addition, asthma phenotyping can be improved by combining the three levels of cellular 
data with usual markers in asthma such as FeNO, allergies, presence of obesity, lung function 
etc. and analyzing the correlations by multivariate analysis techniques. 

These new approaches take into account multiple levels of information: (i) on a cellular 
level, (ii) on the level of clinical characteristics, (iii) on an inter-individual level and (iv) on a 
group level e.g. in patients and healthy controls. They are based on multivariate advantage 
to study correlations and patterns and aim to bring asthma phenotyping to a higher level 
by combining detailed cellular analysis with known clinical markers 33. 

Different biomarkers to phenotype asthma and to monitor treatment responses are 
compared and evaluated in the first part of this thesis by reviewing past studies (Chapter 
1.1). This overview is followed by an outline of approaches to the clinical assessment of 
patients with severe asthma potentially suitable for biological treatment and also contains 
a detailed description of the expected clinical impact of established and new biological 
treatments in severe asthma, with a focus on eosinophilic inflammation (Chapter 1.2). 

In the second part the additional value of the activation state of eosinophils and neutrophils 
in peripheral blood for asthma phenotyping is studied with the aim to ultimately replace 
sputum induction as an invasive and time-consuming test (Chapter 2.1). The value of the 
same activation state was also studied on sputum eosinophils and neutrophils (Chapter 2.2). 

The third part of this thesis reports the development of an analysis method for multi-
dimensional flow cytometry data. MFC data is usually analysed through ‘bivariate’ scatter 
plots that compare fluorescence intensities of two cell-bound markers for each cell within 
a sample. With only bivariate scatter plots it is very complicated and time-consuming 
to compare intensities of more than two markers simultaneously 34,35. This warrants the 
need for multivariate analysis methods such as those aimed for in Chapter 3.1. A specific 
aim in this chapter is to study immune responses. Therefore, in Chapter 3.2 the immune 
response to exercise is studied based on the method developed in 3.1. Finally, Chapter 3.3 
reports on another method developed specifically for diagnosis of disease and for graphical 
expression of cellular profiles derived from flow cytometry datasets of peripheral blood 
cells of asthma patients. 

The fourth part of this thesis focuses on the relevance of a specific cell type in severe 
eosinophilic asthma which was also found to be important in Chapter 3.3 by studying the 
graphical expression of cellular profiles.

Finally, a discussion and future outlook on phenotyping by multi-dimensional analysis in 
asthma is presented in Chapter 5.
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Abstract

Asthma is a chronic disease characterized by airway inflammation, bronchial 
hyperresponsiveness and recurrent episodes of reversible airway obstruction. The 
disease is very heterogeneous in onset, course and response to treatment and 
seems to encompass a broad collection of heterogeneous disease subtypes with 
different underlying pathophysiological mechanisms. There is a strong need for easily 
interpreted clinical biomarkers to assess the nature and severity of the disease. Currently 
available biomarkers for clinical practice, for example markers in bronchial lavage, 
bronchial biopsies, sputum or Fraction of exhaled Nitric Oxide (FeNO), are limited 
due to invasiveness or lack of specificity. The assessment of markers in peripheral 
blood might be a good alternative to study airway inflammation more specifically, 
compared to FeNO, and in a less invasive manner, compared to BAL, biopsies or 
sputum induction. In addition, promising novel biomarkers are discovered in the 
fields of breath metabolomics (e.g. volatile organic compounds) and (pharmaco)
genomics. Biomarker research in asthma is increasingly shifting from the assessment 
of the value of single biomarkers to multidimensional approaches in which the clinical 
value of a combination of various markers is studied. This could eventually lead to the 
development of a clinically applicable algorithm using various markers and clinical 
features to phenotype asthma and improve diagnosis and asthma management.

Chapter_1_1_Bart.indd   24 22-5-2017   09:42:13



Ch
ap

te
r 1

.1

CliniCal utility of asthma biomarkers: from benCh to bedside

25

Introduction to the pathophysiology of asthma

Asthma affects over 300 million individuals worldwide 1, making it one of the most prevalent 
common chronic diseases. Although the respiratory disease is rarely fatal, the economic 
burden is extensive, due to direct and indirect medical expenses, including prescription 
drug costs, health care costs and productivity losses 2.

The disease is characterized by airway inflammation, bronchial hyperresponsiveness and 
recurrent episodes of reversible airway obstruction. Asthma can be classified as ‘atopic’ 
or ‘non-atopic’ based on the presence (atopic) or absence (non-atopic) of specific IgE 
antibodies to common environmental allergens. Atopic asthma is the most common form of 
asthma. In allergen-sensitized patients with atopic asthma, re-exposure to an aeroallergen 
will lead to an IgE-mediated inflammatory cascade in the airways. Airway resident cells 
(i.e. macrophages and mast cells), newly mobilized immune cells (i.e. eosinophils and 
neutrophils) as well as epithelial cells play an important role in this inflammatory cascade 3.  
In allergic inflammation, there seems to be a disturbed balance in Th1-type and Th2-type 
cytokines - with dominance towards Th2 cytokines 4. Th2 cells produce cytokines such as 
Interleukin (IL)-4 and IL-13, which induce a class-switch in B-cells to the production of IgE. 
Th2 cells also produce IL-5, which recruits eosinophils to the lung and IL-9, which stimulates 
mast cell proliferation. Upon activation, mast cells start to produce histamine, cysteinyl-
leukotrienes (Cys-LT’s), and prostaglandin D2 , which on its turn will lead to additional 
recruitment of eosinophils, Th2 cells and basophils to the tissue 5. 

Parallel to the allergic asthma model with airway epithelial cells and the adaptive immune 
response as important pillars, an additional non-allergic asthma paradigm has been 
proposed. In the non-allergic asthma model the innate immune system responds to 
constantly invading respiratory viruses and bacteria. This systemic innate response is 
driven by sentinel cells such as macrophages, dendritic cells, granulocytes and innate 
lymphoid cells. A review by Holtzman and colleagues provides a comprehensive overview 
of both the allergic and non-allergic immune response in asthma 6. A prolonged presence of 
activated inflammatory cells in the airways leads to chronic inflammation and induces tissue 
alterations in composition, content and organization of the airways (‘airway remodelling’). 
Important cytokines released by epithelial cells and associated with remodelling are 
IL-25, thymic stromal lymphopoietin (TSLP), and IL-33. The remodelling response is 
characterized by subepithelial basement membrane thickening, epithelial cell disruption, 
neoangiogenesis, globlet cell metaplasia, enlarged submucosal glands and airway smooth 
muscle hyperplasia 7. This airway remodelling is regarded as a continuous process while 
the number of inflammatory cells infiltrated in the respiratory tract can vary over time. This 
latter process is evoked by stimuli such as allergens, climate or respiratory tract infections. 
However, the observation of airway remodelling in young asthma patients suggest that the 
process may even precede airway inflammation 8.
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Asthma biomarkers for diagnosis, phenotyping and treatment efficacy

Asthma diagnosis and management is generally based on reported asthma symptoms, 
often combined with lung function tests to assess reversible airway obstruction and airway 
hyperresponsiveness. However, symptoms and lung function measurements may not reflect 
underlying airway inflammation. Bronchoscopy with biopsies and bronchoalveolar lavage 
(BAL) are considered the gold standard to assess airway inflammation, but are too invasive 
for general application in clinical practice 9. In addition, asthma seems to encompass a broad 
collection of heterogeneous disease subtypes with different underlying pathophysiological 
mechanisms 10. There is a need for asthma biomarkers to identify clinically relevant asthma 
phenotypes, optimize diagnosis and guide treatment. In this paper we will provide an 
overview of asthma biomarkers already available for clinical practice and promising 
biomarkers currently under development (Figure 1). In addition, we will address the 
promises and barriers of the implementation of asthma biomarkers into clinical practice.

Figure 1: Asthma biomarkers.
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Clinically available biomarkers 

Sputum Induction, bronchoscopy/biopsy and bronchoalveolar lavage

Tissue-specific diagnostic methods such as bronchoalveolar lavage (BAL), bronchoscopy 
or bronchial biopsy, used to measure airway inflammation and remodeling, provide 
reliable and detailed clinical information of asthmatic patients. Airway remodeling has 
been observed in bronchial biopsies of both adults and children with asthma 11. BAL 
fluid of asthmatic patients shows elevated levels of Th2 cytokines compared to healthy 
individuals 12. In difficult-to-treat asthma in children, BAL and endobronchial biopsy should 
be considered to objectify the presence of airway eosinophilia and other typical pathological 
features of asthma 13. Thus, invasive and tissue-specific diagnostic methods are valuable 
in certain patient populations and clinical research settings. However, the invasiveness 
of these diagnostic procedures limits the use of these methods for daily clinical routine 
in most asthma patients. Even sputum induction, a diagnostic technique in which the 
patient inhales nebulised saline solution in increasing concentrations to liquefy sputum, 
is regarded as too invasive, technically complex and too variable for daily clinical routine. 
This restricts the procedure to specialized medical centers 14. There is a strong correlation 
between cellular components present in airway fluid obtained by BAL and cells present 
in airway fluid obtained by sputum induction 15,16. Therefore, compared to BAL, sputum 
induction is the preferred method to diagnose the inflammatory phenotype of asthma 
classically based on the presence of different types of granulocytes. Recent studies indicate 
that the performance of this technique increases when combined with the analysis of other 
cellular components such as exosomes and signaling proteins 17. 

Distinct inflammatory patterns have been established in the sputum of asthmatic adults and 
asthmatic children based on eosinophil and neutrophil percentages of total non-squamous 
cells in the sputum. Currently, four inflammatory phenotypes have been identified based 
on analysis of sputum: the eosinophilic, neutrophilic, mixed and paucigranulocytic types 18.  
This is demonstrated in Figure 2. It has been suggested that higher levels of sputum 
eosinophils are associated with a better response to corticosteroids 19-21, but results 
remain inconsistent 22-24. Furthermore, the pattern of inflammatory sputum phenotypes 
seems to be different for adult patients and paediatric patients and the reproducibility of 
sputum induction measurements over time has been a point of scientific debate since the 
introduction of this technique 18,25,26. 

Other sputum and BAL markers that have been investigated include soluble mediators 
such as Eosinophilic Cationic Protein (ECP), Hypoxia Inducible Factor-1α (HIF-1α) and VEGF 
(Vascular Endothelial Growth Factor) 27. ECP is released during degranulation of eosinophils 
and can be measured in sputum, BAL fluid and in serum. It is considered to be a non-specific 
marker for inflammation and, therefore, lacks the specificity for diagnosing asthma. Meijer et 
al. showed that sputum ECP has no predictive value for clinical response to corticosteroids 
in asthmatic patients 28. Its added value as a diagnostic tool would be in the measurement 
of the extent of inflammation and severity of asthma, e.g. moderate versus severe asthma 29.  
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HIF-1α and VEGF protein levels have shown to be upregulated in lung specimens from 
allergen-challenged asthma patients obtained by BAL and endobronchial biopsies 30.

Nitric oxide in exhaled breath

Almost a decade ago the first reports emerged of increased levels of nitric oxide (NO) in 
exhaled breath (FeNO) in patients with asthma 31,32. Since then a high number of studies 
have assessed the clinical value of exhaled nitric oxide in asthma management. Several 

Figure 2: Inflammatory phenotypes of adult asthma patients obtained by sputum induction.

A) Eosinophilic type; marked by the presence of eosinophils >3% (red arrow). The hollow arrow indicates 
an alveolar macrophage, B) Neutrophilic type; marked by the presence of neutrophils (blue arrow) >61%. 
The hollow arrow indicates an alveolar macrophage, C) Mixed type; marked by the presence of both 
eosinophils (red arrow) >3% and neutrophils (blue arrow) >61% D) Paucigranulocytic type; marked by a lack 
of eosinophils (<3%) and neutrophils (<61%). The arrow shows a ciliated pseudo-stratified columnar airway 
epithelial cell (black arrow), a neutrophil with phagocytosed bacteria inside (blue arrow) and an alveolar 
macrophage (hollow arrow). May-Grünwald/Giemsa staining, photograph at 100x magnification, courtesy of 
dr. J.A.M. van der Linden (UMC Utrecht, the Netherlands).
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FeNO analyzers became commercially available and international guidelines on FeNO 
measurement were published 33,34.

NO is produced when the amino acid L-arginine is converted by nitric oxide synthases (NOS) 
into the amino acid L-citrulline. There are three known isoforms of NOS, but especially 
iNOS (inducible NOS) seems to play a role in the elevated levels of NO in exhaled breath 
of asthmatics. The activity of the enzyme is upregulated by a wide range of inflammatory 
cytokines. It remains unclear which cells are responsible for the increased NO production, 
but airway epithelial cells and eosinophils are thought to be the important candidates 35. It 
is thought that inflamed airways will produce increased levels of NO. High FeNO is thought 
to be a surrogate marker of ongoing eosinophilic airway inflammation and may reflect 
uncontrolled asthma and predict asthma exacerbations 36. 

Despite the initial enthusiasm about FeNO as a new and non-invasive marker of airway 
inflammation, the clinical usefulness of FeNO to measure asthma control is still debated. 
Studies that have investigated the association between asthma control and FeNO provide 
inconsistent results (extensive overview in Supplementary Table S1) and studies assessing 
the relationship between FeNO and other airway inflammation markers, such as sputum 
eosinophilia or the presence of eosinophils in bronchial specimens, remain inconclusive 37,38. 
This may be partly caused by a non-overlap in asthma symptoms and airway inflammation. 
Furthermore, this relationship is complicated due to various other factors that seem to 
influence FeNO levels, including age, atopy, medication use, therapy adherence and airway 
infections 36. In addition, tailoring asthma treatment based on FeNO measurements did 
not decrease asthma exacerbations or lead to better asthma control according to a meta-
analysis performed by Petsky and collegues 39. FeNO might, nevertheless, still be a valuable 
marker in asthma management. Zacharasiewicz et al. showed that the combination of 
increased FeNO and the percentage of sputum eosinophils were significant predictors of 
exacerbation upon steroid reduction in children with stable asthma 40. Studies by Szefler et 
al. and Knuffman et al. showed that paediatric asthma patients with elevated FeNO were 
more likely to respond to corticosteroids compared to montelukast 41,42.

Reports on the relationship between FeNO and treatment response remain inconsistent, 
though there is a suggestion that higher baseline FeNO is associated with a better response 
to treatment 43. Although the clinical value of a single FeNO measurement is limited, 
combining this measure with other markers of airway inflammation may lead to a more 
accurate assessment of underlying disease state. 

Biomarkers under development 

Blood

Peripheral blood is easy to obtain and the procedure itself is less invasive in comparison 
to sputum induction and bronchoscopy. Since inflamed tissue releases chemo-attractants 
and cytokines, which recruit activated immune cells from the peripheral blood, the dynamic 
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process of immune cells entering and leaving the blood stream can be used as an indirect 
readout of the state of disease. 

From a cellular point of view, peripheral blood eosinophilia has been described extensively 
as a potential asthma biomarker 44. Blood eosinophilia correlates with bronchial 
hyperresponsiveness and asthma-related inflammation 45. The specificity of using peripheral 
blood eosinophilia to diagnose asthma is, however, rather low, as allergies, auto-immune 
disease and parasitic infections cause blood eosinophilia as well. Therefore, its role as a 
diagnostic measurement remains limited. The same applies to total and allergen-specific 
IgE levels in serum 46. Several studies have evaluated whether the presence of inflammatory 
soluble mediators such as chemokines and cytokines were applicable as biomarkers 
for type and extent of asthma phenotypes 47. Recent studies utilized multiplex analysis 
allowing the parallel analysis of multiple cytokines within one serum/plasma sample 48,49. 
Unfortunately, these studies have neither led to a clinically useful diagnostic tool to identify 
distinct disease phenotypes, nor to a tool to assess disease severity. A weakness of studies 
assessing inflammatory chemokine and cytokine profiles lies in the fact that the choice of 
mediators to be studied determines the (lack of) success of this approach. Anti-inflammatory 
mediators (such as receptor antagonists) are often neglected. In addition, little consideration 
has been given to the complex interaction between inflammatory mediators 50. 

A different approach is to examine shifts in activation profiles of inflammatory cells in 
peripheral blood and attempt to link these shifts to clinical phenotypes. These inflammatory 
cells will integrate all pro- and anti-inflammatory signals and change their phenotypes 
accordingly. Studies on activation status of peripheral blood cells have provided some 
insights into the systemic innate immune response in allergic asthma. Many studies have 
shown that inflammatory cells such as monocytes and granulocytes respond with up-
regulation of several activation markers in response to inflammatory signals 51-53. Many of 
these markers such as Mac-1 (CD11b), CD63, CD66b, CD69 are typically found in granules that 
fuse with the plasma membrane upon activation of the cells with inflammatory mediators 54.  
Unfortunately most studies 55,56 compared the presence of the markers on blood cells and 
tissue cells obtained from sputum and BAL and did not take into account that cells homing 
to the tissue under homeostatic conditions exhibit the same phenotype 57. The process 
of homing of the cells towards the tissue compartment is already sufficient to activate 
the cells both in homeostasis as well as disease. The expression of these markers in the 
peripheral blood has not lead to a clear link between expression profiles of granulocytes 
and type of asthma. 

Elegant work by Johansson and colleagues has shown that eosinophils change their 
activation status of membrane bound integrins rather than overall expression in response 
to inflammatory signals 58. Application of antibodies specifically recognizing activated states 
of integrins provided solid data showing that blood eosinophils in poorly controlled asthma 
are characterized by activated integrins. This situation is consistent with the hypothesis that 
these cells are primed and prepared to leave the peripheral blood for the tissues. We have 
obtained similar data by application of antibodies recognizing activated FcγRs 51,59. These 
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data demonstrated that eosinophils first become activated in the peripheral blood and 
subsequently home for the tissue leaving behind unprimed cells 60. These studies indicated 
that changes in the phenotype of inflammatory cells can aid in the diagnosis of the type 
and extent of severity of allergic asthma. But they also show that the differences are very 
subtle and not yet applicable in the clinical routine.

Closer to clinical implementation might be the biomarker periostin. Periostin is a recently 
discovered matricellular protein that is secreted by bronchial epithelial cells under the 
influence of IL-13. The presence of periostin in serum correlates strongly with sputum 
eosinophilia 61. A study by Corren et al. showed that patients with high levels of serum 
periostin responded better to Lebrikizumab (anti-IL-13 therapy) compared to patients with 
low levels of periostin 62. 

Air 

The measurement of volatile organic compounds (VOCs) in exhaled breath is a novel 
metabolomic approach to study molecular signatures of respiratory disease. Exhaled breath 
contains a complex mixture of up to thousands of VOCs. These compounds are produced 
due to metabolic processes in the airways and the presence and/or concentrations of the 
different compounds are likely influenced by the presence of airway inflammation. There 
exist different methods to assess VOCs; one can assess profiles of VOCs (‘breathprints’) 
present in exhaled breath using polymer-based gas sensor arrays (‘electronic nose’) 63 or 
identify individual molecular components using gas chromatography-mass spectrometry 
(GC-MS) 64. Asthma patients can be differentiated from healthy controls based on their 
breathprints 65, as can asthmatic patients from COPD patients 66. However, the method was 
less successful in distinguishing mild asthmatic from severe asthmatics 65. Breathprints of 
COPD patients do correlate with the presence of eosinophil and neutrophils in induced 
sputum, as well as with levels of eosinophil cationic protein (ECP) and myeloperoxidase 
(MPO) in induced sputum, suggesting that the electronic nose might be capable of assessing 
distinct types of underlying airway inflammation 67. 

Using the other approach, GC-MS, Dallinga et al. showed that the measurement of a limited 
set of VOCs in exhaled air could differentiate asthmatic children from controls with high 
sensitivity (95%) and high specificity (89%) 64. A study by Ibrahim et al. showed that a set of 15 
VOCs could discriminate asthmatic patients from controls, and also could classify patients 
according to inflammatory sputum phenotype and asthma control (based on the ACQ) 68. 

The assessment of VOC in exhaled breath seems to be a very promising approach, especially 
when knowledge of clinical relevant VOCs is integrated in a user-friendly handheld device 
such as the electronic nose. However, validation of clinically relevant VOC patterns in a 
large population of asthmatic patients is necessary, as well as longitudinal assessment 
of VOC patterns, the assessment of the influence of asthma treatment, and emergence of 
international guidelines on VOC measurement. A large Europe-wide study to assess the 
clinical utility of VOCs in asthma in-depth is currently ongoing 69. 
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Biomarkers in breath can also be measured in exhaled breath condensate (EBC). When 
exhaled breath is cooled a liquid phase can be obtained, which contains condensed water 
vapour, as well as non-volatile substances. Various markers in EBC have been found to be 
elevated in asthmatics when compared to healthy individuals, including adenosine concen-
tration 70, markers of oxidative stress (i.e. hydrogen peroxide) 71, cytokines and chemokines 72,  
nitric oxide-related products 73, isoprostanes and leukotrienes 74. Furthermore, the pH of 
EBC has been reported to be decreased in both acute asthmatics and poorly controlled 
asthmatics 75,76. 

In spite of these results, the measurement of markers in EBC is still in its research phase 
and several important methodological problems complicate the clinical utility of EBC 77. 
A standardized methodology for EBC collection is lacking, as are established reference 
values. Various factors such as the type of condenser equipment used, cooling temperature, 
condenser tube coating, cleaning procedures, breathing patterns, ambient air pollution 
and concentrations of relevant cytokines too low for reliable determination influence the 
measurement and compromise reproducibility. 

Urine: leukotriene metabolites 

Cysteinyl leukotrienes (LTs) C4 and D4 are lipid mediators, which are thought to play a role 
in asthma pathogenesis. They can be released from various cells, including eosinophils, 
neutrophils and mast cells. LTC4 and LTD4 in the plasma are rapidly converted into the 
less active LTE4 metabolite. A fraction of LTE4 is excreted in urine. The urinary LTE4 (uLTE4) 
concentration is used as a marker of total body LT production 78. Studies by Szefler et al. 
and Cai et al. showed that asthmatic patients with higher levels of uLTE4 were more likely 
to respond to leukotriene antagonists (LTRA) when compared to asthmatic patients with 
lower uLTE4 levels 41,79.

(Pharmaco)Genetics 

Twin studies have shown that asthma contains a considerable genetic component 80. 
Genome-wide association studies (GWAS) have identified several loci to be associated with 
asthma risk, including: the ORMDL3 locus, ADAM33 and various cytokines and cytokine 
receptor genes; IL18R1, IL33, IL2RB, IL10, TGFB1 and IL6R 81-84. 

A recent review by Dijk et al. provides a thorough overview of asthma susceptibility genes that 
have been found by GWAS 85. Nevertheless, effect sizes are small (low penetrance) and the 
identified genetic variants can only explain a small part of the asthma heritability. This could 
be due to the heterogeneity in asthma phenotypes and the underestimated influence of 
environmental-gene interactions. For example, recent work by Ierodiakonou and colleagues 
showed an interaction between variation in TGFB1 and smoking on asthma severity 86. 
Carrying a G-allele of rs6957 in TGFB1 was associated with higher submucosal eosinophils 
and basement membrane thickness, but only in current or ex-smoking asthmatics. 
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A more promising genetic approach for clinical asthma practice might be pharmacogenomics: 
the association of genomic variations and medication response. Variation in genes coding 
for proteins involved in the drug metabolism pathway may influence drug concentration 
and efficacy. Observational studies have found genetic variation to be associated with 
persistent symptoms as well as with lung function in steroid-treated asthmatics 87-90. A 
study by Hawkins et al. found a positive correlation with variations in STIP1, coding for an 
adaptor protein in the glucocorticoid receptor complex, and baseline lung function and 
improvement in lung function upon corticosteroid treatment in 382 adults with asthma 89. 
A study by Tantisira et al. showed that asthma patients with a variant in the GLCCI1 have 
less improvement in lung function upon inhaled corticosteroids (ICS) treatment 90. GLCCI1 
encodes Glucocorticoid Induced Transcript 1, a protein of unknown function. Furthermore, 
a SNP in the FCER2 gene, coding for a low affinity IgE receptor, has been associated with 
an increased risk of asthma-related hospital visits, uncontrolled asthma and higher daily 
steroid dosages 87,88, and variation in TBX21 (encoding transcription factor T-bet) has been 
related to improved airway responsiveness in childhood asthma upon treatment with ICS 91.  
T-bet is thought to be an important regulator of the Th1/Th2 balance 92. 

Pharmacogenomic studies on response to LTRA have found most association with ALOX5 93,94,  
a 5-lipoxygenase, and LTC4S, a glutathione S-transferase 95,96. However, a step closer to 
clinical implementation is assessment of the beta-adrenergic receptor gene (ADRB2) in 
order to determine response to β2-agonists for which randomized clinical trial (RCT) data 
are available 97-99. The beta-adrenergic receptor is a G-protein coupled receptor that is 
expressed in smooth muscle in the airways and activation induces bronchial relaxation. 
Beta2-agonists are the most frequently prescribed drugs to relieve airway obstruction and 
act through the beta-adrenergic receptor. Evidence suggests that genetic variations in 
the gene are associated with an altered treatment response. Recently, a small RCT based 
on prospective testing of genetic variation in the ADRB2 gene (alteration in amino acid at 
position 16; Arg16Gly) showed encouraging results in 62 children with persistent asthma. 
Asthmatic children homozygous for the variant genotype were randomized to a long acting 
beta(2) agonist (LABA) plus ICS or to LTRA plus ICS. The group treated with ICS and LTRA 
scored better on asthma symptoms and quality of life, used less rescue medication and were 
fewer days absent from school compared to the group children treated with LABA plus ICS 97,  
suggesting that asthmatic children homozygous for ADRB2 Arg16Gly substitution (B16 Arg/
Arg) benefit more from LTRA compared to LABA as add-on treatment to ICS. Yet, there was 
no difference in lung function improvement. 

On the other hand, RCTs performed in adults found no effect. A post hoc pharmacogenetic 
analysis of two large RCTs in which asthmatic patients were treated with LABA-only or 
LABA combined with ICS found no differences in exacerbations, use of rescue medication, 
nights of awaking and lung function when patients were stratified according to differences 
in ADRB2 Arg16Gly genotype 100. In a cross-over RCT asthmatic patients with the B16 Arg/
Arg (homozygote for the risk allele) or B16 Gly/Gly (homozygote for the wild type allele) 
were randomized to LABA plus ICS or placebo plus ICS. There was no difference in lung 
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function improvement between the groups when ICS was added. Remarkably, airway 
responsiveness in the patients with B16 Gly/Gly did improve significantly when ICS was 
added to the treatment, while it did not in the B16 Arg/Arg group 98. Airway responsiveness 
was measured as methacholine PC20 doubling dose: the dose of methacholine that provokes 
a 20 percent drop in the volume of exhaled air during the first second of a forced expiratory 
maneuver (FEV1). 

So far pharmacogenetic studies have been limited by small sample sizes, heterogeneous 
populations and lack of replication. However, the emergence of new sequencing 
technologies, innovative strategies of analyses and the upcoming of international research 
consortia may lead to the identification and replication of clinically relevant associations 
in the near future. In addition, the development of innovative – though expensive – 
targeted treatment strategies (such as Omaluzimab (anti-IgE), Mepoluzimab (anti-IL5) and 
Lebrikizumab (anti-IL13)) may provide a novel clinical context for pharmacogenetics in order 
to identify subgroups of asthma patients that will benefit the most from these treatments. 

Ease of biomarker detection and current limitations

Progressive insight into medical biology leads to a layered profile of studying disease 
mechanisms. Asthma research is shifting from a broad perspective (studying symptom 
expression, lung function and response to medication) to a narrower focus: cellular profiles, 
protein analysis and genetic markers, possibly combined with clinical measures. These 
biological parameters can be measured in different body compartments, and build up to 
a complexity that has not yet been fully understood. From a biological point of view, there 
is an almost indefinite number of possible biomarkers that can be measured in the context 
of asthma. Yet, the clinical applicability (e.g. clinical added value, specificity, sensitivity and 
invasiveness) limits the number of appropriate clinical usable biomarkers. Noninvasive, 
reliable and easily interpreted biomarkers would ideally be standard in daily clinical routine, 
but are currently unavailable. 

Conclusions and future directions

Single biomarker approaches to phenotype asthma are increasingly regarded to be inaccurate 
and outdated. To diagnose the presence of eosinophilic inflammation for example, FeNO is 
a very sensitive biomarker, but not very specific. Intuitively, combining FeNO with markers 
of eosinophilic inflammation (such as the percentage of eosinophils in peripheral blood or 
eosinophil receptor expression) or other biomarkers would increase specificity. To test this 
hypothesis, studies combining multiple known biomarkers, should be performed. Currently, 
research consortia like U-BIOPRED (Unbiased Biomarkers for Prediction of Respiratory 
Outcomes, http://www.ubiopred.european-lung-foundation.org/) and SARP (Severe Asthma 
Research Program, http://www.severeasthma.org) aim to integrate the process of data 
collection and multidimensional approaches to phenotype asthma. 
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Single biomarker approaches remain important in the process of biomarker discovery, as 
newly identified biomarkers can be integrated in a multidimensional approach to strengthen 
the diagnostic ability of a clinically applicable algorithm to phenotype asthma. Only then 
personalized asthma treatment will be in reach.
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Abstract

Asthma is a heterogeneous airway disease characterized by typical symptoms in 
combination with variable airway obstruction. Most patients with asthma have well 
controlled symptoms and a low risk of asthma attacks with inhaled corticosteroid 
treatment. However, a clinically important subgroup (~10%) remains symptomatic and/
or at risk of asthma attacks despite maximum inhaled therapy. Patients with severe 
asthma are responsible for a significant proportion of healthcare costs attributable to 
asthma and have a large unmet need for better treatments. An important advance in 
recent years has been the recognition that severe asthma is heterogeneous with respect 
to clinical problems and the pattern of lower airway inflammation. Identification of 
eosinophilic inflammation in the airways has become an important priority as novel 
biologicals that target Th2 cytokines, such as anti-IL5, anti- IL-13 and combined anti-
IL-4/13 are showing considerable promise as treatments for this sub-group. It has also 
become clear that anti-IgE (Omalizumab), the first monoclonal antibody registered for 
treatment of severe asthma, is only active in patients with active eosinophilic airway 
inflammation. The future will be identification of potentially responsive patients on 
the basis of raised biomarkers and, as suggested by the title of this review, targeted 
treatment with specific cytokine blockade that has a direct effect on the biomarkers. 
In this review we outline an approach to the clinical assessment of patients potentially 
suitable for biological treatment and describe in detail the likely clinical impact of 
established and new biological treatments.

Chapter_1_2_Bart.indd   48 21-5-2017   23:06:47



Ch
ap

te
r 1

.2

biomarkers and novel biologicals in severe asthma

49

Introduction

Asthma is a highly prevalent chronic inflammatory disease of the bronchial airways affecting 
5-10% of all adults and children. An estimated 235 million people are diagnosed with 
asthma worldwide and the WHO estimates that a significant proportion is undertreated or 
undiagnosed. In developed countries the clinical manifestations of asthma are controlled 
with inhaled therapy in most patients 1,2. However, around 10% of patients have severe 
asthma that is uncontrolled despite intense treatment regimens. This subgroup suffers from 
significantly higher morbidity and mortality 2, and accounts for more than half the asthma-
related health and economic impact 3,4. Asthma attacks, or acute or sub-acute episodes of 
worsening of symptoms and airflow obstruction make a significant contribution as they 
require immediate clinical attention and when severe, hospitalization 5. Patients with severe 
asthma therefore have a high unmet need and should be offered alternative treatments. 

There has been intense interest from the pharmaceutical industry in finding better treatments 
for patients with severe asthma. Progress has been frustratingly slow and some treatments 
now known to be effective failed initial clinical trials. However, a better understanding of 
the heterogeneity of severe asthma and its lower airway pathology has resulted in more 
successful treatment outcomes lately. Most of the more promising treatment approaches 
specifically target eosinophilic airway inflammation and its identification has therefore 
become an important assessment of patients. 

In this review we outline an approach to the clinical assessment of severe asthma, emphasize 
methods used to identify eosinophilic airway inflammation and overview some of the most 
promising new treatments targeting this process.

Clinical assessment

The diagnosis of asthma is based on recognition of typical symptoms (dyspnoea, cough and 
wheeze) in association with variable airflow obstruction 6. The latter can be demonstrated 
by the response to a bronchodilator (>12% improve of FEV1), by monitoring of peak 
expiratory flow (PEF) or by identification of airway hyperresponsiveness (i.e. a provocative 
concentration of Metacholine required to cause a 20% fall in FEV1 of <8 mg/ml). Although 
asthma is the most common cause of episodic wheeze, cough and dyspnoea, there are other 
potential causes including dysfunctional breathing, vocal cord dysfunction, rhinitis, cough 
syndromes, and structural airway abnormalities like tracheomalacia and bronchomalacia 7.  
These conditions are prevalent in patients presenting to a severe asthma clinic as the 
accompanying symptoms do not respond to asthma treatments 8. The clinical assessment 
therefore has to be sufficiently rigorous to exclude these conditions with confidence 9. This 
is not straightforward as abnormal PEF variability can occur independently of asthma 
and all the conditions listed above can co-exist with asthma 9. Assessment of airway 
responsiveness and eosinophilic airway inflammation are generally more informative than 
more traditional tests 9. Chronic obstructive pulmonary disease (COPD) can be difficult to 
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distinguish from severe asthma with confidence and can be associated with eosinophilic 
airway inflammation. Our approach is to describe rather than categorise patients with 
shared features and focus the clinical assessment on identification of treatable aspects. 
Asthma can also be apparently severe and treatment resistant in patients who have not 
mastered the basics of asthma management such as treatment adherence, correct inhaler 
technique and self-management. The clinical assessment should therefore include a 
thorough assessment of these aspects. 

Phenotypes

After confirming the diagnosis of severe asthma the next step is to identify the inflammatory 
phenotype of asthma in order to direct treatment and risk reduction strategies. Severe 
asthma is characterized by a marked dissociation between symptoms and disordered 
airway function on the one hand and lower airway pathology on the other. Therefore, it is 
necessary to assess both to get the full picture (Figure 1).  

Figure 1: Asthma phenotypes.

Schematic representation by Haldar et al. with eosinophilic inflammation/exacerbation frequency plotted 
on the x-axis and symptom expression/AHR on the y-axis 10. The existence of a variety of disease subtypes has 
been analysed and graphically displayed using unbiased clustering approaches on large cohorts of asthma 
patients. Notably, there are two subtypes of disease with discordant symptoms and one with discordant 
inflammation. These subtypes are missed if symptom expression only is taken into account.
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Distinguishing eosinophilic inflammation from non-eosinophilic inflammation is important 
for several reasons: 1) patients with eosinophilic airway inflammation are at high risk of 
severe attacks, including episodes requiring ventilation 10; 2) a treatment model based on 
identification and treatment of eosinophilic airway inflammation has been proven to reduce 
attacks 11-13; and 3) prednisolone, Omalizumab and a number of new biological agents 
are highly active in patients with this pattern of lower airway inflammations. Eosinophilic 
airway inflammation can be assessed directly by bronchoscopic techniques or by induced 
sputum or indirectly using the peripheral blood eosinophil count or fraction of exhaled 
nitric oxide (FeNO). The pros and cons and measurement characteristics of these methods 
are summarised in Table 1.

Table 1: Biomarkers of eosinophilic inflammation used in RCTs with monoclonal antibodies to 
preselect patients in adult asthma

Biomarker
Association with 
treatment response Invasiveness Comments

FeNO Corticosteroids, anti-
IL-13, anti-IL-4&13, 
anti-IgE

Non-invasive Easy, quick, not specific, cheap, 
generally available

Serum IgE Not associated minimal Although recommended to measure, 
there is no clear association between 
IgE as a biomarker and treatment 
responses or clinical outcome

Serum Periostin Anti-IL-13*     minimal Effect shown with Anti-IL-13, high costs

Blood eosinophil 
count

Anti-IL-5*, anti-IL4/13 
(?)

minimal Generally available, high clinical 
impact, predicts anti-IL-5 response. 
Could be a predictor in anti-IL4/13 
treatment.

Sputum eosinophil 
count

Corticosteroids, anti-
Il-5

moderate Specialist centers, tissue specific, time-
consuming. 

*Proven clinical efficacy in combination with this treatment.

Th2-cytokines as potential treatment targets

Classically, the Th2 pathway is associated with eosinophilic inflammation triggered by 
allergens or parasites that come into contact with the epithelial barrier. As a first line of 
defence, dendritic cells pick up the antigens and cause a response cascade after binding 
to T-helper cells at regional lymphoid sites. In case of a Th2 response, CD4+ lymphocytes 
become Th2-cells and start producing the cytokines IL-4, IL-5, IL-9 and IL-13 14. 

IL-4 produced by Th2-cells causes a general shift in Th0 cells to differentiate into Th2 cells 
and an immunoglobulin class switch, resulting in IgE production by B-cells. The produced 
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IgE by differentiated B-cells (plasma cells) subsequently binds to mast cells and eosinophils 
that reside in the tissue enabling them to release their toxic granules upon antigen binding. 
Another Th2 cytokine, IL-5, is a very important systemic regulator of eosinophil dynamics 
in humans as it is a critical cytokine leading to maturation and activation of eosinophils. 
Locally it acts as a chemo-attractant and causes migration of eosinophils to sites of damage. 
IL-5 functions also in combination with IL-9 to recruit mast cells and eosinophils to an 
affected tissue site. IL-13 has various effector functions: it acts similarly to IL-4 in inducing 
IgE production by B-cells and it induces physiological changes in mucus production by 
epithelial cells and causes goblet cell metaplasia. However, compared to IL-4, IL-5 and IL-9 
it is has a more extensive effect on airway smooth muscle and airway hyperresponsiveness 
in animal models 15. Whether these effects can be translated directly to human asthma 
remains to be established. 

Interestingly, a large subgroup of patients with severe asthma and eosinophilic inflammation 
is not atopic and has normal serum IgE. This counterintuitive finding complicates the 
understanding of the pathophysiology of eosinophilic inflammation, and implies that 
the pathology can be induced independently of exogenous allergens. A newly recognised 
class of cells might be the missing link between the ‘allergic’ Th2 response and persistent 
eosinophilic inflammation in patients without allergies. These cells were discovered in 2010 
as nuocytes and eventually named innate lymphoid cells (ILCs) 16. ILC-2s, a subclass of ILCs, 
are able to produce large amounts of IL-5 and IL-13 but not IL-4, making them an attractive 
candidate for orchestrating the immune response in patients with non-atopic eosinophilic 
airway inflammation. The current paradigm for the role of ILC-2 is that disruption of the 
epithelial barrier by an external trigger, for example a virus, causes epithelial damage and 
enhances production of IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) by epithelial 
cells 14. These cytokines cause ILC2 activation in the tissue, thereby starting the production 
of Th2 cytokines. Production of prostaglandin D2 and LTE4 by recruited and activated 
eosinophils and mast cells might then enhance responsiveness of ILC-2 cells leading to a 
perpetuating cycle 17. 

Th2 cytokine blockers

Anti-IgE

Omalizumab is a recombinant humanized monoclonal antibody directed against 
Immunoglobulin E (IgE) and registered for treatment of patients with severe persistent 
allergic asthma 18. In a recent Cochrane review, Normansell and colleagues reviewed 25 
studies involving 6382 patients 19. The most important findings were that Omalizumab 
reduced exacerbations by about 40%, reduced steroid use, improved ACQ scores and 
improved health related quality of life scores. Side effects were similar in placebo groups 
and Omalizumab groups, except for some local skin reactions at the injection sites. An 
important comment by the authors is the fact that most studies included patients with 
moderate asthma, while the drug is registered for severe asthmatics. Therefore, the effect of 
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the drug has to be evaluated further in a group that might benefit more from the treatment 
than patients with moderate asthma. 

A more practical difficulty is that most patients with severe asthma are not suitable for 
Omalizumab treatment as treatment is restricted based on the presence of a perennial 
allergy, serum IgE and weight. This is unfortunate as none of these characteristics has been 
shown to be associated with the response to Omalizumab and it is now clear that treatment 
efficacy is largely a function of the presence of eosinophilic airway inflammation and is 
accurately predicted by FeNO and serum periostin but not serum IgE 20,21.

Anti-IL-5 or Anti-IL-5R

Anti-IL-5 or Anti-IL-5R treatment influences eosinophil dynamics throughout the human 
immune system. Both basophils and eosinophils express the IL-5 receptor and can 
be targeted by blocking IL-5 or the IL-5 receptor. The first RCT with the IL-5 antagonist 
Mepolizumab in patients with asthma showed a strong biological effect 22. A single dose 
of Mepolizumab (10 mg/kg) reduced blood eosinophil count for 16 weeks and sputum 
eosinophil count for up to 4 weeks. Moreover, Mepolizumab was able to prevent blood 
eosinophilia during the late phase response after allergen challenge. Although the biological 
effect was strong, no effect was seen on AHR and the late asthmatic response. 

Two larger RCTs with Mepolizumab in patients with moderate asthma taking ICS confirmed 
the strong biological effect 23,34. However, both were disappointing in respect of the clinical 
effect on AHR, lung function, ACQ or rescue medication use. Interestingly this latter group did 
show a non-significant trend in the reduction of asthma exacerbations after Mepolizumab 
treatment.

The fact that these studies did not clearly show a clinical effect led many to question whether 
eosinophilic inflammation is of any importance for the key clinical outcomes in asthma. The 
alternative possibility that treatment did not have a sufficiently large effect on eosinophilic 
airway inflammation was unlikely as the effects of treatment on sputum and airway biopsy 
eosinophil numbers were at least similar to those observed on corticosteroid treatment. 

A third possibility was that eosinophilic airway inflammation contributes to exacerbations 
of asthma to a greater degree than disordered airway function and symptom expression. In 
support to this, exacerbations and symptom expression are to some extent disconnected 
within patients and respond to treatment differently 25. Symptoms and lung function are 
more responsive to a long-acting beta2-agonist and exacerbations are more responsive to 
a 4-fold increased dose of inhaled corticosteroids 26. 

In addition, studies which have examined the clinical effects of a management strategy 
which controls eosinophilic airway inflammation as well as symptoms have shown a large 
reduction in exacerbation numbers but not much change in lung function and symptoms 11,12.  
It is now clear that asthma symptoms and traditional physiological tests of asthma are at 
best weakly associated with the presence of eosinophilic airway inflammation. As many 
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as 80% of patients with asthma who remain symptomatic despite inhaled corticosteroids 
have no evidence of eosinophilic airway inflammation and are thus unlikely to respond to 
a treatment which targets this feature 27.

These findings provided a strong basis for further evaluation of the effects of blocking IL-5 
with two essential modifications to the clinical trial design: i) treating patients with evidence 
of active eosinophilic airway inflammation rather than an arbitrary and unrelated clinical 
measure such as a significant acute bronchodilator response; and ii) assessing the effect of 
treatment on asthma exacerbations, an outcome measure which is directly and potentially 
causally related to eosinophilic airway inflammation. 

These studies showed that monthly IV injections of 750 mg Mepolizumab had a beneficial 
effect on exacerbations and an oral steroid sparing effect 28,29. In a large multi-center GSK 
sponsored study (DREAM), different doses of Mepolizumab were evaluated in a population 
with eosinophilic asthma identified with more permissive criteria including a raised 
blood eosinophil count and/or FeNO 30. This study confirmed that treatment reduced 
asthma attacks by about 50% and showed that equivalent efficacy was apparent with a 
ten-fold lower dose of Mepolizumab. The study was large enough to begin investigating 
factors associated with treatment efficacy. Of the many variables assessed, only the blood 
eosinophil count and the prior frequency of asthma attacks were associated with the effect 
of treatment 30. Neither the initial proof of concept study or DREAM showed much effect of 
Mepolizumab on asthma symptoms, quality of life, FeNO or lung function. 

However, two recently published studies focused on severe-asthma patients with a blood 
eosinophilia and >2 exacerbations in the past year found clear evidence of improvement 
in these measures as well as a significant OCS sparing effect (Figure 2) 31 and a clear 
decrease in exacerbation rate (Figure 3) with monthly subcutaneous injections of 100 mg 
Mepolizumab 31,32. The more complete effect of Mepolizumab in these phase III trials may 
reflect better selection of a responsive population using the blood eosinophil count. No 
particular safety issues have been identified with long-term use of Mepolizumab and it is 
therefore a promising therapy for the patients who suffer from severe eosinophilic asthma.

Alternative anti-IL-5 treatments

Reslizumab is another type of IL-5 inhibitors that was used in RCTs for asthma. It was shown 
to significantly improve lung function, reduce sputum eosinophils and improve ACQ in a 
subgroup with nasal polyps 33. Benralizumab, the anti-IL5-receptor alpha drug, causes 
eosinophil cytotoxicity and has been shown to induce eosinopaenia in a study with mild 
atopic asthmatics and it radically reduced tissue and sputum eosinophilia in another 34,35. 
More recently, a Benralizumab Phase IIb dose-ranging RCT in patients with eosinophilic 
asthma and non-eosinophilic asthma showed a lowered exacerbation rate in the patients 
with eosinophilic asthma that received Benralizumab compared to placebo. Eosinophilic 
asthma was defined according to the ELEN-index, which predicts sputum eosinophilia 
based on non-sputum parameters. Interestingly, the post hoc analysis revealed significant 
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Figure 2: Median percentage reduction from baseline in the daily glucocorticoid dose in the two 
study groups.

At 24 weeks, the median percentage reduction was 50% in the Mepolizumab group, and there was no 
reduction in the placebo group (P=0.007). The I bars represent 95% confidence intervals. Courtesy of Bel EH 
et al. N Engl J Med 2014;371:1189-1197.

Figure 3: Numbers of asthma exacerbations in patients receiving either intravenous or 
subcutaneous Mepolizumab or placebo.

The rate of exacerbations was reduced by 47% (95% confidence interval [CI], 29 to 61) among patients 
receiving intravenous Mepolizumab and by 53% (95% CI, 37 to 65) among those receiving subcutaneous 
Mepolizumab, as compared with those receiving placebo (P<0.001 for both comparisons). Courtesy of Ortega 
et al. N Engl J Med 2014, doi:10.1056.
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improvements in exacerbation rates, ACQ-6 and FEV1 for patients with blood eosinophilia 
(>300 eosinophils/µL) 36. Benralizumab did not reduce exacerbations in COPD patients with 
sputum eosinophilia and an exacerbation in the previous year 37. However post-hoc analysis 
of the data showed a similar pattern compared to its severe-asthma equivalent, namely 
a trend towards lower acute exacerbations of COPD and improvement of the SGRQ-C (St. 
George Respiratory Questionnaire-C), CRQ-SAS (Chronic Respiratory Questionnaire-Self 
Assessed Standardised), and FEV1 in the patients with higher blood eosinophil counts. 
In summary, the various ways of blocking IL-5 and its receptor are promising and might 
increase treatment effect in the future. 

Anti-IL-13

IL-13 is closely linked to IL-4 and exerts similar functions by binding and activating the alpha 
subunit of the IL-4 receptor. This linkage is the subject of an ongoing debate about the 
relevance of singularly targeting either IL-4 or IL-13 in asthma. However, in the first trial in 
humans testing two anti-IL-13 compounds, using allergen challenge in mild atopic asthma, 
anti-IL-13 attenuated the drop in FEV1 in the late phase 38. 

A randomised controlled clinical trial of anti-IL-13 treatment (Lebrikizumab) in a cohort of 
moderate to severe asthma patients showed a small but significant improvement in FEV1 39.  
The post hoc analysis of this study was particularly noteworthy as patients with serum 
periostin concentrations above the median or a high FeNO had a greater FEV1 improvement 
and a strong trend to reduced exacerbations with treatment. This emphasizes again the 
importance of selecting the right endotype of asthma before starting specific treatment. 
Another IL-13 monoclonal antibody Tralokinumab, also showed an effect on FEV1 but no 
effect on clinical markers 40. 

In a more recent study, the anti-IL-13 compound, GSK679586, showed no clinical effect in a 
well-defined cohort of 198 severe asthma patients, even though the authors retrospectively 
stratified the patients by periostin levels and by the presence of blood eosinophilia 
suggesting that anti-IL-13 might be less effective in more severe asthma 41. 

IL-4 receptor-alpha blockers

Blocking the alpha subunit of the IL-4 receptor affects both IL-4 and IL-13 signalling. The 
first trial with anti-IL-4-alpha blockers was a RCT that studied the effect of the fully human 
monoclonal antibody AMG 317 in patients with moderate to severe asthma and showed no 
beneficial effect on the main endpoint, which was reduction in the ACQ scores of the overall 
population 42. However, it did show an effect in a subgroup that had high ACQ baseline scores, 
which therefore could be regarded as a more uncontrolled group. In the most recent trial by 
Wenzel et al., a subgroup of patients with persistent moderate to severe asthma who had 
blood eosinophilia >300/ microliter received either placebo or anti-IL-4-alpha treatment 
(Dupilumab) 43. During the study, patients were withdrawn from long-acting beta-agonist 
(LABA) treatment first and secondly from ICS to observe differences in exacerbation rate 
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(main endpoint). There was a significant difference in exacerbation rate observed after 
withdrawal, in favour of the Dupilumab group. Secondary endpoints, such as FEV1 improved 
significantly and ACQ also dropped in the treatment arm with evidence of a treatment effect 
on these measures before LABA and ICS were withdrawn. Treatment reduced FeNO, IgE 
levels, TARC (Thymus and activation regulated chemokine) and eotaxin-3 levels, providing 
evidence of a biological effect of the drug. One concern with the main endpoint is the 
definition of an exacerbation, also described by the authors. An exacerbation was defined 
as the need for systemic corticosteroids or doubling of the ICS dose, which differs from the 
current consensus statement in which >3 days of oral corticosteroids is used as a definition. 

Prospects for Th-2 low disease

Prospects for modifying airway inflammation in Th-2 low disease is much more uncertain 
as the patterns of airway inflammation and its likely cause are poorly understood. Some 
encouragement is provided by the beneficial effects of long-term low-dose macrolides 
in patients with non-eosinophilic asthma and by preliminary evidence of efficacy of a 
CXCR2 antagonist 44. Neutrophilic airway inflammation might be driven by Th-17 mediated 
processes 45. 

In a first clinical trial anti-IL17, Brodalumab did not improve ACQ scores (primary endpoint) 
in a group of moderate to severe asthmatics 46. However, treatment did have beneficial 
effects in a subgroup with high reversibility to albuterol. Patient selection was not optimal 
as the presence of neutrophilic airway inflammation was not confirmed and there was no 
marker of IL-17 involvement included for selection. More work is needed to understand the 
mechanisms and phenotypes of Th-2 low asthma. 

Conclusion

The success of the introduction of novel biological agents in asthma largely depends on the 
ability to select the appropriate asthma patients. All ‘successful’ clinical studies that involved 
novel biological agents included a specific subgroup that was likely to be responsive to the 
treatment. Ideally, patients are selected by an easily measurable biomarker that is directly 
influenced by the treatment. Thus, the everyday saying used in the title of this review very 
much applies for biological treatment of severe asthma. 

It is interesting that existing data shows that FeNO and serum periostin are good biomarkers 
of treatment response to Omalizumab and biological agents targeting IL-13 and IL-4 whereas 
the blood eosinophil count is most closely associated with a response to anti-IL-5. Moreover, 
treatment with IL-5 reduces the blood eosinophil count but not FeNO whereas the reverse is 
true for Omalizumab, anti-IL-13 and anti-IL-4&13 (Table 2). Whether these biomarkers can be 
used to identify sub-groups of patients within the Th-2 high population who are particularly 
suited to different cytokine blockade, will be an important research question for the future. 
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Another important priority is to understand the pathophysiology of asthma in patients with 
no evidence of Th-2 mediated inflammation since patients with this phenotype of asthma 
have few treatment options.
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Abstract

Background: The identification of inflammatory asthma phenotypes, using sputum 
analysis, has proven its value in diagnosis and disease monitoring. However, due to 
technical limitations of sputum analysis there is a strong need for fast and non-invasive 
diagnostics. This study includes the activation state of eosinophils and neutrophils in 
peripheral blood to phenotype and monitor asthma. 

Objectives: To (1) construct a multivariate model using the activation state of blood 
granulocytes, (2) compare its diagnostic value with sputum eosinophilia as gold 
standard and (3) validate the model in an independent patient cohort.

Methods: Clinical parameters, activation of blood granulocytes and sputum charac-
teristics were assessed in 115 adult asthma patients (training cohort/Utrecht) and 34 
patients (validation cohort/Oxford). 

Results: The combination of blood eosinophil count, FeNO, ACQ, medication use, 
nasal polyposis, aspirin sensitivity and neutrophil/eosinophil responsiveness upon 
stimulation with fMLF, was found to identify sputum eosinophilia with 90.5% sensitivity 
and 91.5% specificity in the training cohort and with 77% sensitivity and 71% specificity 
in the validation cohort (relatively high percentage on OCS).

Conclusions: The proposed prediction model identifies eosinophilic asthma without 
the need for sputum induction. The model forms a non-invasive and externally validated 
test to assess eosinophilic asthma in patients not on OCS.
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Introduction

An estimated 334 million people worldwide suffer from asthma, while its prevalence is 
still rising 1. The majority of patients are well-controlled with beta-agonist combined with 
inhaled corticosteroids. However, 5-10% of the patients suffer from poorly controlled 
asthma, consume ~60% of total asthma-related health care costs and experience long-
term side effects of oral glucocorticoids use. This group needs better asthma treatment 
and identifying inflammatory phenotypes is essential to choose the right treatment option. 

Since the introduction of sputum induction to obtain cellular samples from the airways, it 
has been one of the most accepted methods to assess airway inflammation and thereby 
diagnosing the asthma inflammatory phenotype 2. Its clinical value in asthma management 
was established in three randomized controlled trials that tailored treatment based on 
sputum eosinophilia 3-5. These studies independently showed a reduction of asthma 
exacerbations after treatment adjustments that were based on sputum eosinophilia. In 
addition the presence of eosinophils in airway epithelium 6 and sputum has been shown 
to correlate with exacerbation frequency 3-5. However, sputum induction is considered to be 
an invasive, time-consuming diagnostic test that needs to be performed only in specialized 
centres. Another disadvantage is the procedure fail rate (10-30%). These limitations restrict 
this type of adequate inflammatory phenotyping to a cohort of severe asthma patients 7,8. 

Measuring peripheral blood eosinophil count is a promising alternative for sampling in the 
airways. In the past, cohort-studies that focussed on relations between blood eosinophilia 
and asthma found correlations between blood eosinophilia and asthma diagnosis, 
asthma events, emergency department (ED) visits, sputum eosinophilia and wheeze 9,10. 
In the DREAM study, blood eosinophilia correlated with a reduction in exacerbations after 
anti-IL5 (Mepolizumab) treatment and was a predictive indicator for reduction in sputum 
eosinophil count 11. Later on, blood eosinophilia was the basis for patient selection in two 
large phase III studies that looked into the effect of Mepolizumab on exacerbation frequency 
and glucocorticoid sparing 12,13. 

In contrast to sputum eosinophilia it is yet unclear if glucocorticoid treatment strategies 
based on blood eosinophilia can reduce exacerbation frequency or improve other outcome 
measures in asthma. Blood eosinophil count does not correlate perfectly with sputum 
eosinophilia. This stretches the importance to identify fast and accurate measures to predict 
airway eosinophilia. The blood compartment is favourable because it is easily accessible, 
already part of routine clinical workup and with technical advances in measurements such 
as multi-colour flow cytometry has increased potential for inflammatory phenotyping.

In addition to eosinophil count, the activation state of eosinophils could be a promising 
biomarker. Johansson and colleagues indicated that priming and activation of eosinophils 
in the peripheral blood is deficient during episodes of tissue eosinophilia in severe and 
uncontrolled asthma 14. This hypothesis was partly founded on the upregulation of active 
FcγRII on activated blood eosinophils after segmental lung challenge in mild asthmatics 15.  

Chapter_2_1_Bart.indd   69 21-5-2017   23:07:25



Chapter 2.1

70

The latter seems to contradict the putative deficiency of primed or activated cells. However, 
long-term priming of eosinophils in the peripheral blood of severe asthmatics and the 
subsequent migration to the lung could lead to a deficiency of primed cells within the 
peripheral blood 16. An up-regulation of active integrin-receptors and activation-related 
receptors are found on blood granulocytes in mild to moderate asthma and in contrast to 
this low expression profiles of these markers are found in severe inflammatory disease 17. 
These findings indicate relevance of granulocyte priming and activation for assessment of 
the inflammatory status of asthma patients.

Not only additional biomarkers could improve asthma phenotyping; combined analyses 
of known clinical and biological characteristics provided important insights in airway 
disease mechanisms by using the multivariate advantage 18. Multivariate advantage refers 
to classifications based on multiple, combined features that outperform the combined 
classifications on the separate features. In asthma a key finding was the absence of 
correlation between eosinophilic inflammation and symptoms 19. Haldar and colleagues 
furthermore showed the value of inflammation-driven treatment decisions based on an 
unbiased approach for patient selection. Two other studies that made use of the multivariate 
advantage evaluated the power of blood eosinophil count, FeNO and periostin level to 
predict sputum eosinophilia 20 and to predict the response to anti-IgE treatment 21. Both 
conclude that the combination of the three markers might be a good way to assess the 
inflammatory status of asthma patients, while the value of the single parameters FeNO, 
blood eosinophils or total IgE to predict sputum eosinophilia has been regarded to be 
moderate. In a meta-analysis of 24 studies overall sensitivity and specificity in detecting 
sputum eosinophilia in adults were: 0.66 and 0.76 respectively for FeNO; 0.71 and 0.77 for 
blood eosinophils; and 0.64 and 0.71 for IgE 22.

We designed a cross-sectional study to investigate whether the classification accuracy 
of a multivariate prediction model for sputum eosinophilia benefits from including 
measurements of peripheral blood granulocyte activation status and whether such a non-
invasive prediction model has sufficient diagnostic value to replace expertise-dependent 
sputum analysis. The multivariate prediction model is based on a training cohort (Utrecht, 
The Netherlands) and prospectively validated on independent data from a validation cohort 
(Oxford, United Kingdom). Sputum eosinophilia was set as gold standard.

Methods

Subjects

Training cohort
Asthma patients aged 18-75 were recruited at the respiratory outpatient clinics of the 
University Medical Center Utrecht (UMCU), and the Central Military Hospital Utrecht (CMH), 
The Netherlands between May 2012 and December 2013. Inclusion and exclusion criteria 
are provided in the Supplementary Material (Figure S1, flow chart). Written informed 
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consent was obtained, and the local ethics committee of the UMCU and CMH approved 
the study protocol.

Test/Validation cohort
Adult asthma patients were recruited at the respiratory outpatient clinic of the Churchill 
Oxford University Hospital between September 2014 and June 2015. The same inclusion 
and exclusion criteria were used as in the test cohort. The study protocol was ethically 
approved and written informed consent was obtained from all patients.

Study design

Asthma patients (see Table 1 for demographics) underwent lung function measurement, 
sputum induction, blood withdrawal and FeNO (Fractional exhaled Nitric Oxide) 
measurement. Their medical history was taken and both the Asthma Control Questionnaire 
(ACQ) 23 and the Medication Adherence Report Scale (MARS) 24 were filled out. 

Sample size

For the sample size calculation we refer to Supplementary Material, Methods, sample size.

Measurements

Blood
Blood was obtained in 9mL tubes containing sodium heparin, transported at room 
temperature and processed and analysed within 2 hours. Eosinophil and neutrophil priming 
was tested in vitro: Four polystyrene tubes with 50μL blood were incubated for 5 minutes at 
37°C. Hereafter, two of the tubes were stimulated with 5μL 0.001 mM N-formyl-methionyl-
leucylphenylalanine (fMLF) for 5 minutes. Subsequently, whole blood in all tubes was stained 
with fluorescein isothiocyanate (FITC) labeled monoclonal phage antibodies (Abs) [A17 
or A27] 31 and with phycoerythrin (PE)-labeled α M (CD11b) and incubated for 30 minutes 
on ice. Hereafter, red cells were lysed in ice-cold isotonic NH4Cl and cells were centrifuged 
at 1500 rpm for 5 minutes. The cell pellet was washed twice and resuspended in ice-cold 
PBS/1% human serum albumin. In the test cohort, cells were measured using a Gallios 
flow cytometer (Beckman Coulter, Brea, California, US). In the validation cohort cells were 
measured using a Cyan flow cytometer (Beckton Dickinson, Franklin Lakes, New Yersey, US). 
Prior to the analysis blood was stained with Krome Orange (KO)-labeled CD16 antibody. 
Eosinophils could be distinguished from neutrophils by low FcγRIII (CD16) expression. Data 
from individual experiments are reported as fluorescence intensity in arbitrary units (AU) 
or in n-fold change from baseline. 
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Lung function and FeNO
FEV1 measurements were performed by using the PiKo-1 (nSpire™) device and FeNO was 
determined using NIOX MINO® (Aerocrine, Solna, Sweden) with an expiration time of 10 
seconds.

Sputum
Sputum induction was performed with hypertonic saline according to the European 
Respiratory Society (ERS) guideline 25. Cytospin slides of sputum cells were stained with May-
Grünwald Giemsa and cells were differentiated and counted by an experienced technician. 
A cut-off value of 3% eosinophils in sputum was used to classify patients with eosinophilic 
or non-eosinophilic inflammation. A cut-off value of 61% neutrophils in sputum was used 
to classify patients with neutrophilic inflammation. A mixed phenotype was assigned if >3% 
eosinophils and >61% neutrophils were counted. Eosinophils <3% and neutrophils <61% 
was regarded as a paucigranulocytic phenotype.

Statistical analysis

Non-linear Principal Component Analysis (NLPCA)
Principal Component Analysis (PCA) is a widely used unsupervised method to reduce 
dimensionality in data sets. However, PCA is only suitable to analyse data consisting of 
continuous variables. We used Non-linear PCA (NLPCA) because the majority of variables in 
our study were either categorical or nominal. Linting et al. described a stepwise approach 
for NLPCA and applied the technique in clinical cohorts 26,27. Applying this technique, we 
were able to take into account the correlated variance from 26 clinical and immunological 
parameters simultaneously. Briefly, the method applied entails transposition of all 
parameters to a linear scale, followed by reduction of the number of parameters by a two-
step selection process based on correlation of variances and by PCA of the resulting dataset 
to produce a simplified description of the data that retains as much variance as possible 
using only a small number of principal components. 

After creating a final model with NLPCA using the Utrecht cohort as a ‘training set’, the Oxford 
cohort was plotted in this PCA-model as test set in SPSS using >Data >Weight of 0.01 per 
patient. Thus, the Oxford cohort was used as validation set. 

Discriminant Analysis (DA)
Discriminant Analysis was used on the NLPCA scores. A class for eosinophilic asthma and 
a class for non-eosinophilic asthma was set (≥3% sputum eosinophils), this is a supervised 
step. External validation of the Oxford data was performed by weighting the NL-PCA scores of 
these patients by 0.01 in the DA. For an overview of both NLPCA and DA steps see Figure 1.
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Figure 1: Overview of the data analysis procedure.

Step 1 and 2: Clinical (in the white cells) and peripheral blood markers (in the grey cells) were combined to 
build a model by using dimension reduction (NLPCA, unsupervised). After step 1 and 2, the Oxford Cohort 
was added to the NLPCA model to validate the prediction model for airway eosinophilia. Subsequently, 
DA was performed by setting a class for eosinophilic asthma and a class for non-eosinophilic asthma (≥3% 
sputum eosinophils), this supervised step was performed to obtain a diagnostic score.
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Results

One hundred fifteen asthma patients were recruited in the Netherlands (see Supplementary 
Material Figure S2 for the inclusion process). In total 76 patients could be classified by 
sputum analysis and 39 asthma patients (34%) were not able to cough up or had sputum 
samples that showed >80% buccal squamous cells. Twenty of the 34 patients recruited in 
the United Kingdom (59%) could be classified by sputum induction. Demographic details 
are presented in Table 1.

Multivariate diagnostic model

Out of 26 parameters, NLPCA identified 12 important parameters that together described 
most variance within the cohort of patients in Utrecht (see Figure 1). Six of the final 
parameters were classical ‘clinical’ parameters and the other six were peripheral blood 
parameters that describe responsiveness of eosinophils and neutrophils to fMLF. The six 
parameters with the highest variance accounted for (VAF) were: aspirin sensitivity, CD11b 
response on eosinophils and neutrophils, nasal polyposis, ACQ and A17 response on 
neutrophils, in decreasing order. The remaining parameters explained less variance, being 
A27 response on eosinophils, medication, A17 response on eosinophils, FeNO, eosinophil 
count and A27 response of neutrophils. The stability of the NLPCA model was tested by 
performing a bootstrapping procedure on the test cohort (Utrecht). Ten cohorts were 
created that separately underwent NLPCA. The loadings from these NLPCA analyses were 
compared to the original loadings and the RV-coefficient of this comparison was 0.84. This 
high correlation coefficient (value between 0 and 1) indicates the NLPCA loadings are highly 
stable. Technical details of the performed NLPCA are supplied in paragraph I of the results 
section of the Supplementary Material ‘NLPCA’ and in Figure 1. 

Interpretation of the model

The result of NLPCA is a set of ‘scores’ and ‘loadings’. As there are four principal components in 
this model (see Supplementary Material for the origin of this number), each individual patient 
is represented by four scores. Figure 2 (middle) shows both the loadings of the 12 most 
relevant parameters and the scores of the patients on the first two principal components of 
the model. These two principal components together define the 2D-projection of the data 
in which the most variability can be presented. The position of a patient indicates its score 
on PC1 (horizontal axis) and its score on PC2 (vertical axis). The 12 loadings per PC each 
represent the contribution of a single parameter, such as for example eosinophil count, to 
the variability among the patients described by the PC: The higher the correlated variance 
of a parameter, the higher the loading and the longer the vector in Figure 2. Parameters 
pointing in the same direction are likely to be correlated. 

The distribution of patients within the score/loading-plot (Figure 2) is largely determined by 
markers of eosinophilic inflammation as indicated by the direction of the markers: Patients 
with sputum eosinophilia plot in areas indicated by the direction of the loading vectors of the 
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Table 1: Baseline characteristics of subjects in Utrecht cohort

Utrecht cohort n = 115 Oxford cohort n = 34

Age (mean) 43 56

Gender (M/F) 55/60 19/15

BMI, kg/m2 27 31

Smoking ever (%) 27 41

Pack years 1.28 4

Aspirin Sensitivity (%) 5 24

Eczema 20

Nasal Polyposis (%) 19 29

ACQ 1.4 1.6

Proven allergy (anamnestic and spec. IgE) (%) 59 71

History of allergy 77

FeNO (ppb) 23* 16-36 18* 19-45

% predicted FEV1 (L) 86 82- 89 68 60-75

Total eosinophil count in PB * 109/L 0.22* 0.13-0.41 0.25* 0.12-0.39

Sputum cell profile % %
Eosinophilic (>3% eosinophils) 21 18 11 32
Neutrophilic (>61% neutrophils) 14 12 8 24
Mixed (>3% eos. and >61% neutr.) 8 7 2 6
Paucigranulocytic 33 29 0 0
Epithelial (>80% epithelial cells) 39 34 13 38

Treatment % %
No medication (currently) 3 3 1 3
SABA 1 1 2 6
Low-dose ICS 5 4 1 3
Low-dose ICS + LABA or medium dose ICS 69 60 1 3
High dose ICS + LABA (and/or LTRA) 24 21 19 56
High dose ICS + LABA + OCS 13 11 10 30

MARS (non adherence in percentage) 27

BMI = body mass index, MARS = medication adherence report scale, ACQ =Asthma Control Questionnaire, FeNO 
= Fraction of exhaled nitric oxide. FEV1 = Forced Expiratory Volume in 1sec, PB = peripheral blood, SABA = short-
acting beta-agonist, LABA = long-acting beta-agonist, ICS= inhaled corticosteroids, LTRA = leukotrien-receptor-
antagonist. *Median and IQR.
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parameters FeNO, ACQ, eosinophil count, medication, nasal polyposis and aspirin sensitivity. 
On the contrary, these patients have low values of blood eosinophil responsiveness (A17, A27 
and CD11b) and therefore plot in the opposite direction of these vectors. In short, if there is 
a high percentage of eosinophils present in sputum, a patient has blood eosinophilia with 
cells that are refractory to stimulation. At the same time, patients with a neutrophilic and 
a paucigranulocytic sputum phenotype have lower values of for example FeNO and ACQ 
and higher values of responsiveness of eosinophils and neutrophils and therefore plot on 
the other side of the graph. Notably, sputum characteristics were not part of the selection 
of parameters for the multivariate model (Figure 1) and were used as a gold standard. 
The technical details of the performed DA are supplied in ‘Statistical Analyses, paragraph 
Discriminant Analysis’ section of the Supplementary Material.

Validation

An internal cross-validation was used to test the classification accuracy of the NLPCA/DA 
hybrid model with sputum eosinophilia as the dependent variable. Based on a Leave-One-
Out cross validation of the Utrecht cohort, sputum eosinophilia could be predicted with a 
sensitivity of 90.5 and a specificity of 91.5 (Table S1, of the Supplementary Material), In the 
next step, by using the ‘Utrecht cohort’ as a test set and subsequently adding the ‘Oxford 
cohort’ as a validation set it was possible to classify sputum eosinophilia with 77% sensitivity 
and 71% specificity (Table 2, tested by cross-validation).

The discriminant analysis results in four classes (Table 3) by means of positivity or negativity 
for sputum eosinophilia (gold standard) and positivity or negativity predicted by the model.

Four ROC curves (Figures 3A-D) were created by using the discriminant function and sputum 
eosinophilia as state variable. Notably, the fourth ROC curve (Figure 3D) was created by 
leaving out patients who were taking OCS.

Table 2: 2x2 contingency table with diagnostic score of the prediction model with respect to the 
Oxford Cohort

The number of patients correctly classified with eosinophilic disease is 10 out of 13 (76.9%). The number 
of patients with non-eosinophilic disease is correctly identified in 15 out of 21 (71.4%). On average, 73.5% 
of original grouped cases is correctly classified (leave-one-out cross validation accuracy). Eos: eosinophilic 
asthma, Non-eos.: non-eosinophilic asthma.

Prediction model for 
sputum eosinophilia

Predicted group membership

CharacteristicsEos. Non-eos.

Sputum Analysis Eos. 10 3 Postive Predictive Value (PPV): 62.5%

Non-eos. 6 15 Negative Predictive Value (NPV): 83.3%

Characteristics 76.9%
Sensitivity

71.4%
Specificity

Accuracy: 73.5%
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Table 3: Clinical characteristics of the four groups identified by the prediction model

All values are represented in mean and 95%CI lower/upper limit, or in number (n) except for FeNO which is 
expressed in median and interquartile range.

Eosinophilic 
by Sputum 
&Pred. Model

Non-eosinophilic 
by Sputum & 
Pred. Model

Eosinophilic 
Pred. model 

Non-
eosinophilic 
Pred. model 

n 29 102 13 5

FeNO, median (IQR) 48 (215) 20 (81) 25 (120) 16 (21) 

ACQ (CI) 2.71 (3.86) 1.29 (4.43) 1.0 (3.57) 1.29 (1.86) 

Eosinophil count *109/L(CI) 0.49 (1.16) 0.16 (0.8) 0.27 (0.75) 0.18 (0.62) 

Aspirin sensitivity % (n) 24 (7) 1 (1) 46 (6) 0

Nasal polyposis % (n) 66 (19) 6 (6) 54 (7) 0

Medication, % on OCS (n) 28 (8) 8 (8) 46 (6) 20 (1)

Table 4: 2x2 contingency table with diagnostic score of the prediction model without blood 
markers, using sputum analysis as reference test

The number of patients correctly classified with eosinophilic disease is 10 out of 21 (47.6%). The number 
of patients with non-eosinophilic disease is correctly identified in 90 out of 94 (95.7%). On average, 87% 
of original grouped cases is correctly classified (leave-one-out cross validation accuracy). Eos: eosinophilic 
asthma, Non-eos.: non-eosinophilic asthma.

Prediction model for 
sputum eosinophilia

Predicted group membership

CharacteristicsEos. Non-eos.

Sputum Analysis Eos. 10 11 Postive Predictive Value (PPV): 71.4%

Non-eos. 4 90 Negative Predictive Value (NPV): 89.1%

Characteristics 47.6%
Sensitivity

95.7%
Specificity

Accuracy: 87.0%

Finally, the dataset was rerun without the granulocyte responsiveness data. The sensitivity 
dropped from 90.5% to 47.6% and specificity increased slightly from 91.5% to 95.7% (Table 
4 and Figures 4A-B).
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Discussion

The findings of this cross-sectional study in a ‘training’ cohort of 115 asthma patients and a 
‘validation’ cohort of 34 patients visiting university medical centres in respectively Utrecht 
and Oxford, underline the value of cellular markers in peripheral blood to classify asthma 
phenotypes. fMLF-induced upregulation of activation-associated receptors on eosinophils 

Figure 3: ROC curves. 

A. Based on the Utrecht dataset. This ROC curve has an AUC close to 1 as it is the base of the NLPCA model. 
AUC = 0.946, the reported p-value is: <0.001. B. ROC curve based on the combined Utrecht and Oxford 
datasets. This combined set has a high AUC of 0.914, the reported p-value is: <0.001. C. ROC curve based 
on the Oxford validation cohort only. The AUC is lower compared to the test set and indicates a difference 
between test set and validation set. AUC = 0.725, the reported p-value is: 0.029. D. ROC curve based on 
the Oxford validation cohort only without BTS treatment group 6. For this ROC curve patients in BTS 
treatment group 6 (oral steroid treatment) were excluded. The AUC increased from 0.73 to 0.80. AUC = 0.800, 
the reported p-value is: 0.014.

Chapter_2_1_Bart.indd   79 21-5-2017   23:07:26



Chapter 2.1

80

and neutrophils, together with a limited set of clinical parameters, can serve as an accurate 
read-out for eosinophilic asthma. Results of the unbiased analysis of both cellular and 
clinical parameters confirm the important role for already established measurements 
in asthma, such as eosinophil count, ACQ and FeNO. However in this study, adding 
measurements of blood granulocyte responsiveness significantly increased the predictive 
accuracy, improving the sensitivity from 47.6% to 90.5%. 

Interestingly, the ‘eosinophilic patients by prediction model’ (i.e. patients without sputum 
eosinophilia) have distinct characteristics; these 13 eosinophilic patients have higher blood 
eosinophil counts, higher values of FeNO and a higher incidence of aspirin sensitivity and 
nasal polyposis compared to the non-eosinophilic patients. More patients in this group are 
using oral glucocorticoids compared to the other groups (~46%, Table 3). Oral corticosteroids 
are known to induce apoptosis in eosinophils and can explain the ‘false’ low number of 
sputum eosinophils 28. To strengthen this, the Oxford cohort has a ~3-fold higher percentage 
of patients on OCS compared to Utrecht. Therefore, these patients are particularly less 
likely to have sputum eosinophilia, leading to the ‘false’ conclusion they do not suffer from 

Figure 4: Prediction models. 

A. without blood markers. According to this model differences between groups of patients are not clear; 
true non-eosinophilic asthma patients (red diamonds), true eosinophilic asthma (plus sign), false positive 
patients (green diamonds) and false negative (black triangles). The model has a poor diagnostic value. B. 
Prediction model based on blood markers. The model discriminates accurately between eosinophilic and 
non-eosinophilic asthma. The dotted line indicates the discrimination between eosinophilic (plus sign) and 
non-eosinophilic (red diamonds) disease according to the prediction model based on clinical parameters 
and blood granulocyte measures. The two false negatives (black triangles) are not identified by the model, 
however the eight false positive cases (green diamonds) that have a high symptom and high eosinophilic 
inflammation-profile, illustrate the improved classification capability of the prediction model. These false 
positives would have been missed by sputum analysis only.
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eosinophilic asthma. Based on known steroid effects and high OCS use in the group of 13 
patients that were ‘false positive’, OCS use is the most likely explanation for the relatively 
low sensitivity and specificity of the prediction model in the Oxford cohort and suggests the 
prediction model as developed here is more suitable for asthma classification in patients 
not on OCS. This was validated by excluding patients on OCS from the Oxford cohort, which 
led to an increase in predictive power: 79.2% compared to 73.5% without this group. The 
sensitivity lowered from 76.9% to 72.7% and the specificity increased extensively from 
71.4% to 84.6%. The ROC-curves with the full Oxford cohort (Figure 3C) and the cohort 
with patients on oral steroids (Figure 3D) also shows a great improvement in AUC-value. 

Instead of using a single parameter approach, an unbiased multidimensional approach 
was used to evaluate the experimental data. This is generally regarded as a promising 
analysis strategy for the understanding of heterogeneous diseases such as asthma 29,30. 
Large asthma cohorts, such as SARP and the Leicester cohorts, already brought more 
insight in disease phenotypes using clustering techniques 19,31,32. One strong determinant 
of the quality of multidimensional models is number of included parameters. Therefore, 
it is important to include and test new parameters such as granulocyte responsiveness. In 
this study we were able to improve the sensitivity of our prediction model from 47.6% to 
90.5% by adding granulocyte responsiveness to the model. By using Non-Linear Principal 
Component Analysis correlations between many of the measured clinical parameters were 
taken into account. These correlations may be clinically valuable but on the other hand also 
complicate multiple linear regression models. NLPCA provides a consistent, widely used 
and quantitative way to merge parameters measured on different levels.

Our prediction model is based on 12 clinical and cellular parameters and does not depend 
on several common asthma parameters such as atopy, gender and BMI. These latter 
parameters showed little discriminative value in our cohort. This finding is in agreement 
with findings in the larger Leicester and SARP cohorts 19,31-34. The Leicester cohorts showed 
that atopy, gender and BMI were not significant determinants for the secondary care factor 
model. Similarly, the SARP cohorts also had low variability within the datasets for atopy, 
gender and BMI. These collective findings are also in line with insights from the DREAM 
cohort 11. Atopy in the DREAM cohort was not a predictor for the response to Mepolizumab, 
whereas peripheral blood eosinophil count and exacerbation frequency in the past year, 
both hallmarks of eosinophilic inflammation, had predictive value for the response. In 
summary, the model focuses attention on relevant parameters and is in line with data from 
earlier unsupervised multivariate models.

Flow cytometry analysis is the required technique to perform cell counts and in in this study 
also to measure granulocyte responsiveness. State-of-the-art bench top flow cytometers 
are able to perform a stimulation step on whole blood, such as adding fMLF. A blood tube 
has to be loaded into the cytometer and the pipetting step is performed automatically by 
the cytometer, after which it measures fluorescence intensity. This important advancement 
makes it possible to use complex flow cytometry for clinical diagnostic tests, such as testing 
granulocyte responsiveness in asthma patients.
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In conclusion, the proposed prediction model identifies eosinophilic asthma with peripheral 
blood analysis, FeNO measurement and assessment of routine clinical data. Responsiveness 
of peripheral blood granulocytes was essential to come to a sensitive diagnostic test and adds 
to the ongoing scientific debate about the biological relevance of granulocyte responsiveness 
in asthma. The prediction model was prospectively tested in an independent patient 
population visiting a specialised asthma centre in Oxford (UK) and identified an important 
group of patients with potentially eosinophilic inflammation that rendered non-eosinophilic 
in sputum most likely due to OCS use. Finally, this study underlines the potential of unbiased 
approaches to support clinical decision making in complex diseases such as asthma. 

Acknowledgements 

Our gratitude goes to research nurse Simone Sluis who contributed greatly during the 
study and to the lung function department of the UMCU and the Central Military Hospital 
Utrecht for their technical support. Research nurses Clare Connolly and Catherine Borg of 
the Nuffield department of Medicine, contributed greatly to the inclusion of patients. We 
thank the respiratory trial unit of Oxford University for their technical expertise.

References

1.  Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M, Mokdad A et al. Common values in assessing 
health outcomes from disease and injury: disability weights measurement study for the Global 
Burden of Disease Study 2010. Lancet 2012;380:2129–2143.

2. Pavord ID, Pizzichini MM, Pizzichini E, Hargreave FE. The use of induced sputum to investigate 
airway inflammation. Thorax 1997;52:498–501.

3. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P et al. Asthma exacerbations 
and sputum eosinophil counts: a randomised controlled trial. Lancet 2002;360:1715–1721.

4. Jayaram L, Pizzichini MM, Cook RJ, Boulet L-PP, Lemière C, Pizzichini E et al. Determining asthma 
treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J 2006;27:483–
494.

5. Chlumsky, Striz, Terl, Vondracek. Strategy Aimed at Reduction of Sputum Eosinophils Decreases 
Exacerbation Rate in Patients with Asthma. Journal of International Medical Research 2006;34: 
129139.

6. Sur, Crotty, Kephart, Hyma, Colby, Reed et al. Sudden-onset fatal asthma. A distinct entity with 
few eosinophils and relatively more neutrophils in the airway submucosa? The American review 
of respiratory disease 1993;148:713–719.

7. Petsky HL, Cates CJ, Lasserson TJ, Li AM, Turner C, Kynaston JA et al. A systematic review and 
meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum 
eosinophils). Thorax 2012;67:199–208.

8. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ et al. International ERS/ATS guidelines 
on definition, evaluation and treatment of severe asthma. Eur Respir J 2014;43:343–373.

Chapter_2_1_Bart.indd   82 21-5-2017   23:07:26



Ch
ap

te
r 2

.1

Diagnosing asthma by using a multivariate preDiction moDel

83

9. Malinovschi A, Fonseca J, Jacinto T, Alving K, Janson C. Exhaled nitric oxide levels and blood 
eosinophil counts independently associate with wheeze and asthma events in National Health 
and Nutrition Examination Survey subjects. The Journal of allergy and clinical immunology 2013; 
132:821–7.e1–5.

10. Yap E, Chua WM, Jayaram L, Zeng I, Vandal AC, Garrett J. Can we predict sputum eosinophilia from 
clinical assessment in patients referred to an adult asthma clinic? Intern Med J 2013;43:46–52.

11. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R. Mepolizumab for severe eosinophilic asthma 
(DREAM): a multicentre, double-blind, placebo-controlled trial. The Lancet Published Online First: 
2012.http://www.sciencedirect.com/science/article/pii/S014067361260988X

12. Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW et al. Oral glucocorticoid-
sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med 2014;371:1189–1197.

13. Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A et al. Mepolizumab treatment 
in patients with severe eosinophilic asthma. N Engl J Med 2014;371:1198–1207.

14. Johansson. Activation states of blood eosinophils in asthma. Clinical and experimental allergy : 
journal of the British Society for Allergy and Clinical Immunology 2014;44:482–498.

15. Luijk B, Lindemans CA, Kanters D, van der Heijde R, Bertics P, Lammers J-WJW et al. Gradual 
increase in priming of human eosinophils during extravasation from peripheral blood to the 
airways in response to allergen challenge. J Allergy Clin Immunol 2005;115:997–1003.

16. Barthel SR, Johansson MW, McNamee DM, Mosher DF. Roles of integrin activation in eosinophil 
function and the eosinophilic inflammation of asthma. J Leukoc Biol 2008;83:1–12.

17. Hietbrink F, Oudijk E-JJ, Braams R, Koenderman L, Leenen L. Aberrant regulation of polymorpho-
nuclear phagocyte responsiveness in multitrauma patients. Shock 2006;26:558–564.

18. Geurts BP, Engel J, Rafii B, Blanchet L, Suppers A, Szymańska E et al. Improving high-dimensional 
data fusion by exploiting the multivariate advantage. Chemometrics and Intelligent Laboratory 
Systems 2016;156:231–240.

19. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE et al. Cluster analysis and clinical 
asthma phenotypes. Am J Respir Crit Care Med 2008;178:218–224.

20. Wagener AH, de Nijs SB, Lutter R, Sousa AR, Weersink EJ, Bel EH et al. External validation of blood 
eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax 
2015;70:115–120.

21. Hanania NA, Wenzel S, Rosén K, Hsieh H-JJ, Mosesova S, Choy DF et al. Exploring the effects of 
omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit 
Care Med 2013;187:804–811.

22. Korevaar DAA, Westerhof GA, Wang J, Cohen JFF, Spijker R, Sterk PJ et al. Diagnostic accuracy of 
minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review 
and meta-analysis. Lancet Respir Med 2015;3:290–300.

23. Juniper EF, O’Byrne PM, Guyatt GH, Ferrie PJ, King DR. Development and validation of a 
questionnaire to measure asthma control. Eur Respir J 1999;14:902–907.

Chapter_2_1_Bart.indd   83 21-5-2017   23:07:26



Chapter 2.1

84

24. Cohen JL, Mann DM, Wisnivesky JP, Home R, Leventhal H, Musumeci-Szabó TJ et al. Assessing the 
validity of self-reported medication adherence among inner-city asthmatic adults: the Medication 
Adherence Report Scale for Asthma. Ann Allergy Asthma Immunol 2009;103:325–331.

25. Paggiaro PL, Chanez P, Holz O, Ind PW, Djukanović R, Maestrelli P et al. Sputum induction. Eur 
Respir J Suppl 2002;37:3s–8s.

26. Van Wietmarschen H, Dai W, van der Kooij A, Reijmers T, Schroën Y, Wang M et al. Characterization 
of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics 
measurements. PloS one 2012;7:e44331.

27. Linting M, van der Kooij A. Nonlinear principal components analysis with CATPCA: a tutorial. 
Journal of personality assessment 2012;94:12–25.

28. Meagher LC, Cousin JM, Seckl JR, Haslett C. Opposing effects of glucocorticoids on the rate of 
apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 1996;156:4422–4428.

29. Wardlaw AJ, Silverman M, Siva R, Pavord ID, Green R. Multi-dimensional phenotyping: towards a 
new taxonomy for airway disease. Clin Exp Allergy 2005;35:1254–1262.

30. Prosperi MC, Sahiner UM, Belgrave D, Sackesen C, Buchan IE, Simpson A et al. Challenges in 
identifying asthma subgroups using unsupervised statistical learning techniques. Am J Respir 
Crit Care Med 2013;188:1303–1312.

31. McGrath KW, Icitovic N, Boushey HA, Lazarus SC, Sutherland ER, Chinchilli VM et al. A large subgroup 
of mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care Med 2012; 
185:612–619.

32. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X et al. Identification of asthma phenotypes 
using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 2010;181: 
315–323.

33. Wu W, Bleecker E, Moore W, Busse W, Castro M, Chung K et al. Unsupervised phenotyping of 
Severe Asthma Research Program participants using expanded lung data. The Journal of allergy 
and clinical immunology Published Online First: 2014. doi:10.1016/j.jaci.2013.11.042

34. Moore W, Hastie A, Li X, Li H, Busse W, Jarjour N et al. Sputum neutrophil counts are associated 
with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol Published 
Online First: 2014. doi:10.1016/j.jaci.2013.10.011

Chapter_2_1_Bart.indd   84 21-5-2017   23:07:26



Ch
ap

te
r 2

.1

Diagnosing asthma by using a multivariate preDiction moDel

85

Supplementary Material

Methods

Sample size 
Preliminary results of an earlier study by our research group formed the basis for the sample 
size calculation 1. In this study fluorescein isothiocyanate (FITC) labeled monoclonal phage 
antibody A17 was used, which binds to the active form of the FcγRII receptor. Eosinophils of 
asthma patients expressed higher levels of active FcγRII than healthy controls. Therefore, 
the capacity of eosinophils to bind A17 was chosen as a diagnostic test. The mean of the 
non-eosinophilic group for A17 binding was 3.41 AU (log transformed arbitrary units), the 
mean of the eosinophilic group was 3.95 AU. The standard deviation (SD) was 0.85. The power 
(β) was set at 0.8 and the α at 0.05. Taking into account a 1:3 eosinophilic/non-eosinophilic 
ratio in the asthma cohort, the comparison of the two independent means resulted in a 
required sample size of 104 patients in total; an expected 26 patients with eosinophilic 
asthma patients and 78 controls had to be included. In order to correct for possible drop-
outs or missing data, 115 asthma patients were planned to be included in order to have 
sufficient power (Power and Sample size Program, version 3.0 jan 2009). 

Inclusion and exclusion criteria
Specific criteria were set to include patients with adult asthma, defined as having the 
following clinical features: episodic shortness of breath, particularly at night, often 
accompanied by cough and wheezing heard by auscultation. Moreover, patients needed 
to have reversibility in FEV1 to 400 µg inhaled salbutamol (>12% predicted and >200 ml) or 
airway hyperresponsiveness to histamine (PC20 <8 mg/ml). 

Exclusion criteria were smoking at present or in the last 12 months and/or a past history of 
more than 10 pack years. If the patients received antibiotic treatment for a respiratory tract 
infection <4 weeks prior to the study, he or she was also excluded. Finally, proven allergic 
bronchopulmonary aspergillosis was regarded as an exclusion criterion 2.

Utrecht Cohort (training set)
Ninety-two of 115 patients in the Utrecht were diagnosed with asthma according to the GINA 
guidelines which requires proven reversibility or a positive histamine or metacholine test in 
combination with classic asthma symptoms. The other 23 patients had asthma according 
to an experienced chest physician, which meant they suffered from symptoms, while 
reversibility was not proven by lung function tests or a histamine or metacholine challenge 
test within the University Medical Center itself. Often reversibility had been tested before 
in another medical center, before referral to this tertiary center and was never repeated. 

Oxford Cohort (validation/test set)
All 34 recruited patients had asthma according to the GINA guidelines. 
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Sputum induction
Sputum was induced via inhalation of a hypertonic saline aerosol, generated by an ultrasonic 
nebulizer (Untraneb 2000; DeVilbiss, Somerset, PA, USA) by a standardized internationally 
approved protocol 3. The nebulizer was calibrated to an output of 1.5 ml/min and production 
of particles with a diameter of 4.5 μm. Solutions of sodium chloride of 0.9, 3, and 5% were 
nebulized at room temperature (20-22°C) for 5 min within each step, and administered 
through a mouthpiece connected to a 100 cm-long tube with an internal diameter of 22 mm. 

For mild-to-moderate asthmatics the exact description of the protocol was used. In high-risk 
asthmatics (e.g. severe asthma, highly reactive airways, exacerbation and using increasing 
doses of beta2-agonist) a lower dose of saline was used, always starting with 0.9% and in 
these patients the increasing saline dosages were sometimes stopped before reaching the 
inhalation step with 5% saline solution if a >20% fall in FEV1 was measured. 

Sputum analysis
Sputum samples were kept at 4°C and processed within 2 hours of expectoration. Sputum 
plugs were selected for analysis to reduce squamous contamination. The sample was 
weighed to ensure accurate volumes of liquids were used. A two-step lysis process was 
followed: The sample was first broken down by repeated pipette aspiration in the presence 
of PBS, centrifuged and half the supernatant volume removed and stored at -80°C. A 0.2% 
dithiothreitol (DTT) solution was then added and the sample was left to incubate at 4°C for 
15 minutes to ensure complete homogenization. The samples were then filtered through 
48-mm nylon gauze (Thompson, Ontario, Canada). A total cell count was performed on a 
cell counter (Abbott Labs Cell Dyn 1800®), viability and level of squamous cell contamination 
were measured using a Burker-Turk haemocytometer and the Trypan blue exclusion method. 
Cells were classified as viable leukocytes, dead leukocytes and squamous epithelial cells. 
A cytospin slide was stained with either May-Grunwald Giemsa (Utrecht) or Rapi-Diff II 
(Oxford) for further cell differentiation. The filtered sample was then centrifuged for 5 min 
at 1500RPM at 4°C. The DTT supernatant was aspirated, transferred to Eppendorf tubes 
and stored at -80°C. Within the two centers, the same technician evaluated the cytospin 
slides. Both these technicians were highly experienced in processing clinical samples and 
also tested samples from external academic centers to cross-validate their own analyses.

Venipuncture
A 9 mL venous blood sample was collected in a sodium heparine tube and full blood was 
analysed on a cell counter (Abbott Labs Cell Dyn 1800®).

Statistical analyses

Non-linear principal component analysis (NLPCA) on Utrecht cohort
NLPCA was selected, because it can be applied to a combined set of categorical, nominal 
and continuous variables. Applying this technique, we were able to take into account the 
correlated variance from all 26 clinical and immunological parameters simultaneously. 
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The repeated stepwise approach described by Linting et al. was followed 3,4. In short, 
before running PCA, all values in the dataset were transformed into positive values. Then 
all 26 parameters were labelled as a specific type of data: numerical, ordinal or nominal 
(Table S1). Missing values were regarded as ‘passive values’ within the analysis. This has 
the advantage that none of the patients had to be excluded and that no value had to be 
fabricated to replace a missing data point if one of the values within the 26 parameters was 
absent. NLPCA implementation was performed with IBM SPSS® Statistics 22 (SPSS, IL, USA) 
via the pre-programmed options ‘dimension reduction methods’, ‘optimal scaling’ and 
finally ‘Categorical Principal Component Analysis’. We ran the NLPCA algorithm repeatedly 
to reduce the number of parameters and stopped it at an optimal cut-off point, at which the 
least number of parameters explained the most variance within the dataset. Normalization 
of the quantitative variables is integrated into the CATPCA procedure of Linting et al. as 
implemented in SPSS. For the programme code in SPSS: http://www.ibm.com/support/
knowledgecenter/SSLVMB_22.0.0/com.ibm.spss.statistics.reference/spss/categories/
syn_catpca.htm (website accessed at 16th of October, 2016). 

Initially, 6 Principal Components (PCs) were chosen after examining the scree plots. After 
the first PCA on 26 parameters, the parameter ‘smoking history’ had the lowest VAF(Variance 
Accounted For) and was excluded from the set, after the second run the expression of 
L-selectin (CD62L) on eosinophils was left out and by repeating this step we ended with 15 
parameters with a VAF higher than 0.250 in 6 PCs. After examining the scree plots again, 
we set the amount of PCs suitable for this dataset to 4. After this step we had to exclude 
eczema, gender and age of onset (VAF < 0.25) to end up with 12 parameters (Figure 1 ‘final 
model’) and 4 PCs with 24% in PC1, 14% in PC2, 12% in PC3 and 9% in PC4, that totalled 
59% of VAF within the model. 

Additional clarification for excluded parameters by NLPCA
With regard to BMI, Desai and colleagues also reported that obesity in asthmatic patients 
is not associated with sputum eosinophilia 5. However, overweight and obese patients do 
express higher levels of sputum IL-5 and higher submucosal numbers of eosinophils. These 
two parameters were not measured in our study, which may provide an explanation for the 
lack of predictive value of BMI within our cohort. Markers of bronchial hyperresponsiveness, 
histamine threshold and reversibility, did not have a significant discriminatory value either. 
This is not surprising since the patients in our study either had lowered histamine threshold 
and/or reversibility of >200 mL, which means there already was selection by applying the 
inclusion criteria. Smoking and the amount of pack years were also included in the exclusion 
criteria, only current non-smokers with <10 pack years were included and therefore it is a 
logical consequence that these parameters were excluded from the final model. 
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Discriminant analysis: from dimension reduction to a clinical prediction model for sputum 
eosinophilia
The NLPCA scores represent the maximized variability among the patients, only part of which 
will relate to distinction between disease phenotypes. In principle, the discriminant analysis 
could be performed on the original variables, i.e. the ‘raw data’. However, these variables 
comprise categorical, nominal and continuous values that are likely to be mutually related 
and like ‘ordinary’ PCA, DA cannot extract such correlations as it can only handle continuous 
and dichotomous variables. The covariance matrix ‘separate-groups’ was chosen within the 
SPSS implementation and prior probabilities were corrected for group size. 

Analysis of Utrecht ‘test’ cohort 
DA of the 4 PCs shows a significant difference between the group of patients with sputum 
eosinophilia >3% (n =21) compared to non-eosinophilic patients (n=94). The results of the 
DA on clinical parameters only and on clinical + peripheral blood parameters combined 
are depicted in Figures S3A and S3B.

The test characteristics of the final model (clinical + peripheral blood) are depicted in Table 
S2. Overall the test predicts 91.3% of all patients correctly. The test sensitivity is 90.5% and 
specificity is 91.5%. For comparison, the test characteristics of solely the clinical parameters 
are depicted in Table S3, which show a lower overall accuracy of 87.0%, a sensitivity of 
47.8% and a specificity of 95.7%.

The eigenvalue of the DA performed at the non-blood parameters was 0.567 and of the final 
model, including the blood parameters, it was 1.014. A larger eigenvalue indicates a stronger 
discriminative effect of the discriminant function. This change underlines the additional 
value of the blood parameters. 

To test the stability of the DA-based classification in addition to the test of the stability of 
the NLPCA model, we tested each bootstrap sample against the Oxford cohort. Patients in 
the Oxford cohort were correctly classified in 0.71 of total (95%CI 0.69-0.74). The small 95% 
CI indicates a stable model. 

Description and validation with the Oxford cohort

To investigate whether the NLPCA model based on the Utrecht cohort could predict if 
patients within the Oxford cohort suffered from airway eosinophilia, the Oxford cohort 
was projected on the PCA model that was built with Utrecht data. Discriminant analysis 
was performed on the combined dataset, with both Utrecht and Oxford data, to validate 
the prediction model. We did this by setting the weight for Oxford patients to a negligible 
minimum of 0.01 (using >Data >Weight>0.01) and by running NLPCA and DA as described 
earlier. The sensitivity and specificity that followed from this step are an indication of the 
predictive value of the training set (Utrecht) for the recognition of airway eosinophilia in 
the test set (Oxford), Table 3. Cross-validation of the table shows an overall classification 
accuracy of 74%. 
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Missing values
The amount of missing values in the 12 variables included for NLPCA are given in Table S4.
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Figure S1: Flow chart with study design.

UMCU = University Medical Center Utrecht, CMH = Central Military Hospital, RTI = Respiratory Tract Infection, 
fMLF = N-Formylmethionine leucyl-phenylalanine, BMI = body mass index, MARS = medication adherence 
report scale, ACQ =Asthma Control Questionnaire, FeNO = Fraction of exhaled nitric oxide, FEV1 = Forced 
Expiratory Volume in 1 sec, ABPA = Allergic Broncho-Pulmonary Asgergillosis, AB = Anti-Biotic treatment.

 

Inclusion of n = 115 patients  
n = 100 

Informed consent

Sputum induction Venous blood sample 

Sputum Analysis & 
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‐ Eosinophilic 
‐ Neutrophilic 
‐ Mixed granulocytic 
‐ Paucigranulocytic 

Activation markers on WBCs 
A17, A27, CD11b before and 
after stimulation with fMLF 

&
CD11b/CD62L basal levels 

on eosinophils 

* Asthma (GINA guidelines) 
Clinical features: episodic shortness of breath, particularly at night, often accompanied by cough and 
wheezing heard by auscultation. Physiologically demonstrated either by: 
Reversibility in FEV1 to 400 g inhaled salbutamol (>12% predicted or >200 ml) 
Or 
Airway hyperresponsiveness to histamine (PC20<8 mg/ml) 

Exclusion criteria 
- smoking at present 

or in the last 12 
months 

- Past smoking 
history of >10 Pack 
years

- AB treatment for 
RTI in past 4 weeks 

Inclusion criteria 
- Adult asthma* 
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Screening asthma patients visiting the outpatient 
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- Atopy 
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Figure S2: Inclusion process.

UMCU, University Medical Center Utrecht; CMH, Central Military Hospital.

 

Screening: 590 asthma patients visiting 
the outpatient clinic UMCU/CMH 

365 found to be eligible 

115 patients included 

225 excluded based on medical 
record: poor definition of asthma  

250 patients were either: 
- Current smokers 
- Suffering from ongoing infectious 

complications 
- Not interested 
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Figure S3A: Scoreplot of asthmatic subjects in the NLPCA model.

Patients with eosinophilic asthma according to sputum analysis (plus sign) and non-eosinophilic asthma 
phenotypes (other signs). Sputum phenotypes represent the result of sputum analysis as an overlay for the 
NLPCA-model to compare the results between the model with reduced dimensions and sputum analysis. The 
patients that were not classified by sputum analysis are not included in this figure.

Figure S3B: Loadingplot of the NLPCA model.

Higher marker variability results in a longer vector and the direction of the vector determines the place of a 
patient score in Figure S3A (one sign = one patient). Therefore, eosinophilic patients (plus sign, Figure S3A) 
are high in FeNO, ACQ, eosinophil count and low in eosinophil responsiveness, while their non-eosinophilic 
counterparts (triangles and squares) exhibit low values in these clinical markers, but higher values of 
granulocyte responsiveness and are mostly plotted at the opposite side of the graph. FeNO and ACQ have 
lighter gray vectors in order to facilitate distinction from the partly overlapping vector for Medication.

A              B 
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Table S1: Analysis levels per parameter

Parameter Analysis level

Gender Nominal

BMI Numerical

Smoking ever Nominal

Age of onset Numerical

Aspirin sensitivity Nominal

Eczema Nominal

Nasal polyposis Nominal

MARS Nominal

Proven allergy Nominal

History of allergy Nominal

P20 Histamin level Numerical

Eosinophil count Numerical

FeNO Numerical

ACQ Numerical

Reversibility Numerical

Absolute NeutrophilCount Numerical

Medication Ordinal

FEV1 %reversibility Numerical

CD62L Eosinophils Numerical

CD11b Eosinophil Numerical

A17 eosinophils Numerical

A17 neutrophils Numerical

CD11b eosinophils Numerical

CD11b neutrophils Numerical

A27 eosinophils Numerical

A27 neutrophils Numerical
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Table S2: contingency table with the diagnostic score of the prediction model, using sputum 
analysis as reference test

The number of patients correctly classified with eosinophilic disease is 19 out of 21 (90.5%). The number 
of patients with non-eosinophilic disease is correctly identified in 86 out of 94 (91.5%). On average, 91.3% 
of original grouped cases is correctly classified (leave-one-out cross validation accuracy). Eos: eosinophilic 
asthma, Non-eos: non-eosinophilic asthma.

Prediction model for 
sputum eosinophilia

Predicted group membership

CharacteristicsEos. Non-eos.

Sputum Analysis Eos. 19 2 Postive Predictive Value (PPV): 70.4%

Non-eos. 8 86 Negative Predictive Value (NPV): 97.7%

Characteristics 90.5%
Sensitivity

91.5%
Specificity

Accuracy: 91.3%

Table S3: 2x2 contingency table with diagnostic score of the prediction model without blood 
markers, using sputum analysis as reference test

The number of patients correctly classified with eosinophilic disease is 10 out of 21 (47.6%). The number 
of patients with non-eosinophilic disease correctly identified is 90 out of 94 (95.7%). On average, 87% of 
original grouped cases is correctly classified(leave-one-out cross validation accuracy). Eos: eosinophilic 
asthma, Non-eos.: non-eosinophilic asthma.

Prediction model for 
sputum eosinophilia

Predicted group membership

CharacteristicsEos. Non-eos.

Sputum Analysis Eos. 10 11 Postive Predictive Value (PPV): 71.4%

Non-eos. 4 90 Negative Predictive Value (NPV): 89.1%

Characteristics 47.6%
Sensitivity

95.7%
Specificity

Accuracy: 87.0%
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Table S4: Missing values in the dataset of a total of 149 study participants

Parameter Total of 149 Missing values

Eosinophil count 148 1

Aspirin sensitivity 149 0

Nasal polyposis 149 0

FeNO 145 4

ACQ 148 1

Medication 149 0

A17 eosinophils 141 8

A17 neutrophils 140 9

CD11b eosinophils 143 6

CD11b neutrophils 146 3

A27 eosinophils 143 6

A27 neutrophils 138 11
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Abstract

Background: Inflammatory phenotypes of asthma are associated with differences 
in disease characteristics. It is unknown whether these inflammatory phenotypes are 
reflected by the activation status of neutrophils in blood and sputum. 

Methods: We obtained peripheral blood and induced sputum from 21 asthma patients 
and stratified our samples based on sputum eosinophilia resulting in two groups (>3% 
eosinophils: n=13, <3%: n=8). Eosinophils and neutrophils from blood and sputum were 
analysed for expression of activation- and degranulation markers by flow cytometry. 
Data were analysed by both classical, non-parametric statistics and a multivariate 
approach, using principal component analysis (PCA). 

Results: Patients with sputum eosinophilia were characterized by increased ACQ scores 
and blood eosinophil counts. Both sputum neutrophils and eosinophils displayed 
an activated and degranulated phenotype compared to cells obtained from blood. 
Specifically, degranulation of all granule types was detected in sputum cells, combined 
with an increased expression of the activation markers (activated) Mac-1 (CD11b), 
Programmed Death-Ligand 1 (CD274) and a decreased expression of CD62L. CD69 
expression was only increased on sputum eosinophils. Surface marker expression of 
neutrophils was similar in the presence or absence of eosinophilia, both by univariate 
and by multivariate analysis.

Conclusion: Sputum neutrophils were highly activated and degranulated irrespective of 
sputum eosinophilia. Therefore, we conclude that differences in granulocyte activation 
in sputum and/or blood are not associated with clinical differences in the two groups 
of asthma patients. The finding of PD-L1 expression on sputum granulocytes suggests 
an immuno-modulatory role of these cells in the tissue.
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Background

An estimated 300 million individuals worldwide are affected by asthma 1. Asthma is 
characterized by airway inflammation, bronchial hyperresponsiveness and reversible 
airway obstruction. Several different inflammatory phenotypes have been identified in 
asthma, which are accompanied by different clinical characteristics 2. Sputum eosinophilia 
is associated with bronchial hyperresponsiveness, high FeNO and (specific) IgE levels. In 
addition, the presence of either neutrophils or eosinophils in sputum is associated with 
a decreased FEV1 3,4. These inflammatory phenotypes are identified by microscopically 
evaluating the percentages of neutrophils and eosinophils in sputum or by transcriptomic 
profiling of whole sputum samples 2,5,6. In addition to microscopic evaluation, cells obtained 
by sputum induction can be analysed by flow cytometry 7-11. Sputum granulocytes analysed 
by this technique have been shown to display an activated phenotype, with upregulation 
of markers for activation and degranulation on either neutrophils 11, eosinophils 12 or both 
13. However, currently there are no reports on in-depth analysis of activation markers 
comparing blood and sputum granulocytes using multi-dimensional analysis. In addition, 
no studies have been published that adequately compare sputum granulocyte expression 
profiles between patients with different asthma phenotypes. 

One single study did compare the expression levels of two classical activation markers 
between patients with moderate and severe asthma, but did not find a correlation between 
expression and disease severity 13. Transcriptomic profiling of whole blood and sputum 
samples showed upregulation of neutrophil defensins and proteases in the blood of 
neutrophilic asthma patients, and significant differences between sputum samples of patients 
with different asthma phenotypes 6,14. It is unknown, however, whether these differences 
reflect differences in expression of the granulocytes themselves or differences in cell numbers.

Traditionally, granulocyte activation markers include adhesion receptors such as the 
integrin Mac-1 (CD11b/CD18) and L-selectin (CD62L). Other activation markers described to 
be upregulated on circulating or sputum granulocytes from asthma patients are the CD11b 
activation epitope CBRM1/5 15 and the Intercellular Adhesion Molecule-1 (ICAM-1, CD54). The 
latter adhesion receptor was proposed as a therapeutic target for antigen-induced acute 
airway inflammation 16. The activation marker CD69, which is well known as a T-cell activation 
marker 17, was only shown to be upregulated on eosinophils from broncheoalveolar lavage 
(BAL) when compared to blood cells 15. 

Neutrophils and eosinophils possess different types of granules containing antimicrobial 
and pro-inflammatory proteins. For neutrophils, release of these proteins to the outside of 
the cell (degranulation) occurs sequentially in response to increasing strength of activation 
signals, with secretory vesicles degranulating by the most mild stimulus, followed by tertiary, 
specific and azurophilic granules 18-20. The marker for neutrophil tertiary- and eosinophil 
secretory granules (CD11b) was shown to be upregulated on cells from both BAL and sputum, 
compared to blood granulocytes 15. Markers for specific and azurophilic/crystalloid granules 
were shown to be upregulated on BAL and on sputum granulocytes in several diseases, but 
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so far not on sputum cells from asthma patients 15,21,22. Degranulation of neutrophil secretory 
vesicles was shown to occur already in the blood of asthma patients 23,24.

Another activation marker of interest, Programmed Death-Ligand 1 (PD-L1, CD274), has been 
implicated in a murine model of airway hyperresponsiveness 25. The immunomodulatory 
protein CD274 is not as well characterized in granulocytes as in lymphocytes, but was shown 
to be responsible for suppression of T-cell responses by interferon-γ stimulated neutrophils 26  
and is highly expressed in granulomas in the lungs of sarcoidosis patients, although its 
expression on granulocytes was not tested by flow cytometry 27. 

Up to now, all immunophenotyping of sputum cells has been performed by analysis of 
single-dimensional marker expression, which ignores the interaction between multiple 
markers. To overcome this issue, marker expressions and interactions can be studied using 
principal component analysis (PCA). PCA is a multivariate analysis method that detects 
systematic variability within multiple parameters and explores correlations between these 
parameters 28. It transforms datasets with a large number of measured parameters into a 
smaller number of parameters, called principal components. As the resulting smaller number 
of components is more easily interpreted, it is a preferred technique for analysis of large 
datasets and forms the basis of cluster approaches used to identify asthma phenotypes 29,30.

In this study we investigate differences in granulocyte activation and degranulation by flow 
cytometric evaluation of neutrophils and eosinophils isolated from blood and sputum of 
asthma patients with and without sputum eosinophilia, both by univariate and multivariate 
analysis.

Methods

Study population and ethics

This study was approved by the local medical ethics committee. Patients were recruited at 
the pulmonary outpatient clinic of the University Medical Centre Utrecht (Table 1 patient 
baseline characteristics) and gave written informed consent in accordance to the Declaration 
of Helsinki (seventh revision, Fortaleza, 2013). 

Patients were included according to the following criteria: age 18-75 years, having adult 
asthma defined by the GINA guidelines on clinical features (episodic shortness of breath, 
particularly at night and often accompanied by cough and wheezing) and reversibility 
of FEV1 upon inhalation of 400µg salbutamol (≥12% predicted or ≥200ml) and/or airway 
hyperresponsiveness to histamine (PC20 <8mg/ml) 1. Patient numbers were calculated 
to be able to distinguish medium effect sizes with a power of 0.8 and an α of 0.05 using 
G*Power 3.1.3 31. 

Exclusion criteria for the study were smoking in the last twelve months, a smoking history ≥10 
pack years, treatment with antibiotics <4 weeks ago or confirmed allergic bronchopulmonary 
aspergillosis. 
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Blood and sputum samples were stratified on presence or absence of sputum eosinophilia 
based on a cut-off value of three percent sputum eosinophils, as determined by differential 
count (described below). All samples were collected between 9AM and 1PM to minimize 
effects of diurnal variation such as found in FeNO and haematological parameters 32,33.

Lung function and clinical parameters
After inclusion of patients, the Asthma Control Questionnaire (ACQ) and Medication 
Adherence Report Scale (MARS) were filled out. FEV1 measurements were performed by 
peak flow measurement using the PiKo-1 (nSpire Health, Longmont, Co, USA) and FeNO 
was determined using NIOX MINO® (Aerocrine, Solna, Sweden) with an expiration time of 10 
seconds. Absolute blood eosinophil counts were calculated from percentages obtained by 
FACS-analysis (see below) and WBC counts obtained froma Cell-Dyn haematology analyser 
(Abbot Diagnostics, North Chicago, Il, USA).

Blood processing
Erythrocytes were lysed from sodium heparin blood using lysis buffer consisting of 
150  mM NH4Cl, 10  mM KHCO3 and 0.1  mM NA2EDTA dissolved in ddH2O. Resulting total 
leukocyte preparations were washed and resuspended in staining buffer consisting of PBS 
supplemented with trisodium citrate (0.32% w/v) (both prepared by the UMCU pharmacy) 
and human pasteurized plasma solution (10% w/v, Sanquin, Amsterdam, the Netherlands).

Sputum induction and processing
Sputum was induced by inhalation of 0.9-5% saline aerosols and processed as published 
previously using Sputolysin prepared from a 10x stock (Merck Millipore, Darmstadt, Germany) 
and supplemented with NaCl to reach an osmolarity of 280-290mOsm 34,35. Cytospin slides 
of sputum cells were stained with May-Grünwald-Giemsa for differential cell count. Samples 
containing >80% squamous epithelial cells were excluded from analysis. Percentages of 
cells in sputum were calculated after exclusion of squamous epithelial cells 36. Remaining 
cells were resuspended in staining buffer for FACS staining procedure.

Flow cytometry
Samples were stained with antibodies for 30 minutes on ice at a maximum concentration 
of 5x106 cells/ml and washed twice before analysis on a Gallios flow cytometer (Beckman 
Coulter, Pasadena, CA, USA). 

Granulocytes in blood were identified based on FSC/SSC (Figure 1A) and CD16 was 
used to differentiate into neutrophils (CD16bright) and eosinophils (CD16dim). For sputum 
samples a different sorting strategy was chosen due to the presence of epithelial cells and 
alveolar macrophages with a high SSC. Epithelial cells do not express CD11b and alveolar 
macrophages are highly autofluorescent at emission wavelengths of around 450nm when 
excited by a 405nm laser. Therefore, after exclusion of debris on FSC/SSC, granulocytes 
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were identified as CD11bbright and 405/450nm-autofluorescencedim. Subsequently, they were 
differentiated into neutrophils and eosinophils based on CD16 expression and SSC. Analysis 
was performed on at least 250 neutrophils/eosinophils. Degranulation of neutrophils was 
measured using CR1 (CD35), integrin αM (CD11b), CEACAM-8 (CD66b) and LAMP-3 (CD63) 
antibodies for secretory, tertiary, specific, and azurophilic, respectively 19. For eosinophils, 
LAMP-3 was used as a marker for crystalloid (specific/secondary) granule degranulation 37 
and CD11b as a marker for secretory (sombrero) vesicles 20. Since CD63 is also expressed 
on activated platelets, its expression was only determined on cells negative for platelet 
marker CD41 38.

Antibodies used were CD11b-APC-Alexa750 (clone Bear1), CD16-Krome Orange (3G8), 
CD274-PeCy7 (PDL1.3.1) and CD62L-ECD (DREG56) from Beckman Coulter (Pasadena, CA, 
USA), CD35-FITC (E11) from Biolegend (San Diego, CA, USA. CD63-PE (H5C6), CD69-PeCy7 
(FN50), IgG1 isotype control-PE (X40), IgG2a isotype control-FITC (X39) and the Annexin-V 
PE apoptosis kit I from BD (San Jose, CA, USA), active CD11b-Alexa700 (CBRM1/5) from 

Figure 1: Gating strategy to identify sputum granulocytes.

A. A FSC/SSC gate is used to exclude most debris and lymphocytes. B. Subsequently, cells positive for 
CD11b and negative for ~450nm autofluorescence were gated to exclude residual lymphocytes and 
alveolar macrophages (which are highly autofluorescent). C. The resulting granulocytes were subdivided 
in neutrophils and eosinophils based on SSC and expression of CD16. D. The resulting neutrophil and 
eosinophil population show FSC/SSC patterns similar to those in blood, with a higher SSC for eosinophils 
and higher FSC for neutrophils.
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eBiosciences (San Diego, CA, USA), CD54-PE (MEM-111) from EXBIO Praha (Vestec, Czech 
Republic) and CD41-FITC (VIPL3) from Life Technologies (Carlsbad, CA, USA).

Data analysis and representation
FCS express 4.0 (De Novo Software, Los Angeles, CA, USA) was used for evaluation of flow 
cytometric data and determination of median fluorescence intensities. Data were plotted 
as boxes representing median +/-IQR with error bars plotted according to Tukey’s method 
in Prism 6.04 (GraphPad Software, La Jolla, CA, USA). Statistical analysis was performed in 
SPSS Statistics 22 (IBM, Armonk, NY, USA). Samples were compared using multiple Wilcoxon-
Mann-Whitney tests or Related-samples Wilcoxon signed-rank tests where applicable. 
Correction for multiple testing was performed using the Bonferroni Method. Correlations 
between parameters were determined using Spearman’s Correlation Coefficient. 

Principal Component Analysis (PCA), was performed as described extensively elsewhere 28.  
In short, PCA was performed on the MFIs of all measured parameters (except isotype controls) 
using SPSS Statistics 22. MFIs were classified as numerical data, missing values were mode 
imputed and discretization was used. Scree plots (not shown) were used to determine the 
required amount of components. Data points with object scores of >3.5 and <-3.5 were 
considered as outliers and excluded from the analysis. Graphs of object scores and loading 
plots were made in Prism 6.04.

Results

Patient characteristics

Sputum and blood samples were obtained from 21 patients (Table 1 patient baseline 
characteristics). Thirteen patients (68%) had more than 3% eosinophils in their sputum 
samples. This sputum eosinophilia was accompanied by higher eosinophil counts in 
peripheral blood (p=0.007), less well controlled asthma (p=0.035) and trends toward higher 
FeNO, more medication use and lower absolute FEV1 (p=0.09, 0.09 and 0.053, respectively).

Viability of sputum granulocytes

After processing of a sputum sample, the viability of the cells in the sample was determined 
by Annexin-V and 7-AAD staining 39. Sputum neutrophils and eosinophils were typically 90-
95% alive (Figure 2) and 5-10% necrotic or late apoptotic. Less than 1% of sputum cells 
was Annexin-V single positive and, thus, early apoptotic.

Expression of activation markers in blood and sputum

Both neutrophils and eosinophils showed an activated phenotype in sputum compared to 
blood (Figure 3 and Supplementary Figure S1). CD62L was shed from sputum neutrophils 
and eosinophils. An increased CD69 expression was found only on sputum eosinophils, 
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whereas CD11b, CBRM1/5 and CD274 were upregulated on both cell types. Expression of 
CD54 was not detected, irrespective of cell or sampling location. Increased expression of 
markers for tertiary (CD11b), specific (CD66b) and azurophilic/crystalloid (CD63) granules 
indicated a highly degranulated state for sputum granulocytes. 

In contrast to the marked differences in expression patterns between blood and sputum 
granulocytes, no significant differences were detected when comparing expression levels of 
markers on blood and sputum cells isolated from individuals with high and low eosinophil 
counts in sputum (Figure 4). In addition, no significant correlations were found between 
ACQ score, FEV1 (percentage predicted and/or absolute value) and expression of any of the 
granulocyte markers (data not shown). Due to the absence or small numbers of eosinophils 

Table 1: Patient baseline characteristics at time of sputum induction grouped for sputum 
eosinophilia

>3% sputum eo <3% sputum eo p-value *

Number 13 8 NA

Gender M/F 9/4 4/4 0.88

Age (years) 45 (19-66) 47 (25-54) 0.45

BMI (kg/m2) 27 (22-35) 27 (22-32) 0.885

FeNO (ppb) 32 (16-215) 23 (12-42) 0.09

ACQ score 2.3 (0.0-4.4) 1.3 (0.14-2.0) 0.035

Blood Eosinophil Count (109/mL) 0.68 (0.1-1.2) 0.18 (0.0-0.5) 0.007

Medication † 4 (3-5) 3.5 (0-4) 0.09

FEV1 (L) 2.4 (1.5-3.9) 3.5 (2.3-4.0) 0.053

FEV1 (% predicted) 76 (61-105) 89 (61-113) 0.16

Reversibility FEV1 ‡ 0.47 (0.0-16.6) 0.43 (0.0-4.9) 0.46

Sputum eosinophils (%) § 29 (3-82) 0 (0-1) NA

Sputum neutrophils (%) § 39 (10-77) 49 (19-83) 0.41

Values are medians +/- range unless indicated otherwise.
* Based on Wilcoxon-Mann-Whitney test or Fisher’s exact test where appropriate.
† 5-point ordinal scale based on guidelines of the British Thoracic Society, with 0) no medication, 1) inhaled SABA 
when required 2) low dose ICS + SABA 3) low/medium dose ICS + LABA, or medium dose ICS + LABA 4) High dose 
ICS +/- LABA and leukotrien receptor antagonist test and 5) High dose ICS + OCS +/- LABA.
‡ Percentage reversibility in FEV1 (corrected for age, gender, length and bodyweight) after inhalation of 2x 100μg 
salbutamol.
§ As determined by microscopic evaluation.
Abbreviations: BMI: body mass index, FeNO: forced exhaled nitric oxide, ACQ: Asthma Control Questionnaire, FEV1: 
Forced Expiratory Volume in 1 sec, NA: Not applicable.
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Figure 2: Viability of sputum granulocytes.

Sputum cells are typically >90% viable, with <1% early apoptotic Annexin-V single positive cells and the 
remainder being necrotic or late apoptotic. Bars depict means with SD patients with (n=13) and without (n=8) 
sputum eosinophilia.

in patients with <3% sputum eosinophils surface marker expressions of these cells could 
not be sufficiently compared between patient groups.

Principal component analysis (PCA)

PCA was performed on the neutrophil data and eosinophil data for the patients with 
adequate numbers of sputum eosinophils (Figure 5). Scree plots (not shown) indicated 
that all PCAs comparing blood and sputum samples required 2 components and the PCA 
comparing the two asthma phenotypes required 4 components.

PC1 accurately separates samples from blood and sputum for both neutrophils (Figure 5A) 
and eosinophils (Figure 5B), demonstrating that receptor expression profiles differ between 
sampling locations. The first principal component accounted for a total of 55% and 52% 
of the variation in receptor expression for neutrophils and eosinophils, respectively. PC2 
described a further 16% and 23% of the variation.

In contrast, none of the four principal components distinguished between patients with or 
without eosinophils in their sputum after PCA on the combined data of blood eosinophils, 
blood neutrophils and sputum neutrophils (Figure 5C). Separate PCA of surface marker 
data for blood eosinophils, blood neutrophils and sputum neutrophils did not distinguish 
between patient groups either (Supplementary Figure S2).
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Figure 3: Expression profiles of blood granulocytes compared to sputum.

Expression of activation markers on blood and sputum neutrophils (A-C, N=21) and eosinophils (E-F, N=13). Since 
CD11b is both a classical activation marker and a marker for degranulation of tertiary granules, it is displayed 
twice. Boxes represent medians +/- IQR with whiskers of 1.5 IQR as according to Tukey’s method. Light grey fills 
represent data points below the isotype control median measured on blood granulocytes.
* indicates p<0.05, ** p<0.001 significant diff erences between blood and sputum as determined by multiple 
Wilcoxon signed-rank test corrected for multiplicity by Bonferroni correction.
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Figure 4: Expression profiles of sputum granulocytes in patients with presence of absence of 
sputum eosinophilia.

Expression profiles of (A) blood neutrophils, (B) blood eosinophils and (C) sputum neutrophils are similar 
in patients with presence or absence of sputum eosinophilia. Boxes represent medians +/- IQR with whiskers 
of 1.5 IQR, as according to Tukey’s method. Light grey fills indicate values below the median isotype control. 
No statistically significant diff erences were found as determined by multiple Wilcoxon-Mann-Whitney tests with 
Bonferroni correction (p<0.05 aft er multiplicity correction).
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Figure 5: Multi-dimensional analysis of flow cytometric data.

Object scores of each patient (left ) and loading plots of each marker (right) aft er PCA of receptor expression 
levels on blood and sputum neutrophils (A) and eosinophils (B). Dashed lines originate from the mean object 
scores of a group. In A and B PC1 shows a clear separation between blood and sputum cell types with some 
residual variation explained by PC2. Loading plots indicate the contribution of each marker to a PC, with a large 
distance from 0 indicating a large influence. Markers which are not (diff erently) expressed remain close to zero 
on the x-axis, and therefore play little role in PC 1. Markers upregulated in sputum have positive values for PC1 
(e.g. CD11b), whereas downregulated markers (CD62L) have negative values. PCA did not discriminate between 
patient groups (C) in any of the four components. Group sizes were 21 (A), 13 (B) and 21 (C).
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Discussion

In our study, asthma patients (n=21) were characterized by presence or absence of 
sputum eosinophilia (>3% eosinophils: n=13, <3%: n=8). The two patient groups showed 
clear differences in clinical parameters. Patients with sputum eosinophilia had (1) more 
uncontrolled asthma, (2) blood eosinophilia, and (3) trends towards higher FeNO, increased 
medication use and lower FEV1. 

However, there were no differences in the expression of activation and degranulation 
markers between the two patient groups. No correlations were found between surface 
expression markers and markers of disease severity such as ACQ or FEV1. Post hoc analysis of 
the correlations for each marker revealed a median effect size r of 0.146 (range 0.032-0.345), 
indicating that any effects missed due to the small sample size would have been small. 
Therefore, we conclude that activation or degranulation of granulocytes in both blood and 
sputum are not associated with clinical differences in eosinophilic and non-eosinophilic 
asthma, defined by sputum analysis. The absence of differences in marker expressions on 
sputum neutrophils is in line with the finding of an activated phenotype of neutrophils in the 
BAL of both healthy volunteers and COPD patients 40 and supports the hypothesis that the 
process of recruitment to the airways leads to granulocyte activation. Our results do confirm 
that sputum granulocytes have increased expression of the classical activation marker 
CD11b and decreased CD62L expression 8,10-13. Both neutrophils and eosinophils display 
a highly degranulated phenotype, with upregulation of markers for tertiary, specific and 
azurophilic granules on neutrophils, and crystalloid and secretory granules on eosinophils. 
Interestingly, the expression of secretory granule marker CR1 (CD35) was already high on 
blood cells and did not increase further on sputum cells. This can be explained by the fact 
that secretory vesicles are the first to fuse with the membrane and that in the peripheral 
blood of asthma patients this process has already taken place 23,24. Alternatively, CR1 may 
have been shed from the cell surface, as described in other diseases 41.

CD54 has been described as an eosinophil activation marker 42,43, which is expressed 
on sputum eosinophils 12. However, in line with another study 8, we did not detect CD54 
expression on sputum granulocytes, whilst using the same antibody clone (MEM-111). The 
reason for this discrepancy remains to be elucidated. We show CD69 to be an activation 
marker expressed on sputum eosinophils, just as found on BAL eosinophils 15.

Another important finding is the high upregulation of immune-regulatory protein CD274 
on sputum neutrophils, and to a lesser extent on eosinophils (see Figure 3). Immune 
suppressive blood neutrophils have been shown to upregulate mRNA for this marker 
during acute inflammation and employ it for suppression of T-cell proliferation 26. In the 
lungs, these cells cannot be as easily identified, as cells have shed CD62L after leaving the 
bloodstream, but the expression of CD274 does support the view that sputum neutrophils 
might have a suppressive phenotype. Interestingly, high expression has also been found 
in sarcoid lung granulomas, even though the expression of CD274 on neutrophils was not 
studied specifically. In addition, blockade of PD-1 (the receptor for CD274) pathway restores 
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T-cell functioning in vitro 27. In conclusion, the expression of CD274 in the lungs of asthmatic 
patients favours the hypothesis that sputum cells can modulate inflammation in asthma 
rather than merely causing tissue damage and perpetuation of the inflammatory response.

In conclusion, granulocytes in sputum display a highly activated and degranulated 
phenotype compared to granulocytes in peripheral blood. However, sputum granulocytes 
receptor profiles do not differ in presence or absence of sputum eosinophilia in patients 
with asthma. Furthermore, we found the immune-inhibitory protein CD274 to be specifically 
expressed on sputum cells, supporting the hypothesis that sputum granulocytes can have 
an immune-modulatory instead of a detrimental role in asthma.
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Supplementary Figures

Supplementary Figure S1: Representative histograms of all measured markers in blood (red) and 
sputum (blue).

Solid lines (and filled areas) represent the relevant marker/antibody, dashed lines indicate isotype controls. 
Histograms are binned and normalized for peak values. The horizontal axes display the labels’ intensities on a 
logarithmic scale, and the vertical axes the normalized number of cells.
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Supplementary Figure S2: Object scores on PCA of marker expression for cell type and source.

PCA was performed on (A) blood neutrophils, (B) sputum neutrophils and (C) sputum eosinophils separately. 
None of these analyses was able to discriminate between patient groups. Dashed lines originate from the median 
object score of the two patient groups. N=13 for >3% sputum eosinophils and N=8 for <3% sputum eosinophils.
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Abstract

Multi-color Flow Cytometry (MFC) is widely used for single-cell analysis and employs 
a vastly increasing number of markers. It can be used for disease diagnosis, research 
of disease mechanisms and the identification and isolation of individual cells based 
on their surface marker profile. However, data analysis methods exploiting all these 
advantages are lacking. Our novel FLow cytometric Orthogonal Orientation for Diagnosis 
(FLOOD) method reveals disease specific marker patterns. The method constructs a 
benchmark from surface marker abundances that is used to highlight deviations of 
challenged from unchallenged individuals. We demonstrate its power in an in vivo 
study of the response of healthy humans to lipopolysaccharide (LPS) challenge. FLOOD 
reveals a reproducible pattern of challenge specific markers on blood neutrophils. The 
method both provides new mechanistic insights and confirms established knowledge 
on LPS-response, which demonstrates the high potential of FLOOD for both clinical 
and research application.
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Introduction

Multi-color Flow Cytometry (MFC) has become indispensable for characterization of 
individual cells in immunological or disease-mechanistic studies 1. Its use increasingly 
extends to disease diagnosis 2,3, where it has been crucial for decades in phenotyping 
monoclonal diseases such as myeloid leukemia and gradually became promising for 
phenotyping heterogeneous diseases. The ’single-cell heterogeneity’ 4,5 concept was 
proposed to classify tumors based on the differences between individual cells. This concept 
is considered a novel frontier in unbiased diagnostic approaches to better characterize 
human diseases. The potential to analyse an increasing diversity of fluorescently labeled 
antibodies that bind to specific binding sites on single cells 6,7, so-called ‘deep-profiling’ 8, 
will bring MFC up to par with other broad-spectrum ‘omics’ technologies 9-11. MFC thereby 
calls for multivariate, unbiased analysis of correlations of cell-marker abundances.  

MFC data reflect the abundance of multiple selected markers attached to binding sites 
on each cell; the fluorescence intensity and diversity of the markers used to detect the 
selected binding sites reflect the cellular functional characteristics. The data from one 
sample thereby comprises a large number of such single-cell marker readouts: a high-
dimensional, multi-cellular ‘marker profile’. The multivariate data analysis of these profiles 
is of strongly emerging interest and importance 12-14, specifically in personalized diagnosis 
and monitoring as well as in research of disease mechanisms. Multivariate methods may 
facilitate visualization of high-dimensional data, and at the same time reveal relationships 
between the measured characteristics that otherwise remain hidden. 

Conventionally, MFC data is interpreted through ‘bivariate’ scatter plots that compare 
fluorescence intensities of two cell-bound markers for each cell within a sample. Cells can 
then be selected —‘gated’— for subsequent analysis 15. This strategy can however not be 
conveniently used to compare intensities of more than two markers simultaneously, which 
makes the use of multivariate methods essential. 

Several dedicated multivariate data analysis methods have been used in MFC, such as 
Hierarchical Cluster Analysis in hematological oncology 16,17 and the immune response to 
tetanus 18. Methods have even been specifically designed for MFC data, such as Spanning-
Tree Progression Analysis of Density-normalized Events (SPADE) 2 and cellular hieraRCHY 
OPTIMization (RchyOptimyx) 19. These methods rely, however, on prior knowledge about 
underlying immunological mechanisms. Flow Analysis with Automated Multivariate 
Estimation (FLAME) 20 constructs discrete cell populations from mixtures of cells, but does 
not reveal comprehensive relations between markers relevant to the disease mechanism. 
Frequency Difference Gating constructs differential MFC profiles between different groups 
of samples, however also without quantifying the underlying correlations between surface 
markers 21.

Hence, there is a strong need for a MFC data analysis method that simultaneously describes 
the role of each marker in the multi-cellular profile and uses the correlations between 
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the markers to facilitate data interpretation specifically for diagnosis. A method called 
Fisher Information Nonparametric Embedding (FINE) was used for the diagnosis of acute 
lymphoblastic leukemia from a population that exhibited expansion of physiologic B-cell 
precursors 22. FINE transcends the single-cell level for a dedicated description of the diagnosis 
of patients, although this requires tedious a posteriori examination of the single-cell data 
to discover the disease-associated surface markers. 

The viSNE 23 method uses the same principle of dimension reduction to represent the 
multivariate surface marker profiles, but provides merely a bivariate representation of 
the similarities between single cells. Using viSNE, healthy bone marrow could clearly be 
distinguished from leukemic bone marrow. However, because viSNE is inherently nonlinear, 
the multivariate relationships between different surface markers remain unexploited and 
abstractly hidden within the model. This leaves such information out of reach for biomedical 
interpretation. 

In the field of chemometric analysis of omics data 24,25, linear dimension reduction techniques 25  
have proven highly fruitful 26-28. Principal Component Analysis (PCA) 29 is the most-widely 
used dimension reduction method. PCA models describe the single-cell heterogeneity 
observed in a sample (or in multiple samples), based on the most prominent multivariate 
correlations between intensities of different surface markers and have already found their 
way in several highly innovative MFC studies 13,30-33. However, as PCA aims to describe all 
variation across the full complement of cells, it may leave highly relevant patterns that are 
specific to an immune response unexploited 34. This may be the case for patterns that are 
concealed, for instance by biological variation. 

Several methods have been developed that use external experimental or biological 
information to focus PCA more on relevant information in high-dimensional biological data. 
They take into account the experimental design of the study and other prior knowledge 
of the samples, such as time after treatment or disease state of the individual 35,36. Such 
focused PCA-derived methods may reveal biologically relevant patterns within the data 
that otherwise remain hidden 35,37. 

Here we present FLow cytometric Orthogonal Orientation for Diagnosis (FLOOD), a PCA-
based method specifically developed to investigate and monitor immune responses within 
multi-cellular MFC surface marker profiles of multiple individuals. The main hypothesis 
that underlies the FLOOD method is that crucial diagnostic information resides in how 
an individual moves away from a ‘normal situation’ upon confrontation with a challenge. 
Therefore, the crucial first step in FLOOD is to model cell-to-cell variability in a ‘normal’ 
situation without any challenge. Subsequent steps then investigate, from different 
perspectives, how the cell-to-cell variability within challenged individuals differs from 
the normal situation. We show how focusing upon and investigating differences provides 
unprecedented diagnostic information and disease understanding. The use of the specific 
PCA features that allow unraveling the underlying correlations is instrumental in the 
interpretation. FLOOD thereby provides valuable multivariate patterns of challenge-specific 
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variability among the interrogated surface markers on individual cells. These patterns 
facilitate gating for diagnosis or further research. 

To demonstrate FLOOD, we compare the MFC surface marker profiles of eight individuals that 
were challenged with Lipopolysaccharides (LPS) with those of eight healthy, unchallenged 
individuals.

Materials and methods

Flow Cytometry measurements were performed during an endotoxin trial (NCT01374711; 
www.clinicaltrials.gov). Details regarding the Flow Cytometry experiments that provided the 
data to illustrate the method are described in the Online Supplement I; source data can be 
accessed through flowrepository.org ID: FR-FCM-ZZJ3. 

FLow cytometric Orthogonal Orientation for Diagnosis (FLOOD)

FLOOD uses multiple steps to systematically distinguish unchallenged from challenged 
individuals, using the responses observed in single cells. Figure 1 contains a simplified 
schematic representation of the method that reveals the most relevant aspects of the model. 
It demonstrates FLOOD analysis of a hypothetical data set in which the intensities of three 
surface markers were measured on a multitude of cells. These three surface marker axes 
are designated by three vectors I-III in Figure 1A.

Section I: The Control space
The first, crucial step of FLOOD is to model the surface marker profiles of unchallenged 
individuals by PCA (Figure 1A). This model provides ‘Control scores’ for each cell from an 
unchallenged individual. The distribution of these scores is represented as a grey cloud 
in the figure and describes the single-cell heterogeneity in surface marker composition of 
this individual. This is expressed in a Control space, represented by the two-dimensional 
black parallelogram. This space captures as much of the cell-to-cell variability on these 
three surface markers as possible. When the expression of more than three different 
surface markers has been measured on the cells, the Control space may have more than 
two dimensions. 

The surface marker vectors I-III (Figure 1A) are projected onto the Control space. The 
direction and length of the resulting projections—called ‘loadings’ in PCA— reflect the 
contribution of each marker to the cell-to-cell variability in the Control space. The length 
of the corresponding projected vector reflects this. The cells that are positioned in the 
direction of the vector projection of a specific surface marker, exhibit an above-average 
expression of this marker. The correspondence between the directions of different projected 
vectors indicates whether the abundance of the corresponding markers is positively (same 
direction) or negatively (opposite direction) correlated. 
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Figure 1: Schematic representation of FLOOD with three hypothetical surface markers.

A. ‘Control’ PCA model with the surface marker profile of an unchallenged individual. The grey cloud contains 
the Control scores that span as much variability among the cells as possible in a low number of dimensions (here 
two). The vectors (thin solid arrows) indicate the intensity distribution on each of the three surface markers I, II 
and III. The dashed vectors are the loadings of these markers obtained by projection of the marker vectors on the 
two-dimensional Control space. 

B. The white area represents the surface marker profile of a challenged individual. Projection of this area on 
the Control space defined by the Control loading vectors (thick solid white arrows) results in the grey Control 
score area. For comparison, the contour of the Control scores of the unchallenged individual from panel A 
is displayed as a continuous grey circular line. When determined for all unchallenged individuals, this is the 
Control benchmark. The projection of the surface marker distribution of the challenged individual also renders 
a ‘residual’ space that is orthogonal to the Control space. This space is one-dimensional in this example and is 
indicated by the dashed thick arrow. The residual space would have more than one dimension for MCF analyses 
with more than three surface markers. 

C. The residual surface marker information of each cell not described by the projection on the Control space, i.e. 
in the vertical direction in this example, is then described by a ‘Response’ PCA model. The scores that result from 
this projection of the residuals on the Response space of reduced dimensionality are indicated by the dots on the 
solid vertical arrow (one-dimensional response space). They explain as much remaining variability among cells 
of challenged individuals as possible. Although not shown here, the original surface marker vectors from panel 
A may also be projected on this space to reveal the most prominent correlations between them in the Response 
space as Response loadings. The grey area represents the surface marker profile of the challenged individual; the 
thin white dotted arrows indicate the Control loading vectors. 

D. ‘Biplot’ of the Control space, i.e. analogous to panel A, for the LPS data obtained on a typical unchallenged 
control individual. The brightness represents the abundance of cells scoring at that position. The white dotted 
outline encircles 80% of its scores. The thick solid cyan outline corresponds to the collective ‘Control benchmark’ 
that encircles 80% of cells in all unchallenged individuals. The arrows represent the loading vectors of each 
surface marker.
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The Control space can be determined on the surface marker profiles of more than one 
unchallenged individual, by capturing normal cell-to-cell variability among individuals. This 
collected variability is expressed as a ‘Control benchmark’ that describes the variability in 
surface marker expression among cells in unchallenged individuals. 

Section II: The Response space: Investigation of cell-to-cell variability introduced by the 
challenge
The second step of FLOOD then orthogonally projects the surface marker profiles of challenged 
individuals onto the Control space (Figure 1B, for one individual), providing Control scores 
that describe single-cell heterogeneity observed in challenged individuals. This step facilitates 
direct and quantitative comparison with the variability in the Control benchmark 38. 

The projection on the Control space describes the cell-to-cell variability within challenged 
individuals only partly, because the loadings of the Control space do not fully describe the 
surface marker correlations observed in challenged individuals. This ‘residual’ cell-to-cell 
variability, present only in challenged individuals, is orthogonal to the Control space.

The third step of FLOOD (Figure 1C) explores the response-specific cell-to-cell variability 
by describing multivariate correlations among surface markers in the orthogonal direction 
by a second PCA model. This provides a second, ‘Response’ space that is again spanned 
by loading vectors that reveal surface marker correlations. However, these correlations are 
only observed in the cell-to-cell variability within challenged individuals. The ‘Response’ 
scores thus describe the contribution of each cell to this challenge-specific variability. Since 
the schematic example is limited to only three surface markers and the Control space is 
two-dimensional, this Response space can only have one dimension. For more than three 
measured surface markers, also the Response space may be higher-dimensional and the 
Response model may have residuals, like the Control space. 

In the last step we construct a ‘normal’ benchmark in the Response space. This is necessary 
because also in the control population there will be a (small) amount of cells that exhibit 
a profile that is similar to the typical response profile. To construct a normal benchmark 
the cell-to-cell variability of unchallenged individuals is projected onto the Response space 
(This variability was not captured in the Control space and therefore not depicted in Figure 
1A). The resulting benchmark of ‘unchallenged’ single-cell heterogeneity in the Response 
model is used as a second standard to directly and quantitatively compare the Response 
scores of challenged individuals against.  

FLOOD can model a virtually unlimited number of cell characteristics simultaneously, 
simplifying their representation and extracting challenge-specific correlations. The 
Supplementary material contains the mathematical representation of the FLOOD algorithm. 
The schematic representation already shows one of the very strong aspects of PCA, which 
has not yet been applied to MFC data analysis to such extent. Unlike viSNE and the other 
advanced methods mentioned before, PCA allows simultaneous representation of the 
single-cell scores and the surface marker loading vectors in a ‘biplot’ 39. Figure 1D gives 
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such a plot for the Control space of an unchallenged individual. Cells in the score plot that 
are positioned in the direction of a loading vector display relatively high abundances of the 
corresponding surface marker. Cells positioned in the bottom right of the cloud in Figure 
1D have a correlated high abundance in the expression of the integrin alpha chain of MAC-
1 (CD11b) and integrin alpha X chain, component 3 of complement receptor 4 (CD11c). 
Analogously, cells to the bottom left have a low abundance of FcγRIII (CD16) and L-selectin 
(CD62L) as these loadings both direct to the opposite, top right. The length of each loading 
vector indicates how large the variability associated to each surface marker is within the 
lower-dimensional Control or Response space depicted in the biplots.

The dotted grey ‘benchmark’ line in Figure 1D encircles the heterogeneity among the 80% 
of cells that deviate least from the average surface marker composition of that specific 
individual. This line is constructed by dividing the model space in 100 x 100 equally spaced 
bins and counting how many cells each bin contains. After the resulting 2D histogram is 
smoothed 39, the bins with the lowest cell counts are discarded until the remaining bins 
contain 80% of all cells of that individual; the dotted grey line encircles these bins. The 
empirical threshold of 80% prevents excluding potentially interesting regions with relatively 
few cells. It also avoids including bins with strongly deviating surface marker patterns that 
contain only few cells. 

The thick circular line analogously encircles 80% of the cells of all unchallenged individuals, 
to serve as the aforementioned Control benchmark to compare against surface marker 
profiles of challenged individuals. We determined the 80% threshold to reveal the largest 
difference in shape and area between the ‘unchallenged’ benchmark and the lines that 
encircle the Control scores of the challenged individuals (see Figure 1 of the Supplementary 
Material section II). The supplementary material includes a sensitivity analysis of the most 
important model results for this threshold value. The independent reproducibility of these 
shapes was statistically validated by cross-validation 24, in which data of each individual 
was used once as a test set. The data of the individual in the test set was removed from 
the data set before PCA and projected post-hoc to establish whether similar observations 
could be done without the corresponding data influencing the constructed model. The 
cross-validation confirmed the robustness of both the Control and the Response model.

Results

The comparison of conventional bivariate histograms of data from an LPS-challenged and 
an unchallenged individual (Figure 2) indicates that LPS challenge results in the appearance 
of CD62LdimCD16bright and CD62Lbright-CD16dim cells. However, earlier studies already describe 
differential expression of several other surface markers involved in this response, using 
conventional uni- and bivariate interpretation of the same data 40.
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FLOOD model

The first step of FLOOD (Figure 1A) provides the biplot of the Control space spanned by 
the single-cell heterogeneity of unchallenged individuals (Figure 1D). The subsequent 
projection of Surface Marker Profiles of challenged individuals is shown in Figure 3. Many 
of the cells from this typical challenged individual project outside the confinements of the 
ellipsoid Control benchmark and hence have deviating surface marker profiles compared 
to unchallenged individuals. The ‘bean-like’ shape of the projection of single-cell surface 
profiles is characteristic of the mis-fit of the Control model to the data from challenged 
individuals. The 80% Confidence Interval is well-reproducible between challenged 
individuals, as the continuous grey lines indicate (Figure 3).

Many of the cells of the challenged individual lie outside the benchmark in the direction of 
the loadings of CD11b and CD11c, indicating a larger variability in the abundance of these 
markers. In a similar way, the opposite direction of the left-hand lobe of the bean indicates 
down-regulation of CD16.

Mis-fits specific to the LPS response are not reflected in the position of the Control scores of 
cells from challenged individuals alone, as the associated loadings only contain correlations 
among surface markers present in unchallenged individuals. Correlations that emerge or 
disappear upon response, lie outside the Control space and are therefore contained in 
the Control residuals. Cells of challenged individuals may have large residuals even when 
positioned inside the Control benchmark.

The contours of the projections of the cell populations from challenged individuals on the 
Response space (Figure 4) show that also in this model the scores exhibit a shape that 
is highly reproducible among challenged individuals. The Response loadings show the 

Figure 2: Bivariate histograms of granulocytes plotting CD62L vs CD16 expression.

A: without LPS challenge. B aft er LPS challenge. Abundance of cells is indicated using ‘false colours’ (in increasing 
order: red-yellow-green- blue-purple).
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LPS response-specific surface marker information for each cell. The Response loadings 
of markers CD11b and specifically CD11c are relatively small, which indicates that there is 
relatively little variability in the abundance of these markers upon LPS challenge that was 
not captured in the Control space. The Control loading of surface marker CD69 is much 
smaller than the Response loading, which indicates that it varies only slightly among 
cells of unchallenged individuals but considerably more upon LPS response. The vertical 
orientation of the loading indicates that it is mostly related to an increase in abundance of 
this surface marker on cells projecting in the left lobe of the bean shape.

The Response loadings of markers CD62L and CD16 are oppositely directed, which implies 
that their abundances are negatively correlated among cells of challenged individuals. This 
negative correlation is in contrast to the more positive correlation among both surface 
markers in the Control space. The positive correlation in the Control model added to the 
negative correlation in the Response model results in the mutually independent expression 
of both surface markers observed in the bivariate scatter plot after LPS (Figure 2B). The 
Response loadings, specifically when interpreted together with their Control counterparts, 
provide advanced insight in the correlations among surface markers that emerge, disappear 
and otherwise change upon LPS response.

Figure 3: Control model biplot for a typical LPS-challenged individual.

Bright white areas indicate high cell densities. Yellow arrows represent surface marker loadings. The dotted white 
line indicates the 80% confidence interval (CI) for this individual. Solid white lines indicate 80% CIs for other LPS 
challenged individuals. The solid cyan line represents the 80% CI across all unchallenged individuals.
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The projection of the cells from challenged individuals compared to the Response bench-
mark of unchallenged individuals indicates that the single-cell heterogeneity in challenged 
individuals increases upon response. Many cells lie outside this benchmark and are, 
therefore, likely LPS response-related. Note that the shape of the Control benchmark of 
the unchallenged individuals is also circular. Again, the Response scores of challenged 
individuals lie outside the Response benchmark for the unchallenged individuals, in two 
directions. Whether these two protruding groups consist of the same cells as those identified 
in the Control space can be investigated by gating the scores within both spaces. 

Cross-validation and Gating 

Figure 5 shows the FLOOD model results of one challenged individual in the Control space 
(Figure 5.1) and in the Response space (Figure 5.3). All results were obtained by a leave-
one-out cross-validation protocol; the data of the plotted individual were excluded before 
generation of the FLOOD model. The Control scores of the challenged individual may be 
divided into three separate gates. The green cells are enclosed by the Control benchmark 
in a central gate b. Those cells that lie outside the Control benchmark yet inside the 80% 

Figure 4: Response model biplot for a typical LPS-challenged individual.

Including individual-specific 80% CI for all LPS-challenged individuals (solid white lines, the dotted line 
corresponds to the typical individual). All LPS-challenged individuals exceed the Response benchmark (solid 
cyan line) defined by all unchallenged individuals. They have a consistent shape..
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contour line that encloses the cell scores of that individual are assigned to two additional 
gates (a and c in Figure 5.1). The average surface marker expression of the cells within 
these three gates differs for almost all seven surface markers (Figure 5.2). In the Response 
model, the cells also score into three distinct gates (Figure 5.3).

The supplementary material (Section II, Table S1) shows the results of projection of the 
data of each individual, analogous to Figures 5.1 and 5.3. The projections in the Response 
space were obtained according to the leave-one-out method described above. The median 
surface marker expression of the cells within the three gates shown in Table S1 of that 
Section are shown in Table S2 of the same Supplementary Material section. Comparison 
of these results for the Control model shows that the differences between surface marker 
intensities of the gates are highly consistent across individuals. A similar observation is 
made for the results of gating from the projections in the Response model. Thus, Tables S1 
and S2 in Supplementary Material II present the cross-validation of the method. A further 
comparison of the patterns in Table S2 between the Control and the Response model 
also shows the close association between the gates defined in both models. These gates 
therefore contain highly similar sub-populations.  

Gate b in Figure 5.3 encloses the cells within the Response benchmark and contains 68% 
of all cells measured for that individual. These cells have surface marker profiles that are 
indistinguishable from cells of unchallenged individuals and are therefore likely fully mature 
neutrophils. Gates a and c each contain 10-12% of the neutrophils of that same individual. 

Figure 5: Gating based on FLOOD.

Panel 1: Gating of the Control scores of a typical challenged individual into three distinct regions: B (green, 
enclosing the Control benchmark), A coloured in red and containing the cells outside the Control benchmark, 
but inside the 80% CI of that individual and to the left  of the loading origin and C (purple) the region outside 
the benchmark, inside the 80% CI of that individual and to the right of the loading origin. Panel 2: the median 
surface marker expression of the cells within each of the gates defined in panel 1. In each cluster of three 
bars, the first bar (red) is the median single marker intensity of the cells within gate A; the second, green one is for 
gate B; the third purple one is for gate C. Panel 3: Gating of the Response scores. Gates were determined similar 
to the gating in Panel 1, but using the Response benchmark instead of the Control benchmark.

1 2 3
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The remaining cells lie outside the threshold that encloses 80% of the cell-to-cell variability 
of that individual. Table S3 of Supplementary section II, also obtained by cross-validating 
both challenged and unchallenged individuals, shows that these numbers are highly 
similar for all individuals. The cross-validated scores, specifically the percentages of cells 
that lie within gate a and c, are highly similar between individuals and are much lower for 
unchallenged individuals. 

The percentage of cells that lie outside the unchallenged benchmark, both in the Control 
and Response models, may serve as quantitative indicator of challenge or disease (Figure 6). 
FLOOD indicates that individuals of which many cells score outside the Control benchmark 
exhibit an immune response. Note that the Control and Response benchmarks have been 
determined on all unchallenged individuals simultaneously, which does not imply that 20% 
of cells in each unchallenged individual should score outside these benchmarks. When 
a high percentage of cells also scores outside the Response benchmark, this indicates a 
response specifically to LPS.

For all challenged individuals, in comparison with the unchallenged individuals, a relatively 
high percentage of cells scores outside the 80% Confidence Interval serving as the Control 
benchmark (Figure 6A). In the Response model the difference in the percentages of cells 
scoring outside the benchmark between challenged and unchallenged individuals is even 
larger (Figure 6B). Unchallenged individual #5 has a relatively large percentage of cells that 
score outside the Control benchmark. This indicates that this individual exhibits an immune 
response (Supplementary Material II, Figure S2). However, the percentage of cells in this 
unchallenged individual that scores outside the Response benchmark is not exceptionally 
high compared to other unchallenged individuals and certainly not as high as in challenged 
individuals. This indicates that individual #5 does not suffer from a response to LPS, but 
might respond to an unknown non-experimental factor. 

We have performed a sensitivity analysis in order to determine the effect of the level of 
the Confidence Interval on the diagnosis performance. A considerably lower confidence 
interval for the Control and Response benchmarks (50%) still allows diagnosis of an 
immune response that distinguishes challenged individuals from those that did not receive 
LPS (Supplementary Material II, Table S4). This diagnosis is however based on only a very 
limited subset of the measured cells for each individual, such that much of the cell-to-cell 
variability remains unused (Supplementary Material II, Table S5). Including almost all cells 
in the benchmarks (99% threshold) does not allow identification of an immune response 
using the Control or Response models (Supplementary Table S4). This is attributed to a 
large fraction of cells from challenged individuals being included in the both benchmarks 
(Supplementary Table S5). The 80% threshold on the Confidence Interval both allows 
disease diagnosis and makes use of most variability within the cell surface marker profiles. 
Clearly, further optimization of the benchmark percentage and gating strategy could be 
considered for the development of a routine diagnosis tool, but goes beyond the scope of 
this investigation. 

3
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Chapter 3.2 in this thesis contains a concise report on an application of FLOOD to study 
the effects of anaerobic exercise on elite sportsmen. It shows that the method can also 
be applied to study and quantify changes in surface marker profiles that are the result of 
subtle, non-pathogenic challenges. 

Immunological interpretation

As the scores of all cells form a continuum, their sub-division in ‘populations’ is artificial 
and merely helps to point out the dynamics of the challenge. The defined gates distinguish 
themselves prominently on markers CD16 and CD62L, which corresponds with earlier 
findings 40. However, the specifically multivariate view on the cellular populations that FLOOD 
provides indicates additional involvement of for example CD69 in the LPS response. This 
surface marker has been described as an activation marker in vitro after incubation with 
granulocyte-macrophage colony-stimulating factor (GM-CSF), Interferon-α or Interferon-γ 41 
and differs along with CD16 between the gates. The orthogonal orientation of the Response 
loading vectors of CD62L and CD69 shows that their expression on individual cells is not 
directly related in the LPS-specific cell-to-cell variability.

Neutrophils in gate a exhibit a surface marker profile with elevated expression of integrin-
chains CD11c, CD11b and activation marker CD69, which overall indicates a more ‘activated’ 
surface marker pattern, corresponding to immune suppressive cells with hypersegmented 
nuclei 40. In homeostasis, peripheral blood neutrophils do not express CD69, although CD69 
is upregulated after overnight incubation with IFN-γ  41. Work by De Kleijn et al. 42 indicates 

Figure 6: Gating for Diagnosis.

A. Percentage of cells that score outside the Control benchmark, yet inside the 80% CI established on the 
Control scores of that individual. Percentages are given for unchallenged (white bars, left ) and for challenged 
individuals (blue bars, right). A higher percentage of cells of all challenged individuals score outside the 
benchmark compared to unchallenged individuals, except for unchallenged individual #5 B. Percentage of cells 
that score outside the Response benchmark, yet inside the analogous 80% CI on the Response scores.
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that neutrophils with the CD62Ldim/CD16bright profile show an IFN−γ transcriptome signature. 
These two combined findings support the observation of elevated CD69 expression within 
this specific (CD62Ldim/CD16bright) subpopulation upon LPS challenge. Note that the loading of 
CD69 in the Response space (Figure 5.3) is large and indeed points in the direction of the gate 
a, whereas its Control loading is relatively small and therefore contributes only little to the 
cell variation described by the Control space (Figure 5.3). The variability of markers CD11c 
and CD11b was already identified in the Control model as more prominent in challenged 
than in unchallenged individuals. The expression of these markers in gate a of the Control 
model exceeds those in gates b and c. Thus, the FLOOD loadings indicate that the CD11cbright/ 
CD11bbright profile of the neutrophils in gate a (Figure 5) is challenge-related. Their positive 
correlation is however not specific to the challenge, because CD11c contributes only little 
to the Response loadings. The neutrophils within gate a defined in the Response model are 
CD62Ldim, although some variability of its expression within in the gates defined in the Control 
model exists between individuals (Supplementary material II, Table S2). The orientation 
of the CD62L Response loading away from gate a confirms this. Gate c neutrophils are 
characterized by lower expression of most markers compared to neutrophils in both other 
gates. Especially the surface markers CD16, CD11b, CD11c and CD69 are expressed less than 
in both other gates, which fits with the concept of neutrophils with ‘banded nuclei’ 40 that 
are in the process of maturation into fully differentiated neutrophils. This shows how FLOOD 
facilitates identification and description of subpopulations that are formed as a result of 
a challenge, in terms of correlations that already exist in unchallenged individuals (CD11b 
and CD11b) or that emerge or disappear upon response (CD16 and CD62L).

Discussion

Multicolour Flow Cytometry (MFC) technology provides three very promising capabilities 
for clinical practice: (1) diagnosis of disease responses at a targeted and personalized level, 
(2) insight in correlations between surface markers that are typical of such a response and 
(3) the identification of individual cells with a surface marker expression characteristic of 
the response. An analysis of the resulting data should therefore provide a comprehensive 
view on the cell marker profiles of specific cells observed on disease response. 

FLOOD enables the exploitation of these capabilities for multivariate data on large numbers 
of cells. The shapes of the regions spanned by the Control and Response scores are used 
for diagnosis: a multi-cellular sample obtained from an LPS-responding individual will 
produce a score patterns in the Control and Response spaces that differ substantially from 
the shape of the Control and Response benchmarks, respectively. Cells that score outside 
the latter benchmark are likely response-related. 

The cell-to-cell variability that underlies the response to LPS can now be very well revealed 
by FLOOD. The biplot representation we have introduced here for MFC data allows direct 
association of ‘unusual’ cells to all relevant surface markers and their mutual correlations 
that occur without challenge (Control model) and upon response. 

Chapter_3_1_Bart.indd   133 26-5-2017   11:47:08



Chapter 3.1

134

The non-linear distances used by viSNE and FINE do not allow such intuitive geometric 
interpretation of the correlations between surface markers that is facilitated by the FLOOD 
biplots. SPADE neither explicitly models the correlations between surface markers in such an 
insightful manner. For all of these methods, the correlations between surface markers and 
their expression within specific groups of cells need to be investigated post hoc. We have 
included and commented an analysis of the same dataset with SPADE in Supplementary 
Material section III.

The main advantage of FLOOD over the abovementioned existing methods for MFC data 
analysis is that it specifically highlights the cell-to-cell variability that is associated with a 
challenge. The resulting contributions to the variability can be separately described by the 
Control and Response spaces. This provides a focus on the response to LPS challenge. The 
cell-to-cell variability within these spaces can be explored with PCA-based biplots, which 
allows unprecedented interpretation of the surface marker correlations that result from 
the response. 

The cells with changed L-selectin (CD62L) and FcγRIII (CD16) expressions become very 
prominent in LPS challenged individuals compared to unchallenged controls. The large 
number of cells that lie outside the Control and Response benchmarks identifies many cells 
that are not present in the blood under the homeostatic conditions prior to challenge. It is to 
be expected that any disease associated with LPS-induced signals (e.g. trauma and sepsis) 
will evoke similar cellular response patterns 40. The Control and Response benchmarks 
and biplots allow direct comparison and interpretation of the expression surface marker 
patterns between challenged and unchallenged individuals. This capability is eminently 
lacking in ViSNE and FINE, because these methods do not allow projection of data from 
novel individuals onto an existing model. 

The Control and Response benchmarks serve another highly advantageous feature, as 
individual cells that express surface marker combinations unobserved in unchallenged 
individuals lie outside these benchmarks and can be gated as ‘response-specific’. 
Integration of the FLOOD-based gating with Fluorescence-Assisted Cell Sorting (FACS) will 
allow immediate and automated in-line isolation of response specific cells following flow 
cytometric analysis. Not only can this method be used in context of human cells before 
and after challenge, it also has potential for in vitro stimulation assays with cell lines or for 
example to observe cell marker changes between two time points. 

In conclusion, we demonstrated the performance of FLOOD on a seven-marker Flow 
Cytometric dataset. As the method is strongly rooted in PCA, application could extend to 
the simultaneous analysis of a virtually unlimited number of markers. Therefore, the method 
can be applied to seventeen fluorescent markers 7 or the even higher numbers of potential 
markers in CyTOF analysis 31,32. This makes FLOOD a very powerful data analysis method for 
multivariate datasets of MFC and related techniques that has considerable implications for 
both research and disease diagnosis.
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In conclusion, we demonstrated the performance of FLOOD on a
seven-marker Flow Cytometric dataset. As the method is strongly root-
ed in PCA, application could extend to the simultaneous analysis of a vir-
tually unlimited number of markers. Therefore, the method can be
applied to seventeen fluorescent markers [7] or the even higher num-
bers of potential markers in CyTOF analysis [31,32]. This makes FLOOD
a very powerful data analysis method for multivariate datasets of MFC
and related techniques that has considerable implications for both re-
search and disease diagnosis.

4.1. Availability

The corresponding author can provide aMATLAB implementation of
the FLOOD algorithm upon request.
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Appendix A. Mathematical description of the FLOOD algorithm

As the FLow cytometric Orthogonal Orientation for Diagnosis
(FLOOD) approach makes extensive use of PCA methodology, we first
review this method and subsequently extend it to dedicated disease
diagnosis with MFC data.

A.1. Principal component analysis

Cells collected from an individual and analysed byMFC, indicated by
1i…ni…Ni can be arranged into (Ni× J) individualised surface-marker
profile matrices Xi for individuals 1… i… I and surface markers
1… j… J. These surface-marker profiles can then be subjected to Princi-
pal Component Analysis—modified specifically for multi-cellular indi-
vidualized profiles — according to Eq. (1).

S‐1 Xi−1N i
mT

i

� � ¼ TiP
T þ Ei ð1Þ

S-1 is a diagonal matrix of size J that contains the standard deviation
of each surface marker among all cells within unchallenged individuals,
vectormi of length J contains the average surface marker expression of
all cells in individual i; matrix Ti of dimensions (Ni×A) contain the
single-cell scores of individual i and matrix P (J×A) contain the Control
loadings; Ei contains the PCA residuals for individual i; R is the selected
number of PCA components.

The PCA model makes the multi-cellular surface marker profile in-
sightful, as the scores Ti describe as much variability among the single
cells as possible in R dimensions, where each incremental dimension
describes as much of the surface marker variability as possible and the
orthogonality of the model loadings PTP= IA (where IA is the identity
matrix) ensures that surface marker variation described in one dimen-
sion does not occur in another.

This variability is expressed with respect to the average surface
marker composition in vector mi. This ‘centering’ to the individual
mean is the main distinction of this PCA model to specifically describe
the multi-cellular surface marker profiles for different individuals, and
is known as Simultaneous Component Analysis [45]. In this model, the
linear combination between surface markers in loadings P indicates
whichmarkers aremost important in the A dimensions and their mutu-
al relationships. Thereby the model in Eq. (1) explicitly models the var-
iability in all surface markers simultaneously. When A is chosen as two,
the conventional bivariate histogram representation can be used, but

each dimension will consist of mathematically defined contributions
from all surface markers. These can be represented within the histo-
gram in the ‘biplot’ representation [40,46]. This has, to the best of our
knowledge, hitherto not been used in anyMFC study. Note that, to opti-
mally prepare for the subsequent FLOOD analysis, the loadings P and
scaling constants S are determined for all relevant individuals simulta-
neously. This imposes identical relations between the surface markers
for all individuals, which allows comparison between the scores of dif-
ferent individuals [39]. Further details on this model will be discussed
in the next section.

A.2. FLow cytometric Orthogonal Orientation for Diagnosis

Rather thanmodelling the cell-to-cell variability simultaneously like
PCA, FLOOD separately describes the cell-to-cell variability into
multiple, well-defined and interpretable parts in a sequential multi-
step approach. The first modelling step describes the surface marker
variability between cells of unchallenged individuals, leading to the
‘Control’ model in Eq. 1. The sampled individuals are either unchal-
lenged 1u… iu… Iu or challenged with LPS: 1c… ic… Ic.

S−1
C Xiu−1N iu

mT
iu

� �
¼ TC;iuP

T
C þ Yiu ð2Þ

SC-1 is a diagonalmatrix of size J that contains the standard deviation of
each surfacemarker among all cellswithin unchallenged individualswith
respect tomiu

T, vectormiu of length J contains the average surface marker
expression of all cells in individual iu; matrix TC,iu of dimensions (Niu×AC)
contains the scores of individual iu and matrix PC ( J×AC) contains the
Control loadings; Yiu contains the residuals of this model for each individ-
ual; 1C…aC…AC indicate the components of the Control model.

The variability in the surfacemarker profile of each unchallenged in-
dividualXiu is expressed by scores TC,iu. These are different from the PCA
scores in Eq. (1), because the Control model is fitted on the unchal-
lenged individuals alone. This is also reflected in the Control loadings
PC, that now exclusively describe relationships between surface
markers exhibited by unchallenged individuals. Note however that
they do not explicitly exclude relations in challenged individuals if
they are also exhibited by unchallenged individuals. One aspect that is
not explicit in Eq. (2) is that we fit the model such, that each individual
may contribute an equal amount of information to themodel. It thereby
averages between all individuals rather than between all cells. This is
done by weighing the data of each individual with the corresponding
cell countNiu according to amethod adapted frommulti-block PCA [47].

The Control model employs the same individual-based centering as
the PCA model presented before, which centers the surface marker pro-
files in Xiu on the average surface marker expression of each unchallenged
individual. This important modelling choice results in TC,iu describing the
surface marker variability per individual, which means that absolute
score values may not be directly compared between individuals, but their
mutual variability may. This choice results from consistent ‘offset’ differ-
ences between surface marker intensities we have empirically observed,
that are not related to the challenge and therefore distract from the cell-
to-cell variabilitywithin the same individual that is of primary interest. In-
stead of the cell-to-cell variability, the surface marker profiles are scaled
here by SC, that contains the standard deviation among all cells of unchal-
lenged individuals. The Control model therefore is exclusively based the
information in unchallenged individuals.

As a result, the Control loadings do not describe correlations be-
tween the surface markers that are related to LPS challenge. How the
Control model then describes the surface marker profiles of challenged
individuals, can be found from their orthogonal projection onto these
loadings as a second step of the FLOOD approach. This operation leads
to the model in Eq. (3).

S−1
C Xic−1N ic

mT
ic

� �
¼ TC;icP

T
C þ Yic ð3Þ
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As the FLow cytometric Orthogonal Orientation for Diagnosis (FLOOD) approach makes 
extensive use of PCA methodology, we first review this method and subsequently extend 
it to dedicated disease diagnosis with MFC data.

Principal Component Analysis

Cells collected from an individual and analysed by MFC, indicated by 1i…ni…Ni can be 
arranged into (Ni×J) individualized surface-marker profile matrices Xi for individuals 
1…i…I and surface markers 1…j…J. These surface-marker profiles can then be subjected 
to Principal Component Analysis—modified specifically for multi-cellular individualized 
profiles—according to Eq. (1) . 

(1)

where S–1 is a diagonal matrix of size J that contains the standard deviation of each surface 
marker among all cells within unchallenged individuals, vector mi of length J contains the 
average surface marker expression of all cells in individual i; matrix Ti of dimensions (Ni×A)
contain the single-cell scores of individual i and matrix P (J×A) contain the Control loadings; 
Ei contains the PCA residuals for individual i; R is the selected number of PCA components.

The PCA model makes the multi-cellular surface marker profile insightful, as the scores Ti 

describe as much variability among the single cells as possible in R dimensions, where each 
incremental dimension describes as much of the surface marker variability as possible and 
the orthogonality of the model loadings PTP=IA (where IA is the identity matrix) ensures that 
surface marker variation described in one dimension does not occur in another.

This variability is expressed with respect to the average surface marker composition 
in vector mi. This ‘centering’ to the individual mean is the main distinction of this PCA 
model to specifically describe the multi-cellular surface marker profiles for different 
individuals, and is known as Simultaneous Component Analysis 43. In this model, the linear 
combination of surface markers in loadings P indicates which markers are most important 
in the A dimensions and their mutual relationships. Thereby the model in Eq. (1) explicitly 
models the variability in all surface markers simultaneously. When A is chosen as two, the 
conventional bivariate histogram representation can be used, but each dimension will 
consist of mathematically defined contributions from all surface markers. These can be 
represented within the histogram in the ‘biplot’ representation 39,44. This has, to the best of 
our knowledge, hitherto not been used in any MFC study. Note that, to optimally prepare 
for the subsequent FLOOD analysis, the loadings P and scaling constants S are determined 
for all relevant individuals simultaneously. This imposes identical relations between the 
surface markers for all individuals, which allows comparison between the scores of different 
individuals 38. Further details on this model will be discussed in the next section.
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FLow cytometric Orthogonal Orientation for Diagnosis 

Rather than modelling the cell-to-cell variability simultaneously like PCA, FLOOD separately 
describes the cell-to-cell variability into multiple, well-defined and interpretable parts in 
a sequential multi-step approach. The first modelling step describes the surface marker 
variability between cells of unchallenged individuals, leading to the ‘Control’ model in Eq. 
1. The sampled individuals are either unchallenged 1u…iu…Iu or challenged with LPS: 1c…
ic…Ic. 

(2)

SC
-1 is a diagonalmatrix of size J that contains the standard deviation of each surface marker 

among all cells within unchallenged individuals with respect to miu
T, vectormiu of length 

J contains the average surfacemarker expression of all cells in individual iu; matrix TC,iu of 
dimensions (Niu×AC) contains the scores of individual iu and matrix PC (J×AC) contains 
the Control loadings; Yiu contains the residuals of this model for each individual; 1c…ac…
Acindicate the components of the Control model.

The variability in the surface marker profile of each unchallenged individual Xiu is expressed 
by scores TC,iu. These are different from the PCA scores in Eq. (1), because the Control 
model is fitted on the unchallenged individuals alone. This is also reflected in the Control 
loadings PC, that now exclusively describe relationships between surface markers exhibited 
by unchallenged individuals. Note however that they do not explicitly exclude relations in 
challenged individuals if they are also exhibited by unchallenged individuals. One aspect 
that is not explicit in Eq. (2) is that we fit the model such, that each individual may contribute 
an equal amount of information to the model. It thereby averages between all individuals 
rather than between all cells. This is done by weighing the data of each individual with 
the corresponding cell count Niu according to a method adapted from multi-block PCA 45.

The Control model employs the same individual-based centering as the PCA model 
presented before, which centers the surface marker profiles in Xiu on the average surface 
marker expression of each unchallenged individual. This important modelling choice 
results in TC,iu describing the surface marker variability per individual, which means that 
absolute score values may not be directly compared between individuals, but their mutual 
variability may. This choice results from consistent ‘offset’ differences between surface 
marker intensities we have empirically observed, that are not related to the challenge and 
therefore distract from the cell-to-cell variability within the same individual that is of primary 
interest. Instead of the cell-to-cell variability, the surface marker profiles are scaled here by 
SC, that contains the standard deviation among all cells of unchallenged individuals. The 
Control model therefore is exclusively based the information in unchallenged individuals.

As a result, the Control loadings do not describe correlations between the surface markers 
that are related to LPS challenge. How the Control model then describes the surface marker 
profiles of challenged individuals, can be found from their orthogonal projection onto these 
loadings as a second step of the FLOOD approach. This operation leads to the model in Eq. (3).

In conclusion, we demonstrated the performance of FLOOD on a
seven-marker Flow Cytometric dataset. As the method is strongly root-
ed in PCA, application could extend to the simultaneous analysis of a vir-
tually unlimited number of markers. Therefore, the method can be
applied to seventeen fluorescent markers [7] or the even higher num-
bers of potential markers in CyTOF analysis [31,32]. This makes FLOOD
a very powerful data analysis method for multivariate datasets of MFC
and related techniques that has considerable implications for both re-
search and disease diagnosis.

4.1. Availability

The corresponding author can provide aMATLAB implementation of
the FLOOD algorithm upon request.
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Appendix A. Mathematical description of the FLOOD algorithm

As the FLow cytometric Orthogonal Orientation for Diagnosis
(FLOOD) approach makes extensive use of PCA methodology, we first
review this method and subsequently extend it to dedicated disease
diagnosis with MFC data.

A.1. Principal component analysis

Cells collected from an individual and analysed byMFC, indicated by
1i…ni…Ni can be arranged into (Ni× J) individualised surface-marker
profile matrices Xi for individuals 1… i… I and surface markers
1… j… J. These surface-marker profiles can then be subjected to Princi-
pal Component Analysis—modified specifically for multi-cellular indi-
vidualized profiles — according to Eq. (1).

S‐1 Xi−1N i
mT

i

� � ¼ TiP
T þ Ei ð1Þ

S-1 is a diagonal matrix of size J that contains the standard deviation
of each surface marker among all cells within unchallenged individuals,
vectormi of length J contains the average surface marker expression of
all cells in individual i; matrix Ti of dimensions (Ni×A) contain the
single-cell scores of individual i and matrix P (J×A) contain the Control
loadings; Ei contains the PCA residuals for individual i; R is the selected
number of PCA components.

The PCA model makes the multi-cellular surface marker profile in-
sightful, as the scores Ti describe as much variability among the single
cells as possible in R dimensions, where each incremental dimension
describes as much of the surface marker variability as possible and the
orthogonality of the model loadings PTP= IA (where IA is the identity
matrix) ensures that surface marker variation described in one dimen-
sion does not occur in another.

This variability is expressed with respect to the average surface
marker composition in vector mi. This ‘centering’ to the individual
mean is the main distinction of this PCA model to specifically describe
the multi-cellular surface marker profiles for different individuals, and
is known as Simultaneous Component Analysis [45]. In this model, the
linear combination between surface markers in loadings P indicates
whichmarkers aremost important in the A dimensions and their mutu-
al relationships. Thereby the model in Eq. (1) explicitly models the var-
iability in all surface markers simultaneously. When A is chosen as two,
the conventional bivariate histogram representation can be used, but

each dimension will consist of mathematically defined contributions
from all surface markers. These can be represented within the histo-
gram in the ‘biplot’ representation [40,46]. This has, to the best of our
knowledge, hitherto not been used in anyMFC study. Note that, to opti-
mally prepare for the subsequent FLOOD analysis, the loadings P and
scaling constants S are determined for all relevant individuals simulta-
neously. This imposes identical relations between the surface markers
for all individuals, which allows comparison between the scores of dif-
ferent individuals [39]. Further details on this model will be discussed
in the next section.

A.2. FLow cytometric Orthogonal Orientation for Diagnosis

Rather thanmodelling the cell-to-cell variability simultaneously like
PCA, FLOOD separately describes the cell-to-cell variability into
multiple, well-defined and interpretable parts in a sequential multi-
step approach. The first modelling step describes the surface marker
variability between cells of unchallenged individuals, leading to the
‘Control’ model in Eq. 1. The sampled individuals are either unchal-
lenged 1u… iu… Iu or challenged with LPS: 1c… ic… Ic.
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mT
iu
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¼ TC;iuP

T
C þ Yiu ð2Þ

SC-1 is a diagonalmatrix of size J that contains the standard deviation of
each surfacemarker among all cellswithin unchallenged individualswith
respect tomiu

T, vectormiu of length J contains the average surface marker
expression of all cells in individual iu; matrix TC,iu of dimensions (Niu×AC)
contains the scores of individual iu and matrix PC ( J×AC) contains the
Control loadings; Yiu contains the residuals of this model for each individ-
ual; 1C…aC…AC indicate the components of the Control model.

The variability in the surfacemarker profile of each unchallenged in-
dividualXiu is expressed by scores TC,iu. These are different from the PCA
scores in Eq. (1), because the Control model is fitted on the unchal-
lenged individuals alone. This is also reflected in the Control loadings
PC, that now exclusively describe relationships between surface
markers exhibited by unchallenged individuals. Note however that
they do not explicitly exclude relations in challenged individuals if
they are also exhibited by unchallenged individuals. One aspect that is
not explicit in Eq. (2) is that we fit the model such, that each individual
may contribute an equal amount of information to themodel. It thereby
averages between all individuals rather than between all cells. This is
done by weighing the data of each individual with the corresponding
cell countNiu according to amethod adapted frommulti-block PCA [47].

The Control model employs the same individual-based centering as
the PCA model presented before, which centers the surface marker pro-
files in Xiu on the average surface marker expression of each unchallenged
individual. This important modelling choice results in TC,iu describing the
surface marker variability per individual, which means that absolute
score values may not be directly compared between individuals, but their
mutual variability may. This choice results from consistent ‘offset’ differ-
ences between surface marker intensities we have empirically observed,
that are not related to the challenge and therefore distract from the cell-
to-cell variabilitywithin the same individual that is of primary interest. In-
stead of the cell-to-cell variability, the surface marker profiles are scaled
here by SC, that contains the standard deviation among all cells of unchal-
lenged individuals. The Control model therefore is exclusively based the
information in unchallenged individuals.

As a result, the Control loadings do not describe correlations be-
tween the surface markers that are related to LPS challenge. How the
Control model then describes the surface marker profiles of challenged
individuals, can be found from their orthogonal projection onto these
loadings as a second step of the FLOOD approach. This operation leads
to the model in Eq. (3).
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In conclusion, we demonstrated the performance of FLOOD on a
seven-marker Flow Cytometric dataset. As the method is strongly root-
ed in PCA, application could extend to the simultaneous analysis of a vir-
tually unlimited number of markers. Therefore, the method can be
applied to seventeen fluorescent markers [7] or the even higher num-
bers of potential markers in CyTOF analysis [31,32]. This makes FLOOD
a very powerful data analysis method for multivariate datasets of MFC
and related techniques that has considerable implications for both re-
search and disease diagnosis.
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Appendix A. Mathematical description of the FLOOD algorithm

As the FLow cytometric Orthogonal Orientation for Diagnosis
(FLOOD) approach makes extensive use of PCA methodology, we first
review this method and subsequently extend it to dedicated disease
diagnosis with MFC data.

A.1. Principal component analysis

Cells collected from an individual and analysed byMFC, indicated by
1i…ni…Ni can be arranged into (Ni× J) individualised surface-marker
profile matrices Xi for individuals 1… i… I and surface markers
1… j… J. These surface-marker profiles can then be subjected to Princi-
pal Component Analysis—modified specifically for multi-cellular indi-
vidualized profiles — according to Eq. (1).

S‐1 Xi−1N i
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� � ¼ TiP
T þ Ei ð1Þ

S-1 is a diagonal matrix of size J that contains the standard deviation
of each surface marker among all cells within unchallenged individuals,
vectormi of length J contains the average surface marker expression of
all cells in individual i; matrix Ti of dimensions (Ni×A) contain the
single-cell scores of individual i and matrix P (J×A) contain the Control
loadings; Ei contains the PCA residuals for individual i; R is the selected
number of PCA components.

The PCA model makes the multi-cellular surface marker profile in-
sightful, as the scores Ti describe as much variability among the single
cells as possible in R dimensions, where each incremental dimension
describes as much of the surface marker variability as possible and the
orthogonality of the model loadings PTP= IA (where IA is the identity
matrix) ensures that surface marker variation described in one dimen-
sion does not occur in another.

This variability is expressed with respect to the average surface
marker composition in vector mi. This ‘centering’ to the individual
mean is the main distinction of this PCA model to specifically describe
the multi-cellular surface marker profiles for different individuals, and
is known as Simultaneous Component Analysis [45]. In this model, the
linear combination between surface markers in loadings P indicates
whichmarkers aremost important in the A dimensions and their mutu-
al relationships. Thereby the model in Eq. (1) explicitly models the var-
iability in all surface markers simultaneously. When A is chosen as two,
the conventional bivariate histogram representation can be used, but

each dimension will consist of mathematically defined contributions
from all surface markers. These can be represented within the histo-
gram in the ‘biplot’ representation [40,46]. This has, to the best of our
knowledge, hitherto not been used in anyMFC study. Note that, to opti-
mally prepare for the subsequent FLOOD analysis, the loadings P and
scaling constants S are determined for all relevant individuals simulta-
neously. This imposes identical relations between the surface markers
for all individuals, which allows comparison between the scores of dif-
ferent individuals [39]. Further details on this model will be discussed
in the next section.

A.2. FLow cytometric Orthogonal Orientation for Diagnosis

Rather thanmodelling the cell-to-cell variability simultaneously like
PCA, FLOOD separately describes the cell-to-cell variability into
multiple, well-defined and interpretable parts in a sequential multi-
step approach. The first modelling step describes the surface marker
variability between cells of unchallenged individuals, leading to the
‘Control’ model in Eq. 1. The sampled individuals are either unchal-
lenged 1u… iu… Iu or challenged with LPS: 1c… ic… Ic.

S−1
C Xiu−1N iu

mT
iu

� �
¼ TC;iuP

T
C þ Yiu ð2Þ

SC-1 is a diagonalmatrix of size J that contains the standard deviation of
each surfacemarker among all cellswithin unchallenged individualswith
respect tomiu

T, vectormiu of length J contains the average surface marker
expression of all cells in individual iu; matrix TC,iu of dimensions (Niu×AC)
contains the scores of individual iu and matrix PC ( J×AC) contains the
Control loadings; Yiu contains the residuals of this model for each individ-
ual; 1C…aC…AC indicate the components of the Control model.

The variability in the surfacemarker profile of each unchallenged in-
dividualXiu is expressed by scores TC,iu. These are different from the PCA
scores in Eq. (1), because the Control model is fitted on the unchal-
lenged individuals alone. This is also reflected in the Control loadings
PC, that now exclusively describe relationships between surface
markers exhibited by unchallenged individuals. Note however that
they do not explicitly exclude relations in challenged individuals if
they are also exhibited by unchallenged individuals. One aspect that is
not explicit in Eq. (2) is that we fit the model such, that each individual
may contribute an equal amount of information to themodel. It thereby
averages between all individuals rather than between all cells. This is
done by weighing the data of each individual with the corresponding
cell countNiu according to amethod adapted frommulti-block PCA [47].

The Control model employs the same individual-based centering as
the PCA model presented before, which centers the surface marker pro-
files in Xiu on the average surface marker expression of each unchallenged
individual. This important modelling choice results in TC,iu describing the
surface marker variability per individual, which means that absolute
score values may not be directly compared between individuals, but their
mutual variability may. This choice results from consistent ‘offset’ differ-
ences between surface marker intensities we have empirically observed,
that are not related to the challenge and therefore distract from the cell-
to-cell variabilitywithin the same individual that is of primary interest. In-
stead of the cell-to-cell variability, the surface marker profiles are scaled
here by SC, that contains the standard deviation among all cells of unchal-
lenged individuals. The Control model therefore is exclusively based the
information in unchallenged individuals.

As a result, the Control loadings do not describe correlations be-
tween the surface markers that are related to LPS challenge. How the
Control model then describes the surface marker profiles of challenged
individuals, can be found from their orthogonal projection onto these
loadings as a second step of the FLOOD approach. This operation leads
to the model in Eq. (3).

S−1
C Xic−1N ic

mT
ic

� �
¼ TC;icP

T
C þ Yic ð3Þ
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where TC, ic of dimensions (Nic×AC) contains the scores of a challenged
individual expressed on the Control loadings and Yic contains the
residuals of the projection.

The scores TC,ic that result from this projection nowdescribe the cell-
to-cell variability in challenged individuals expressed on the relations
between surface markers exhibited by unchallenged individuals. Note
that the surface marker intensities have been scaled with the same pa-
rameters in SC, such that the cell-to-cell variability in the Control model
can be compared between unchallenged and challenged individuals.

The scores of challenged individuals may now be compared to those
from unchallenged individuals obtained from Eq. (2), which reveals
how LPS alters the cell-to-cell variability within the same individual
through the specific combinations between surface markers exhibited
by unchallenged individuals. Deviations from these correlations may
be reflected in a different shape of the projection of the cells per individ-
ual. However, this representation does not involve processes that
involve relationships between surfacemarkers not exhibited by unchal-
lenged individuals, which implies therewill be a considerable systemat-
ic mis-fit of the challenged surface marker profiles on the Control
loadings. This information will end up in the projection residuals Yic,
which are explored in the third step of the approach: a PCA model
that fits this systematic information related to processes that do not
occur in unchallenged circumstances, given in the ‘Response’ model in
Eq. (4).

Yic ¼ TR;icP
T
R þ Eic ð4Þ

where matrices TR,ic (Nic×AR) contain cell scores of individuals ic and PR

( J×AR) the corresponding loadings on principal components
1…aR…AR; Eic contain the model residuals.

Scores TR,ic contain the cell-to-cell variability after LPS challenge, ob-
tained without prior biological assumptions and the corresponding
loadings PR contain the relations among surface markers that occur in
challenged, but not in unchallenged individuals and are therefore
response-specific. Together thesemodel results form a personalized sur-
face marker-profile that can be compared between challenged individ-
uals: also the scores and loadings from Eq. (4) can be represented in a
bi-plot — a single bivariate figure if RR is two.

However, the scores of TR, ic and their variability within challenged
individuals can only be quantitatively evaluated against a benchmark
of variability in unchallenged individuals. When RC is chosen too low,
systematic information shared by unchallenged and challenged individ-
uals ends up in Yic, as it is not part of the orthogonal projection in Eq. (3)
and therefore also becomes part of the scores TR,ic through Eq. (4). This
benchmark can be determined by an orthogonal projection of the
Control model residuals of the unchallenged individuals (Yiu, from
Eq. (2)) onto the Response loadings from Eq. (4), leading to the fourth
step in the FLOOD approach given in Eq. (5).

Yiu ¼ TR;iuP
T
R þ Eiu ð5Þ

where TR,iu of dimensions (Niu×AR) contain the Response scores of un-
challenged individuals and Eiu the model residuals.

Scores TR, iu will not individually be of interest for interpretation as
they are supposed to contain no information. However, if taken together
for all unchallenged individuals they may be turned into a confidence
interval. The cells of a challenged individual that fall inside this interval
do not deviate more from the averagemic

T than could be expected from
the cell-to-cell variability in unchallenged individuals. The cells that ex-
ceed this interval are therefore of primary interest to the LPS response.

Both the Control and Response models are low-dimensional repre-
sentations of high-dimensional MFC data. Several methods exist to de-
termine appropriate dimensionality for PCA models [48]. However,
when insufficient dimensions are selected for theControlmodel, the Re-
sponse benchmark will contain systematic features (i.e. specific shape),
which may serve as an additional, FLOOD-specific model validation.

A.3. Cross-validation

The leave-one-out cross-validation conducted here to reproduce ob-
servations from the model with data that was not used to construct the
model itself, emulating the situation that data of a new individual is
expressed on the already existing model. This procedure consists of
leaving all data of one individual out of the entire modeling sequence.
The FLOOD model is then fitted on the seven remaining challenged
and all unchallenged individuals. Then the projections described in
Eqs. (3) and (5) are conducted on the data of this left-out individual,
after which the resulting Control and Response scores can be
interpreted. To perform cross-validation, this procedure is repeated for
all individuals.

A.4. Data extraction from original .lmd files

Using FCS Express 3.0, neutrophils were gated using amanual gating
strategy as described in the Online Supplement I and .txt files were
exported for analysis in MATLAB 2013a. The fluorescence readouts of
the selected cells did not contain zeroes or negative numbers and
were, therefore, processed by an ordinary natural logarithmic transfor-
mation [49,50]. Because the amount of fluorescence emitted by
different dyes varies, the ratio of the intensity of fluorescence of two
dyes is not equal to the ratio of the abundance of both corresponding
receptors, which warrants autoscaling of the fluorescence data to
equalize the potential contribution of every surface marker to the
models of reduced dimension.

Appendix B. Supplementary material

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemolab.2015.12.001.
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where TC, ic of dimensions (Nic×AC) contains the scores of a challenged
individual expressed on the Control loadings and Yic contains the
residuals of the projection.

The scores TC,ic that result from this projection nowdescribe the cell-
to-cell variability in challenged individuals expressed on the relations
between surface markers exhibited by unchallenged individuals. Note
that the surface marker intensities have been scaled with the same pa-
rameters in SC, such that the cell-to-cell variability in the Control model
can be compared between unchallenged and challenged individuals.

The scores of challenged individuals may now be compared to those
from unchallenged individuals obtained from Eq. (2), which reveals
how LPS alters the cell-to-cell variability within the same individual
through the specific combinations between surface markers exhibited
by unchallenged individuals. Deviations from these correlations may
be reflected in a different shape of the projection of the cells per individ-
ual. However, this representation does not involve processes that
involve relationships between surfacemarkers not exhibited by unchal-
lenged individuals, which implies therewill be a considerable systemat-
ic mis-fit of the challenged surface marker profiles on the Control
loadings. This information will end up in the projection residuals Yic,
which are explored in the third step of the approach: a PCA model
that fits this systematic information related to processes that do not
occur in unchallenged circumstances, given in the ‘Response’ model in
Eq. (4).

Yic ¼ TR;icP
T
R þ Eic ð4Þ

where matrices TR,ic (Nic×AR) contain cell scores of individuals ic and PR

( J×AR) the corresponding loadings on principal components
1…aR…AR; Eic contain the model residuals.

Scores TR,ic contain the cell-to-cell variability after LPS challenge, ob-
tained without prior biological assumptions and the corresponding
loadings PR contain the relations among surface markers that occur in
challenged, but not in unchallenged individuals and are therefore
response-specific. Together thesemodel results form a personalized sur-
face marker-profile that can be compared between challenged individ-
uals: also the scores and loadings from Eq. (4) can be represented in a
bi-plot — a single bivariate figure if RR is two.

However, the scores of TR, ic and their variability within challenged
individuals can only be quantitatively evaluated against a benchmark
of variability in unchallenged individuals. When RC is chosen too low,
systematic information shared by unchallenged and challenged individ-
uals ends up in Yic, as it is not part of the orthogonal projection in Eq. (3)
and therefore also becomes part of the scores TR,ic through Eq. (4). This
benchmark can be determined by an orthogonal projection of the
Control model residuals of the unchallenged individuals (Yiu, from
Eq. (2)) onto the Response loadings from Eq. (4), leading to the fourth
step in the FLOOD approach given in Eq. (5).

Yiu ¼ TR;iuP
T
R þ Eiu ð5Þ

where TR,iu of dimensions (Niu×AR) contain the Response scores of un-
challenged individuals and Eiu the model residuals.

Scores TR, iu will not individually be of interest for interpretation as
they are supposed to contain no information. However, if taken together
for all unchallenged individuals they may be turned into a confidence
interval. The cells of a challenged individual that fall inside this interval
do not deviate more from the averagemic

T than could be expected from
the cell-to-cell variability in unchallenged individuals. The cells that ex-
ceed this interval are therefore of primary interest to the LPS response.

Both the Control and Response models are low-dimensional repre-
sentations of high-dimensional MFC data. Several methods exist to de-
termine appropriate dimensionality for PCA models [48]. However,
when insufficient dimensions are selected for theControlmodel, the Re-
sponse benchmark will contain systematic features (i.e. specific shape),
which may serve as an additional, FLOOD-specific model validation.

A.3. Cross-validation

The leave-one-out cross-validation conducted here to reproduce ob-
servations from the model with data that was not used to construct the
model itself, emulating the situation that data of a new individual is
expressed on the already existing model. This procedure consists of
leaving all data of one individual out of the entire modeling sequence.
The FLOOD model is then fitted on the seven remaining challenged
and all unchallenged individuals. Then the projections described in
Eqs. (3) and (5) are conducted on the data of this left-out individual,
after which the resulting Control and Response scores can be
interpreted. To perform cross-validation, this procedure is repeated for
all individuals.

A.4. Data extraction from original .lmd files

Using FCS Express 3.0, neutrophils were gated using amanual gating
strategy as described in the Online Supplement I and .txt files were
exported for analysis in MATLAB 2013a. The fluorescence readouts of
the selected cells did not contain zeroes or negative numbers and
were, therefore, processed by an ordinary natural logarithmic transfor-
mation [49,50]. Because the amount of fluorescence emitted by
different dyes varies, the ratio of the intensity of fluorescence of two
dyes is not equal to the ratio of the abundance of both corresponding
receptors, which warrants autoscaling of the fluorescence data to
equalize the potential contribution of every surface marker to the
models of reduced dimension.

Appendix B. Supplementary material

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemolab.2015.12.001.
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(3)

where TC,ic of dimensions (Nic×AC) contains the scores of a challenged individual expressed 
on the Control loadings and Yic contains the residuals of the projection.

The scores TC,ic that result fromthis projection nowdescribe the cell-to-cell variability in 
challenged individuals expressed on the relations between surface markers exhibited by 
unchallenged individuals. Note that the surface marker intensities have been scaled with 
the same parameters in SC, such that the cell-to-cell variability in the Control model can be 
compared between unchallenged and challenged individuals.

The scores of challenged individuals may nowbe compared to those from unchallenged 
individuals obtained from Eq. (2), which reveals how LPS alters the cell-to-cell variability 
within the same individual through the specific combinations between surface markers 
exhibited by unchallenged individuals. Deviations from these correlations may be reflected 
in a different shape of the projection of the cells per individual. However, this representation 
does not involve processes that involve relationships between surface markers not exhibited 
by unchallenged individuals,which implies therewill be a considerable systematic mis-fit of 
the challenged surface marker profiles on the Control loadings. This information will end 
up in the projection residuals Yic, which are explored in the third step of the approach: a 
PCA model that fits this systematic information related to processes that do not occur in 
unchallenged circumstances, given in the ‘Response’ model in Eq. (4).

(4)

where matrices TR,ic (Nic×AR) contain cell scores of individuals ic and PR (J×AR) the corre-
sponding loadings on principal components 1…aR…AR; Eic contain the model residuals.

Scores TR,ic contain the cell-to-cell variability after LPS challenge, obtained without prior 
biological assumptions and the corresponding loadings PR contain the relations among 
surface markers that occur in challenged, but not in unchallenged individuals and are 
therefore response-specific. Together thesemodel results forma personalized surface 
marker-profile that can be compared between challenged individuals: also the scores and 
loadings from Eq. (4) can be represented in a bi-plot — a single bivariate figure if RR is two.

However, the scores of TR,ic and their variability within challenged individuals can only be 
quantitatively evaluated against a benchmark of variability in unchallenged individuals. 
When RC is chosen too low, systematic information shared by unchallenged and challenged 
individuals ends up in Yic, as it is not part of the orthogonal projection in Eq. (3) and therefore 
also becomes part of the scores TR,ic through Eq. (4). This benchmark can be determined by 
an orthogonal projection of the Control model residuals of the unchallenged individuals 
(Yiu, from Eq. (2)) onto the Response loadings from Eq. (4), leading to the fourth step in the 
FLOOD approach given in Eq. (5).

(5)
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where TR,iu of dimensions (Niu×AR) contain the Response scores of unchallenged individuals 
and Eiu the model residuals.

Scores TR,iu will not individually be of interest for interpretation as they are supposed to 
contain no information. However, if taken together for all unchallenged individuals they 
may be turned into a confidence interval. The cells of a challenged individual that fall inside 
this interval do not deviate more fromthe average mic

T than could be expected from the 
cell-to-cell variability in unchallenged individuals. The cells that exceed this interval are 
therefore of primary interest to the LPS response.

Both the Control and Response models are low-dimensional representations of high-
dimensional MFC data. Several methods exist to determine appropriate dimensionality for 
PCA models 46. However, when insufficient dimensions are selected for the Control model, 
the Response benchmark will contain systematic features (i.e. specific shape), which may 
serve as an additional, FLOOD-specific model validation.

Cross-validation

The leave-one-out cross-validation conducted here to reproduce observations from the 
model with data that was not used to construct the model itself, emulating the situation 
that data of a new individual is expressed on the already existing model. This procedure 
consists of leaving all data of one individual out of the entire modeling sequence. The FLOOD 
model is then fitted on the seven remaining challenged and all unchallenged individuals. 
Then the projections described in Eqs. (3) and (5) are conducted on the data of this left-out 
individual, after which the resulting Control and Response scores can be interpreted. To 
perform cross-validation, this procedure is repeated for all individuals.

Data extraction from original .lmd files

Using FCS express 3.0, neutrophils were gated using a manual gating strategy and .txt files 
were exported for analysis in Matlab 2013a. The fluorescence readouts of the selected cells 
did not contain zeroes or negative numbers and were, therefore, processed by an ordinary 
natural logarithmic transformation 47,48. Because the amount of fluorescence emitted by 
different dyes varies, the ratio of the intensity of fluorescence of two dyes is not equal to 
the ratio of the abundance of both corresponding receptors, which warrants autoscaling 
of the fluorescence data to equalize the potential contribution of every surface marker to 
the models of reduced dimension.
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Supplementary Figure S1: Isolines that enclose specific percentages (50-90%) of cell scores in 
an unchallenged (A) and a challenged individual (B) for the Control models.

The isoline of 80% is highlighted in cyan.

Supplementary Material II: 
Additional Results of the FLOOD algorithm for the LPS dataset

Supplementary Figure S2: Isolines constructed for the Control scores of unchallenged individual 
#5.

This individual exhibits variability among cells that deviates from that observed in other unchallenged 
individuals. The isoline of 80% is highlighted in cyan. 
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Supplementary Table S1: Gated cells for each challenged individual (number in first column), 
based on the Control (second column) and Response (third column) benchmarks

Gating of the scores into three distinct regions: a coloured in red and containing the cells outside the Control 
benchmark, but inside the 80% CI of that individual and to the left  of the loading origin, b (green, enclosing the 
Control benchmark), and c (purple) the region outside the benchmark, inside the 80% CI of that individual and 
to the right of the loading origin. Yellow arrows represent the loadings of the surface markers.

# Control model (challenge data) Response model (challenge data)

1

2

3

Supplementary Table S1 continues on next page.
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Supplementary Table S1: Continued

# Control model (challenge data) Response model (challenge data)

4

5

6

Supplementary Table S1 continues on next page.
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Supplementary Table S1: Continued

# Control model (challenge data) Response model (challenge data)

7

8
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Supplementary Table S2: Median cell characteristics of the three gates for each individual

a (red, left ), b (green, center) and c (purple, right) for each challenged individual. The results of individual #7 are 
also reported in Figure 5 of the main text.

# Control model Response model 

1

2

3

Supplementary Table S2 continues on next page.
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Supplementary Table S2: Continued

# Control model Response model 

4

5

6

Supplementary Table S2 continues on next page.
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Supplementary Table S2: Continued

# Control model (challenge data) Response model (challenge data)
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Supplementary Table S3: Percentage of cells in each gate for unchallenged and challenged 
individuals

Based on the distribution of scores established by cross-validation (i.e. projection of each individual onto the 
Control and Response spaces established for all other individuals). Gating of the scores into three distinct 
regions: a coloured in red in Table S1 and containing the cells outside the Control benchmark, but inside the 
80% CI of that individual and to the left of the loading origin, b (green, enclosing the Control benchmark), and 
c (purple) the region outside the benchmark, inside the 80% CI of that individual and to the right of the loading 
origin. The remaining cells lay outside these gates and are not reported in this table. As the 80%-confidence 
intervals of single individuals may well be enclosed by the Control or Response scores, the percentage of cells 
enclosed by these benchmarks (gates b) may exceed 80%. Similarly, the total percentage of cells reported per 
individual exceeds 80%.

  Control model Response model

    a b c a b c

1 0.09 86.89 0.22 0.08 89.34 0.09

2 0.00 87.81 0.00 0.00 86.69 0.00

3 0.00 88.68 0.00 0.00 88.77 0.00

unchallenged 4 0.00 85.48 0.00 0.02 87.05 0.00

5 9.70 61.54 12.37 2.76 82.39 1.32

6 0.00 87.78 0.00 0.10 88.35 0.06

7 0.01 85.51 0.00 1.75 84.48 1.12

  8 0.41 81.80 1.74 1.86 81.30 1.08

1 5.05 76.07 2.82 7.45 70.87 6.55

2 3.66 76.60 4.06 4.24 75.24 5.44

3 5.55 75.20 4.14 12.75 63.71 9.85

challenged 4 1.55 81.98 1.90 9.14 69.50 7.55

5 8.71 68.85 6.59 10.78 63.79 10.08

6 13.41 68.80 5.69 11.07 68.67 7.18

7 5.52 76.21 3.95 12.87 63.66 10.59

8 5.27 74.81 5.22 13.79 62.37 10.38
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Supplementary Table S4: Sensitivity analysis of a low (50%) and high (99%) threshold for 
including cells in the gating for diagnosis

The graphs are analogous to the results in Figure 6 in the main text,(80%) which is also repeated in this table. 
A low threshold (50%) provides significant detection of an immune response in the Control model for most 
challenged individuals, like the 80% threshold used in throughout the chapter. Applying a high threshold (99%) 
does not allow distinction between unchallenged and challenged individuals.

CI Control model Response Model 

50%

p=0.0067 p=0.0019

80%

p=0.0392, t-test p=9.9e-7

99%

p=0.2282 p=0.9037
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Supplementary Table S5: Gated cells of the challenged individual also presented in Figure 5 of 
the main text

Showing a low (50%; top), intermediate (80%, middle) and a high (99%, bottom) threshold for including cells. 
Identical thresholds are imposed on the Control model (second column) and the Response model (third column). 
Although the 50% Confidence Interval threshold can be used for diagnosis (Supplementary Table S4), these 
results show that this diagnosis is based on only a very limited subset of the cells measured for that individual.

CI Control model Response Model 

50%

80%

99%
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Supplementary Material III: Cytometry

A comparison between SPADE and FLOOD, with their results on the LPS dataset

We have conducted an analysis with SPADE on the data that was generated during the 
human LPS challenge study of which the details are explained in the main text. The data 
was pre-processed in an identical way to FLOOD, to optimally compare both results. The 
primary result of SPADE is a tree (Figure S3), in which the expression of each surface marker 
is color-coded for each cell 2.

Supplementary Figure S3: SPADE tree.

Constructed from the LPS dataset, in which the most characteristic features are indicated by labels I-IV. The 
SPADE tree reveals a lineage of cells (branch I) that is expressing a mixture of several surface markers, as indicated 
by the marker-specific colouring of the SPADE trees that is provided on the next page. Another, shorter branch 
II contains cells that are mainly high in CD62L. The side-branch III contains cells that express great quantities of 
CD11c and CD11b. The left  side-branch IV expresses CD62L and CD64. 

Supplementary Figure S4: Average surface marker expression per node across individuals.  
The size of each node indicates the number of cells it contains, totaled across individuals: larger nodes contain 
more cells.
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Supplementary Figure S5: Average distribution of cells across the clusters.

For unchallenged (left) and challenged (right) individuals. The node size again represents the occupancy of each 
node across all individuals.

Unchallenged individuals    Challenged individuals 

 
 

Note that a comprehensive overview of the distribution of all surface markers across 
all nodes requires interpretation of seven SPADE figures. The two FLOOD biplots reveal 
correlations (that may signify biological relationships) among the surface markers that 
remain elusive in the SPADE trees. 

In a subsequent analysis, we have compared the number of cells that each SPADE tree 
node occupies. The average distribution all cells across the nodes is given below for both 
unchallenged and challenged individuals. Both unchallenged and challenged individuals 
occupy much the same nodes. Specifically branches I-IV of the tree that were identified 
before are sparsely and highly similarly occupied by cells, both for challenged and for 
unchallenged individuals. Thereby the population-specific branching constructed in the 
SPADE tree does not correspond to the changes in surface marker expression by all cells 
that LPS induces.

As a final cross-method comparison we have superimposed the cells within the FLOOD gates 
a-c onto the SPADE tree. These results are given below and show that the cells from gate b 
occupy several different nodes, more to the right of the tree compared to those occupied 
by cells from the central gate a. The cells from gate c occupy one node that is equal to those 
of the central gate, but also score distinctively in several nodes around that shared node. 
One SPADE node occupied by the central gate is not occupied by gate c.
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Supplementary Figure S6: Occupation of the nodes in the SPADE tree.

By cells from the three gates defined for the challenged individuals in the FLOOD response model.

gate a     gate b     gate c 

 
 
 

 
 

The automatically gated cells identified by FLOOD can be only poorly distinguished in the 
SPADE tree. The branches that SPADE did identify cannot be associated to the immune 
response to the LPS challenge. This response could be much better revealed by FLOOD. The 
FLOOD model represents the relationships between all surface markers in two, rather than 
seven figures. It also isolates the cellular variability—and therefore the individual cells—that 
relate to the response in a way that can be quantified for diagnosis.

Chapter_3_1_Bart.indd   155 26-5-2017   11:47:13



Chapter_3_1_Bart.indd   156 26-5-2017   11:47:14



DetaileD analysis of the in vivo neutrophil response after 
anaerobic exercise in elite rowers

Chapter 3.2

Published in part in Chemometrics and Intelligent Laboratory Systems 
(2015), doi: 10.1016/j.chemolab.2015.12.001. Supplement III.

Bart Hilvering a

Selma van Staveren a

Jeroen J. Jansen b

André van den Doel b

Daan Switters a

Corneli van Aalst a

Peter Pickkers  c

Leo Koenderman a

Lutgarde M.C. Buydens b

Oscar F. van den Brink d

a Department of Respiratory Medicine, Laboratory of Translational Immunology (LTI), University Medical 
Center Utrecht, Utrecht, The Netherlands.
b Department of Analytical Chemistry, IMM , Radboud Universiteit Nijmegen, The Netherlands.
c Department of Intensive Care, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
d TI-COAST, Science Park 904, Amsterdam, The Netherlands.

Chapter_3_2_Bart.indd   157 21-5-2017   23:10:05



Chapter 3.2

158

Abstract

Rationale: Exercise induces activation of the innate immune response in athletes. 
The response starts during exercise and lasts for approximately 24 hours. Athletes 
develop leukocytosis, and their systemic cytokine production is altered towards an 
inflammatory pattern. A detailed analysis of the expression of cell receptors is required 
to gain more insight into immune response in response to exercise. New tools to analyse 
multidimensional data can facilitate the analysis. 

Aim: To determine the type and degree of the cellular response in peripheral blood of 
elite rowing athletes after anaerobic exercise.

Methods: 16 healthy, non-asthmatic, rowing athletes, aged between 18 and 25 years, 
were included. The rowers performed an anaerobic maximum-effort test (3x1000m.) on 
an indoor rowing machine. Blood was withdrawn before the test (t=pre) and afterwards 
at time point t= 2 hours. White blood cells were isolated, stained with fluorescent anti-
bodies CD35, TLR-4, CD62L, CD11c, CD49d, CD32, CBRM1/5, CD11b, CD64 and CD16 and 
measured by flow cytometry. FLOOD, a multidimensional flow cytometry data analysis 
method, was used to analyse the surface marker variation on leukocytes. 

Results: A prominent rise in leukocyte count was observed in all but two rowers 
between the pre-exercise time-point versus the sample taken after two hours after 
exercise. Multidimensional analyses demonstrated that more heterogeneity in surface 
marker expression was present before exercise as compared to t=2h after exercise. A 
marked induction of neutrophilia was observed on exercise. Focusing on the ‘new’ 
neutrophils led to the finding that these cells were characterized by a 6-fold increase 
in CD16dimCD64dim neutrophils that had a higher expression of CD11b, CD11c, CBRM1/5 
and CD62L at t= 2h compared to pre-exercise.

Conclusion: Multidimensional analysis by FLOOD demonstrated that anaerobic exercise 
by elite rowers induces a clear systemic immune response with marked neutrophilia 
characterized by the appearance of a specific neutrophil phenotype in addition to an 
increase in ‘homeostatic’ neutrophils. These findings will help interpreting the changes 
in immune status of elite athletes during periods of intensive training.
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Introduction

The effect of exercise on the innate immune system in athletes has been subject of study 
because of their susceptibility to upper/lower respiratory infections 1. The main changes 
in innate immune response are leukocytosis, altered receptor expression on leukocytes, 
and cytokine responses 2–4. The leukocytosis generally follows a similar pattern in different 
studies. A representative study has been published by Kakanis et al. 5. 10 male elite cyclists 
exercised for two hours at 90% of their ventilator threshold, blood was drawn at several 
time-points and analysed by a routine cell analyser. Striking is the 5-fold rise in neutrophil 
count in blood, which is quite similar to a response to bacterial infection or acute trauma 6,7.  
The functional consequences of this leukocytosis are not well understood. Also detailed 
phenotypic information regarding individual neutrophils is lacking. 

The innate immune response induced by exercise can have important consequences for 
athletes, particularly during episodes of high-intensity training. When the innate response 
is too extensive and/or aberrant, the response might develop into a systemic inflammatory 
response that is associated with direct damage of tissue, chronic inflammation such 
as found in the bronchial tissue of athletes with Exercise Induced Asthma (EIA) and/or 
impaired immune reactions to infections. Accurate prediction of a specific risk caused 
by tissue damage (occurrence of progenitor cells), acute inflammation (occurrence of 
immune-suppressive cells) and chronic inflammation (expression of priming markers on 
immune cells) is important for the diagnosis of exercise-associated pathology. Indications 
for each of these three mechanisms have been found in exercise studies of diverse types 
of athletes/asthma patients 8–10. 

When exercise-induced musculoskeletal injury, bronchoconstriction and, on rare occasions, 
anaphylaxis are accompanied with a dysregulated inflammatory response the pathological 
response can be markedly enhanced even leading in rare cases to sudden death 11. More 
insight in the ‘inflammatory’ response to exercise is, therefore, very important 12.

Neutrophilia can be induced by catecholamine release and is found not only after 
exercise but also during acute infections, sterile inflammation, and during 6,13,14 systemic 
inflammatory response syndrome (SIRS) 6,14,15. SIRS can be evoked in normal volunteers by 
intravenous administration of Lipopolysaccharide (LPS) of E. Coli bacteria 15. LPS triggers an 
innate stimulus by binding to TLR-4 receptor on target cells such as macrophages 29. It leads 
to a cascade of events associated with acute inflammation such as a cytokine storm, fever 
and cardiovascular changes 15 . LPS is therefore used as a model to mimic the response to 
bacterial pathogens. Anaerobic exercise on the other hand, being part of routine training 
schemes, is a more physiological response without the presence of an extrinsic factor. It 
is, therefore, to be expected to cause much more subtle changes in the immune response 
compared to LPS challenge.

A multicolour antibody panel with 10 neutrophil markers was developed to study exercise-
induced changes of neutrophil phenotype; TLR-4, CD35, CD16, CD32, CD64, CD62L, 
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CD11b, CBRM1/5, CD11c and CD49d. TLR-4, which is the receptor of LPS, and CD35 (CR1, a 
complement receptor/activation marker) were chosen to be able to compare neutrophils 
obtained during exercise-induced neutrophilia with neutrophils found in the blood after 
LPS-challenge 16. The three Fcγ receptors CD16, CD32 and CD64 were included in the panel 
as they are generally linked to a response to bacterial infection 17. CD62L (L-selectin) is an 
adhesion molecule required for neutrophil transmigration through endothelium and its 
expression is lowered upon neutrophil-endothelial cell interactions 18. CD11b is the α-chain of 
the MAC-1 integrin (CD11b/CD18) or complement receptor 3 and has a function in leukocyte 
adhesion and migration 19. In addition to this, CBRM1/5 is used because it only binds to an 
epitope present on the active conformation of the MAC-1 complex 20. CD11c or alpha X is the 
α-chain of the p150/95 integrin (CD11c/CD18) is an integrin with a poorly understood function 
on neutrophils. CD11c is an important marker as it is clearly upregulated on neutrophils 
upon LPS challenge 6. And finally, CD49d is the integrin alpha subunit of two integrins VLA4 
(α4β1) or LPAM (α4β7) that was found to be positive on neutrophils in allergic patients 21. 

This study describes a comparison in response of peripheral blood cells of elite rowers 
between time-point 0h (pre-exercise) and 2h after anaerobic exercise bout (peak of cellular 
response). FLow cytometric Orthogonal Orientation for Diagnosis (FLOOD, Chapter 3.1) was 
used for the data analysis of high-dimensional flow cytometry data 22 .

Methods
For this study ethical approval was obtained from the Medical Ethical Committee of the 
University Medical Center Utrecht, protocol nr. 13-031. It was registered at the international 
trial registry clinicaltrials.gov, code NCT01893762. 

Subjects 

The study population were healthy rowing athletes who underwent a training scheme of 
minimally 10 hours of training per week at rowing clubs Triton, Orca or Viking in Utrecht, 
The Netherlands. In order to be eligible for participation in this study, a subject had to meet 
all of the following criteria: Rowing for 12 months or longer, >6 times per week, aged 18-25 
years, pretested maximum heart rate (by exercise test up to maximum effort), performed a 
sports medical examination test (required for competing on a national level by the Royal 
Dutch Rowing Association). Exclusion criteria were: (1) asthma, (2) current respiratory 
infection, sinusitis, otitis or any other sign of acute/ chronic inflammatory disease and (3) 
physical injury. 

Before inclusion rowers were approached by their coaches to ask if they were interested 
in the study. If so, an independent researcher gave the subject information letter, made an 
appointment to answer additional questions and asked for informed consent. 
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Design

In this investigator driven, mono-center observational study, rowers were asked to perform 
a 3x1000m maximum exercise test on a rowing machine (Concept-II model D), with a 5 
minute rest interval after each 1000m. Blood was obtained by venepuncture before exercise 
and 2 hours after exercise in a 9mL sodium-heparine tube and processed as described 
earlier in Chapter 3.1. Antibody staining of white blood cells was performed with a panel 
of fluorescently labelled antibodies (Table 1).

Table 1: The flow cytometry panel

FL1
FITC

FL2
PE

FL3
ECD

FL4
PeCy5.5

FL5
PeCy7

FL6
A647/
APC

FL7
A700

FL8
A750

Fl9
PB

FL10
KO

CD35 TLR-4 CD62L CD11c CD49d CD32 CBRM1/5 CD11b CD64 CD16

Methods of measurement & Analysis

The same method of flow cytometry measurements was used as described in Chapter 3.1  22. 
In short, samples were analysed using a BC Gallios™ flow cytometer (Beckman Coulter, Brea, 
California). FCM data was extracted using FCS express 3.0. FLOOD data analysis (algorithm 
in Matlab2013a) was used as described in Chapter 3.1, with time-point 2h after exercise 
used for the construction of the Control space and time-point 0h for the Response space. 

All results of the FLOOD analysis were obtained by a leave-one-out cross-validation protocol; 
the data of the plotted individual (both pre- and two-hours-after exercise) were excluded 
before generation of the FLOOD model to exclude influence of the individual’s data on the 
model that could change the output. 

Results

Sixteen rowers agreed to participate, signed informed consent and performed a 3x1000 
meter maximum effort test (See Table 2 for the base-line characteristics of the participating 
rowers).

FLOOD-analysis

In order to highlight the difference between the homeostasis (pre-exercise) and the state 
in which a leukocytosis is observed, the two-hours after exercise data point was taken as 
reference in the comparison. Table 3 presents the results of projection of the data in the 
Control space (for construction of Control and Response spaces see Chapter 3.1). 
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In the graphs in Table 3, showing the results for Rower 10, as a good representative of 
all except two individuals, and for Rower 8, as an example of the two deviant individuals 
(Rowers 8 and 15);

Table 2: Base-line characteristics

Figure 1: White blood-cell-counts (WBC) per individual, pre-exercise and 2h after exercise.

The two dotted lines belonging to subject 8 and 15 have the lowest increase of WBC in response to exercise 
compared with the others.
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•	 the first PC is represented by the horizontal axis describing 67% of the 
2h-after-exercise time point;

•	 the second PC is represented by the vertical axis describing 17% of the 
2h-after-exercise time point; 

•	 the cyan line indicates the Control benchmark, i.e. the 80% CI of cells taken 
from all individuals 2h after exercise;

•	 the grey line indicates the 80% CI of cells of the individual 2h after exercise 
(left-hand column) or pre-exercise (right-hand column); 

•	 the yellow arrows are the loadings in the Control space;
•	 cells in gate a, green cells, are enclosed by both the Control benchmark and 

the 80% CI of the individual (separately in grey).

Table 3: Control model

Rower #10’s two graphs (top row) are a representative example of the change in cell distributions observed in all 
rowers on exercise, except for #8 and #15. These latter two both show a very similar cell profile between post- and 
pre-exercise as shown by #8 (bottom row).

Number Two-hours-after exercise Pre exercise

Rower 
10 
(similar 
response 
in 14 out 
of 16 
rowers)

Rower 8 
(similar 
response 
as 
Rower 
15)
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The Control benchmark consists of a main cluster of cells that is egg shaped and a smaller 
‘island’ to the upper right. The egg shaped islands are in fact neutrophils. The smaller 
island corresponds with the second most abundant population of cells in peripheral blood: 
lymphocytes. There are two responses in the group of rowers; 14 out of 16 rowers show a 
very similar response with a rise in neutrophils and the seeming disappearance of the other 
cell clusters at the right and left of the Control benchmark. The two other rowers (#8, #15) 
show a very comparable profile between the two time-points, with only a slight change in 
neutrophil characteristics and persistent clusters of lymphocytes and monocytes. 

The projections in the Response space were also obtained according to the leave-one-out 
method. In the graphs in Table 4, showing the results for Rower 10, as a good representative 

Table 4: Response model

Rower 10 (top row) is a representative example for all rowers except for rower 8 (bottom row) and rower 15. At 
t=pre cells in red plot outside the Control benchmark and at t=2h almost all cells plot within the benchmark. In 
rowers 8 and 15 the heterogeneity of t=pre persists at t=2h aft er exercise.

Number Two-hours-after exercise Pre exercise

Rower 10 
(similar 
response 
in 14 out 
of 16 
rowers)

Response 
in #8 
(similar 
response 
in #15)
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of all except two individuals, and Rower 8, as an example of the two discordant individuals 
(#8 and #15);

•	 the first PC is represented by the horizontal axis describing 26% of the 
variance of the pre-exercise time point;

•	 the second PC is represented by the vertical axis describing 23% of the 
variance of the of the pre-exercise time point; 

•	 the cyan line indicates the Response benchmark, i.e. the 80% CI of cells 
taken from all individuals except the one left out, pre- exercise, identical 
in both columns;

•	 the grey line indicates the 80% CI of cells of the individual, 2h after exercise 
(left-hand column) or pre-exercise (right-hand column); 

•	 the yellow arrows are the loadings in the Response space;
•	 cells in gate a, green cells, are enclosed by both the Response benchmark 

and the 80% CI of the individual; 
•	 cells in gate b, red cells, plot outside the Response benchmark but inside 

the 80% CI of the individual.

Notably, the cells taken at t= 2h plot inside the Response benchmark. The cells taken from 
individuals before exercise partly plot outside the benchmark, often producing a projection 
that has two nodes or sub-clusters. This is attributed to the greater heterogeneity of the 
cell population before exercise as compared to t=2h after exercise, when neutrophilia has 
evidently occurred. 

A more quantitative comparison of the observations is given in Figure 2 and Table S1 
(Supplementary material). Combining the results of these models Figure 2 shows the sum 
of the fractions of cells in the gates b in both models for each of the individuals, comparing 
2h after exercise and before exercise. The figure also clearly shows that there are two strong 
deviations from the observation that after exercise a small fraction of cells plot in gate b: 
these deviations occur in rowers #8 and #15. These individuals also have the lowest increase 
in White-Blood-cell Count two hours after exercise (see also Figure 1). This is interpreted as 
an absence of response to the exercise. Table S1 confirms that cell populations taken from 
individuals before exercise have a higher fraction projecting inside gate b. This is evident 
in both the Control model and the Response model, confirming the observation in Table 
3 that the 2-h-after-exercise cell population is more homogeneous compared with the 
pre-exercise cell population.

Both the Control model and Response model seem to indicate that cell populations 
disappear upon exercise. To establish whether or not this phenomenon actually occurs 
all the cells were plotted in a combined density and dot plot in which single cells still are 
visible and no cells are lost in the periphery due to smoothing. Figure 3 shows the result for 
Rower 10 as a representative example, comparing the t=pre time point (left) with 2h after 
exercise (right). At the t=2h time point the neutrophil population is visible just to the left of 
the origin of the vectors and the other populations are still visible to the right of the axis. Yet, 

Chapter_3_2_Bart.indd   165 21-5-2017   23:10:06



CHAPTER 3.2

166

Figure 2: Fraction of cells outside the Response benchmark, pre-exercise (black) and 2h after 
exercise (grey).

the relative concentration of these populations compared to the neutrophils is far lower than 
at t=pre. The t=pre graph shows cells with higher variation in receptor expression and all cell 
populations are more clearly visible just right from origin of the vectors compared to t=2h. 

This observation prompted a second analysis with a focus on neutrophils, which were 
gated again based on CD16 and CD62L expression and subsequently subjected to FLOOD 
analysis. The gating strategy is visualized in Chapter 3.1.

Neutrophils

Neutrophils at t=pre and t=2h were compared in two analyses: t=pre as control and t=2h as 
response and vice versa. The model with t=pre as control and t=2h as response was chosen 
based on an increase in receptor variation of neutrophils after exercise. 

First of all, without looking at receptor variation and just at cell counts, the neutrophil count 
rises from ~3.5 million neutrophils/mL at time point t=pre to ~9 million neutrophils/mL 
2h after exercise (Figure 4). Although the neutrophil count rises extensively, the receptor 
variation seems to change only slightly. This is best visualized in Figure 5 with neutrophils 
of Rower 10 at time point 2h in the Response model. The pattern observed in neutrophils of 
Rower 10 is consistent for all rowers, including Rowers 8 and 15. The Response benchmark 
(80% CI, in red) ‘floods’ the Control benchmark (80% CI, in green) at the right-hand side of 
the origin of the loading vectors. Markers CD16 and CD64 have high loadings pointing to 
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Figure 3: Response model as in Table D.

Rower 10 is a representative example for most rowers. The heterogeneity of the cell populations is high at t=pre 
and low at t=2h.The red line indicates the average Response benchmark for all rowers. The green line is the 80% 
CI of all rowers at t=2h. And the cyan line represents the 80% CI of Rower 10 within each graph. The increase in 
cellular density in the neutrophil population results in an overall more homogeneous peripheral blood profile at 
t=2h. The neutrophil population mobilised in exercise is less heterogeneous than the population present before 
exercise.

Left: Figure 4. Neutrophil counts at t=pre and t=2h. Right: Figure 5. Rower 10 as a representative 
example of all rowers.

The cyan line is the Control benchmark of the combined FCM data before exercise challenge, the red line is the 
80% CI Response benchmark of all rowers and the green line is the 80% CI of rower 10 in the Response space. 
There is a shift  towards most activation markers and away from CD64 and CD16, indicating a higher expression 
of CD49d, CBRM1/5, CD11b, CD11c and CD62L versus a lower expression of CD64 and CD16
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the left-hand side and all other activation markers point more to the right. The shift of cells 
is mainly visible in PC1. In PC2 CD35 has a high loading. Yet, the shift of cells is more in the 
horizontal direction of PC1 with CD16 and CD64 as important loadings versus CBRM1/5, 
CD11b, CD11c and CD62L pointing in the opposite direction.

The FLOOD data was loaded into FCS express to determine the percentage of neutrophils 
‘flooding’ the 80% CI Control benchmark at the right side after exercise and to scrutinize 
single parameter expression of this group of neutrophils by means of back-gating. Figure 
6A shows that the Control gate contains 91% of the neutrophils of Rower 10 before exercise, 
while the red ‘Response gate’ contains a mere 7%. Figure 6B, on the other hand, shows 
that upon exercise (t=2h) 80% of the neutrophils of this rower are found in the Control gate 
while the percentage of cells in the Response gate has increased to 20%. Overall, analyzing 
all rowers before exercise, 90% (sd 5%) of neutrophils plot within the Control gate and 8% 
(sd 5%) plot in the “Response gate” (in case of t=pre this is not an actual response gate). 
After exercise 80% (sd 7%) of cells still plot within the Control gate and 20%(sd 6%) in the 
Response gate. Notably, as mentioned above, the total neutrophil count rises from around 
3.5 million cells/mL to around 9 million cells/mL. All rowers, Rowers 8 and 15 included, were 
taken into account in this average overall rise. Thus, neutrophils present in the Response 
gate increase from a peripheral blood concentration of ~0.3 million cells/mL at time point 
t=pre to ~1.8 million cells/mL two hours after anaerobic exercise, a 6-fold increase.

Figure 7 shows the marker expression profiles of the ‘exercise-associated’ neutrophils of 
rower 10, i.e. those in the Response model obtained at t=2h with the Control gate in black 
and the Response gate in red. The fluorescence intensity plots reveal the subtle differences 
between the two time points, the black line representing the intensity at t = pre and the red 
line the intensity at t = 2h. CD64 expression and CD16 expression on neutrophils appear to 
be lower at t = 2h. This is observed for all rowers, and supports the observation in Figure 5  
where the loadings of CD16 and CD64 point into the opposite direction (left) of the 
population of neutrophils “flooding” the 80% CI of the Control benchmark (right). Other 
activation markers pointing into the right-hand direction in Figure 5 are higher in the 2h 
time point with the highest increase in CD11b, CBRM1/5, CD11c and CD62L expression. 
Other markers as CD35, TLR-4, CD32 and CD49d also show a mild increase in the exercise-
associated neutrophils. These subtle changes are not visible at an individual marker level 
and become only visible after performing FLOOD analysis. This is best visible at an individual 
marker level comparing the Control and Response gate in the Control model and in the 
Response model separately (Figure S1, supplementary material) and is identified only after 
multidimensional FLOOD analysis.
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Figure 7: Fluorescence intensity in histograms per parameter.

On the vertical axis normalized cell counts are plotted and on the horizontal axis fluorescence intensity for a 
specific marker using a logarithmic scale. The population in the Control gate is plotted in black and in red the 
population in the Response gate (Figure 6). Again these are gated neutrophils from Rower 10 in the Response 
space.

Figure 6: Manual back-gating strategy in FCS-express.

With as an example rower 10 (A) before and (B) after exercise. Neutrophils have the same shift towards the right 
as in Figure 5. The population flooding the Control benchmark at the right-hand side is gated in the Response 
gate at the right side of the graph. The blue Control gate was constructed by visual transfer of the Control 
benchmark at t=pre (80% CI in FLOOD) onto the representation in FCS Express.
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Discussion

FLOOD analysis of MFC data from whole blood visualized that anaerobic exercise by elite 
rowers is accompanied by a leukocytosis at two hours post-exercise with an overall more 
homogeneous peripheral blood cell profile. The homogeneity of peripheral blood cells is 
mainly caused by neutrophilia. Subsequent FLOOD analysis on gated neutrophils indicated 
an increase of CD16dim and CD64dim neutrophils compared to neutrophils present before 
exercise. These CD16dimCD64dim ‘exercise-associated’ neutrophils have an overall higher 
expression of CBRM1/5, CD11b, CD11c and CD62L compared to the pre-exercise neutrophils. 
In percentage of total neutrophils the ‘exercise-associated’ neutrophils increase from 8% to 
20%. Corrected for an increase in total neutrophil count, this type of cell goes from 0.3x109/L 
to 1.8x109/L, which is a 6-fold increase. 

The presence of neutrophils with an overall lower CD16 expression after intense exercise has 
been described by Peake et al. 23. In this study a lower expression of CD11b was described in 
addition to lower CD16 expression after both moderate and intense exercise on a treadmill. 
In contrast, our study CD11b is more highly expressed after exercise as indicated by the 
loading of CD11b in Figure 5 and a very subtle difference towards higher expression in the 
fluorescence intensity histogram in Figure 7. Eeden et al. also described an upregulation 
of CD11b on neutrophils 30min after acute maximal exercise to exhaustion on a cycle 
ergometer 24. Beside the use of FLOOD analysis for interpretation of FCM data, another 
factor that might contribute to variation in findings is difference in stimulus. In the study of 
Eeden et al. athletes performed a more comparable anaerobic exercise test which lasted 
minutes while in the study of Peake et al. they stayed below the anaerobic threshold in an 
exercise test of 60 minutes. A second explanation of the varying results is a difference in 
time points of blood withdrawal after exercise which was at 30min (Peake et al.), 1h (Eeden 
et al.) and 2h after exercise (this study). In summary, the lower overall expression of CD16 
in the neutrophil population after exercise has been observed earlier. The expression of 
CD11b, on the other hand, is higher in the exercise-associated neutrophils in our study and 
in the study of Eeden et al. 

The exact phenotype of ‘exercise-associated’ neutrophils has not been described earlier with 
CD16dimCD64dim expression and a higher expression of CBRM1/5, CD11b, CD11c and CD62L. 
It is challenging to relate the findings in our study to other studies due to the use of FLOOD 
analysis and the high number of markers in one panel. The increased amount of fluorescent 
markers that can be measured simultaneously on one cell led to the development of multiple 
new analysis methods of FCM data 25–27. FLOOD is one of these novel analysis methods and 
facilitates the identification of ‘exercise-associated’ neutrophils by grouping them together 
and by identifying the difference in surface marker expression profile compared to the pre-
exercise state. The use of benchmarks makes it possible to precisely compare a pre-exercise 
cell profile to a post-exercise cell profile. This is a unique approach that can only broadly 
relate to conventional single marker expression profiles on cell populations. 
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The implication of an ‘exercise-induced’ change in neutrophil phenotype is unclear. 
However, the data can be compared to the results of neutrophil analysis after LPS challenge. 
The three phenotypes that appear after LPS challenge in humans are characterized 
by CD16dimCD62Lbright cells with a banded nuclear phenotype, CD16brightCD62Lbright cells 
with a normal nuclear phenotype and CD16brightCD62Ldim cells with on average more 
nuclear segments 6. Based on the receptor characteristics ‘exercise-induced’ neutrophils 
show similarities to the banded neutrophils detected after LPS challenge which are 
CD16dimCD62Lbright. On the other hand, the phenotype of cells obtained after exercise 
is different, this is illustrated by CD11b expression. The expression of CD11b is lower on 
the banded population after LPS challenge compared to mature neutrophils, but slightly 
higher in the ‘exercise-associated’ neutrophils compared to neutrophils before exercise. 
The function of young/banded neutrophils is yet unclear. However, unpublished results by 
P. Leliefeld (Koenderman group) indicate that these cells are superior in killing of bacteria 
compared to the other neutrophil phenotypes. Little is known regarding the exercise-induced 
neutrophils that are within the Response benchmark. Therefore, it is important to sort the 
different populations of cells after exercise and study their functionality in terms of both 
killing micro-organisms as well as immune regulation. 

The difference in immune response in rowers can result in differences in cell counts and 
in expression of surface markers on cells. Two rowers did not respond to the anaerobic 
challenge by means of a leukocytosis. These same rowers had almost no change in variation 
of surface marker expression on all leukocytes despite the exercise challenge (Table 3). An 
explanation for this difference could not be related to their performance as both rowers 
delivered adequate power compared to the others and followed a similar training scheme. 
After analysing the neutrophils of these rowers (#8 and #15), there was a similar pattern 
in receptor expression upon exercise compared to the other rowers. Interestingly the 
leukocytosis was absent while the response in receptor variation did occur in the neutrophils. 
The rise in neutrophil count and the response in receptor variation were discordant in 
these two rowers compared to the others. Overtraining might be an explanation for the 
discordant response in this group of elite athletes following high-intensity training schemes, 
although there is no current evidence for alterations in immuno-phenotypes in overtraining 
syndrome 28. Unfortunately our study was not designed to correlate cellular characteristics 
with parameters of overtraining. 

In summary, anaerobic rowing exercise induces a leukocytosis characterized by a more 
homogeneous surface marker profile compared to a pre-exercise state. Neutrophils are 
the main cell type responsible for the leukocytosis and detailed analysis of neutrophils by 
FLOOD analysis shows there is a change in receptor variation towards lower expression of 
CD16 and CD64 and higher CD11c, CD11b, CBRM1/5 and CD62L expression. FLOOD analysis 
was required to identify and characterize exercise-associated neutrophils that would not 
have been identified by conventional biplots of MFC data. As visualised by FLOOD the overall 
response to exercise is very consistent among rowers, except for two rowers who did not 
develop a leukocytosis upon exercise but did have a neutrophil response by means of 
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receptor expression similar to the other rowers. The function and role of exercise-associated 
neutrophils is still unclear, future experiments including functional assays with sorted cells 
identified by FLOOD analysis will provide more insight in the innate immune response to 
exercise.
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Supplementary Material

Supplementary Table S1: Quantitative comparison of the number of cells

In gates a (inside Control benchmark) and b (outside Control benchmark) per individual for both the Control and 
Response model both 2h after exercise (top) and before exercise (bottom).

2h after Control model Response model

gate b gate a gate b gate a

Individual (%) (%) (%) (%)

1 0.0 84.2 0.0 83.0

2 10.1 73.5 0.0 82.6

3 0.0 83.2 1.4 82.4

4 1.6 81.1 0.0 82.9

5 0.0 83.0 0.0 82.9

6 0.0 83.0 0.0 82.9

7 3.5 80.0 0.0 82.4

8 25.7 58.2 14.2 67.7

9 1.5 80.8 1.1 80.5

10 2.9 79.3 0.7 80.9

11 7.3 75.7 5.8 76.3

12 8.5 75.4 1.5 81.0

13 0.3 83.2 0.0 82.8

14 0.2 82.6 0.0 84.7

15 32.7 49.6 14.4 66.9

16 6.5 76.7 0.0 83.3

Supplementary Table S1 continues on next page.
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Supplementary Table S1: Continued

2h after Control model Response model

gate b gate a gate b gate a

Individual (%) (%) (%) (%)

1 34.0 49.7 11.8 70.1

2 42.6 41.1 13.2 68.6

3 23.8 60.5 10.5 71.3

4 61.6 22.2 21.0 61.0

5 19.0 64.4 9.0 72.8

6 21.1 62.4 20.8 61.2

7 24.7 58.4 12.2 70.1

8 53.3 31.2 25.1 56.9

9 29.9 52.6 13.6 68.4

10 46.0 37.5 24.4 57.4

11 32.7 50.6 40.1 43.0

12 29.0 54.2 17.1 65.6

13 35.0 48.2 8.9 72.8

14 48.3 35.2 12.0 69.8

15 45.1 37.8 19.6 62.6

16 58.4 24.9 6.5 75.3
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Supplementary Table S2: Percentages of cells in the Control gate and Response gate before and 
after exercise

The gates were set manually transferring the FLOOD Control benchmark to the FACS Express gate. (Figure 6).

t=pre-exercise t =2h after exercise

Rower Control gate (%) Response gate Control gate Response gate

1 90.5 7.0 68.9 29.1

2 87.8 11.5 84.9 15.4

3 82.0 16.5 85.4 14.8

4 83.8 16.0 86.9 13.1

5 96.7 2.9 63.7 36.7

6 86.1 13.0 79.8 19.7

7 87.2 12.4 76.3 21.8

8 97.1 2.3 80.6 20.2

9 96.0 2.9 85.6 15.1

10 91.5 7.3 79.6 19.8

11 93.6 4.9 76.1 24.2

12 90.9 5.0 82.9 17.1

13 85.5 15.1 85.7 14.3

14 93.1 6.7 73.4 25.7

15 92.2 7.7 77.6 22.2

16 92.4 7.0 86.3 15.0

Average 90.7 (sd 5%) 8.4 (sd 5%) 80.1 (sd 7%) 19.8 (sd 6%)

Chapter_3_2_Bart.indd   176 21-5-2017   23:10:08



Ch
ap

te
r 3

.2

ExErcisE inducEd nEutrophil rEsponsE in ElitE rowErs

177

Supplementary Figure S1: Gated neutrophils of Rower 1 from the FLOOD Response Model from 
t=pre and t=2h and for each time-point a Control gate and a Response gate.

On the vertical axis normalized cell counts are plotted and on the horizontal axis fluorescence intensity for a 
specific marker using a logarithmic scale. It resulted in four histograms for each of the labels. In Black: Control 
gate for t=pre, Red: Response gate for t=pre, Purple: Control gate for t=2h and Green: Response gate for t=2h. 
The highest neutrophil count is in the t=2h Control gate and in this rower the t=2h Response gate contains even 
more cells than the Control gate for t=pre.
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Abstract

Rationale: Identification of a raised peripheral blood eosinophil count is a first 
important step in selecting a specific group of asthma patients that are responsive 
to anti-IL5 treatment. However, more detailed peripheral blood analysis using flow 
cytometry measurements (FCM) is necessary to further specify asthma phenotypes 
and predict treatment effects. 

Hypothesis: Automated multi-colour flow cytometry (FCM) data analysis of blood 
leukocytes leads to the discovery of inflammatory patterns in asthma and improves 
diagnostic work-up of asthma phenotypes.

Method: 11 healthy controls and 24 asthma patients were included. Five asthma pa-
tients had mild/moderate asthma and 19 severe asthma according to the British Tho-
rasic Society (BTS) guidelines (2015). All participants received a full asthma-diagnostic 
work-up including sputum induction, FeNO measurement, asthma questionnaires and 
Radioallergosorbent (RAST) tests. Blood was taken and whole blood was stained with 
the following antibodies CD193, CD3, CD4, CD8, CD123, CD14, CD16 and CRTH2. Red 
blood cells were lysed and white blood cells were measured by FCM. Data analysis 
was performed using DAMACY, a multivariate analysis strategy that combines Princi-
pal Component Analysis (PCA) and Orthogonal Partial Least Squares – Discriminant 
Analysis (OPLS-DA).

Results: Characteristic cell populations for eosinophilic asthma patients were 
eosinophils, basophils, Th2 cells and CD3+CD8+CRTH2+ cells (Tc2 cells). The overall 
higher level of CD8 expression on CD3+CD8+ cells of non-eosinophilic asthma patients 
versus healthy controls also contributed to the separation of the two groups. This was 
strengthened by the observation of the presence of CD3+CD8++ cells in non-eosinophilic 
asthma versus eosinophilic asthma. A typical observation in the controls versus asthma 
patients is a larger variation in level of CD16 expression in neutrophils. Based on blood 
profiles, asthma patients were separated from healthy controls with a diagnostic 
accuracy of 90%.

Conclusion: Detailed analysis of white blood cells in asthma patients reveals specific 
inflammatory patterns not observed in healthy controls. Cellular patterns associated 
with severe eosinophilic asthma were increased numbers of eosinophils, basophils, 
Th2 cells and Tc2 cells. Unbiased multi-dimensional analysis of flow cytometry data is 
a promising tool to identify inflammatory patterns in peripheral blood and to facilitate 
the discrimination of different inflammatory phenotypes in human asthma.
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Introduction

Asthma is a highly prevalent chronic inflammatory airway disease that affects 5-10% of all 
adults and children 1. Within this large population of patients, a total of ~300 million people 
worldwide, an estimated 4% suffer from severe refractory asthma defined as difficult-to-
control asthma despite adherence to treatment and a correct inhalation technique 2. This 
vulnerable subgroup suffers from substantially higher morbidity and mortality and accounts 
for more than half of the asthma-related health and economic impact 1,3,4. Regardless of 
maximal treatment and correct medication use, these patients suffer from two or more 
asthma attacks per year, requiring oral prednisolone treatment and/or hospitalization. 
There is a strong need to identify patients with severe refractory asthma in an early stage 
and start personalized treatment as quickly as possible. Standard practice is treatment with 
oral glucocorticoids; upcoming therapeutic options for this group are biologicals such as 
anti-IL-5, anti-IL-4-alpha and anti-IgE 5–7. 

Deep disease phenotyping is key to determine which treatment is appropriate for an 
individual asthma patient. Up to this date, there is no perfect test to predict the course of 
disease in asthma nor to predict treatment responses to steroids or biologicals. Various 
biomarkers measured in sputum, exhaled breath, peripheral blood and urine have been 
studied and were proven to associate with specific disease characteristics and some with 
treatment responses 8. In the past sputum eosinophilia has been extensively studied and 
proven to be valuable to titrate treatment with oral glucocorticoids thereby reducing 
exacerbations 9–11. Unfortunately this test has been proven to be suitable only for specialized 
asthma centers and fails in 10-30% of the procedures for various reasons ranging from 
coughing technique to the absence of sputum at a particular time point of measuring. Less 
time consuming and less laborious measurements such as Fraction of exhaled nitric oxide 
(FeNO) and blood eosinophilia have been studied to predict a reduction in exacerbation 
frequency in treatment with steroids and Mepolizumab respectively 12–16. 

The FeNO based treatment strategy was tested in primary care settings and reduces ICS 
use, was cost-effective and had a small effect on exacerbation reduction 17. FeNO was also 
proven to have an only weak association with sputum eosinophilia 18. High levels of FeNO, 
blood eosinophil count and periostin levels in blood proved to have a positive predictive 
value for a reduction in exacerbation frequency in response to anti-IgE 5. In an overall more 
severe hospital population with allergic asthma, forty-eight months of anti-IgE treatment 
reduced the exacerbation frequency for patients with a high FeNO (≥19.5 ppb) and/or with 
high periostin (≥50ng/mL). In summary FeNO might be important for asthma in primary 
care setting and in severe allergic asthma, but the value of FeNO for making treatment 
decisions in severe refractory asthma is yet unclear. 

Blood eosinophilia above 0.15x109/L was found to have significant positive predictive value 
for a reduction of exacerbations by anti-IL-5 (Mepolizumab) in asthma 19,20. In a post hoc 
analysis of the MENSA and DREAM studies, patients with a blood eosinophil count of at 
least 0.15x109/L in the past year had 39% and 30% less exacerbations, respectively, when 
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given Mepolizumab 21. These cut-off values corresponded with a higher relative risk of 
suffering from severe exacerbations above 0.25x109/L in a UK primary-care population. In 
this population there also was an increasing relative risk of exacerbations with increasing 
blood eosinophil levels 22. 

However, the relative risk (RR) of blood eosinophilia >0.25x109/L on having an asthma 
exacerbation is only 1.2. And although Mepolizumab brings blood eosinophil levels down 
quickly, resident airway eosinophils can still be measured up to a year after commencing 
treatment and in similar numbers compared to placebo treatment 23. Full understanding of 
the function of the effect of biologicals in asthma is lacking. The first trials with IL-5 failed due 
to broad inclusion criteria 24. An effect of treatment with anti-IL-5 on exacerbation reduction 
has been proven in RCTs only after selecting patients with eosinophilic disease 16,25,26. Yet, 
it is very likely that more accurate phenotyping could lead to larger treatment effects of 
registered biologicals such as anti-IL-5. Therefore, together with upcoming biologicals there 
is a strong need for better patient selection. 

An attractive approach to improve asthma phenotyping is to study inflammation associated 
profiles of blood leukocytes of severe asthma patients into more detail. Multi-Color Flow 
Cytometry (MFC) measurements contain data with detailed cellular profiles of more 
generic cells such as neutrophils and monocytes and more asthma associated cells such 
as eosinophils, basophils, and Th2 cells. These MFC data files not only consist of multiple 
cell types each with a certain count, but also contain relative frequencies to other cell types. 
In addition, the degree of expression of single markers on single cell and their interactions 
are part of the obtained information. In summary, MFC datasets contain information on 
four hierarchical levels for interpretation (Table 1). The high-dimensional datasets from 
MFC measurements are usually analyzed by biplots and miss the other hierarchical levels. 
We developed methods to integrate all four levels 27 (and unpublished results by Tinnevelt 
et al., Buydens group).

This study was initiated to study asthma associated cellular profiles in an ongoing cohort 
study in a tertiary severe-asthma clinic referred by primary and secondary care physicians. 
Detailed blood measurements were performed in combination with known phenotypical 
characteristics such as sputum analysis, FeNO and lung function. We hypothesized that 
peripheral blood eosinophilia and/or airway eosinophilia would be associated with specific 
patterns in other asthma associated cells such as basophils, Th2 cells and in case of severe 
inflammation, neutrophils. Therefore, we compared: 

I the overall asthma population to healthy controls
II asthma patients with blood eosinophilia and/or sputum eosinophilia 

regardless of severity, to healthy controls
III ‘non-eosinophilic’ patients to healthy controls 
IV eosinophilic asthma to non-eosinophilic asthma
V eosinophilic asthma defined by blood and sputum eosinophilia to non-

eosinophilic asthma
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By studying these cellular patterns we aim to unravel specific inflammatory patterns in 
peripheral blood associated with eosinophilic and non-eosinophilic asthma.

Methods

Patients aged 18-80 years visiting the outpatient clinic of the Oxford University Hospital 
with a diagnosis of asthma were approached by their Respiratory Specialist to participate 
in a long term observational cohort study that was approved by a local Institutional Review 
Board (IRB). Patients were provided with study information and on a second visit research 
nurses obtained written informed consent. Asthma was diagnosed according to GINA 
guidelines 28. Exclusion criteria were a smoking history of >10 pack years, current smoking 
or a current airway infection. After taking informed consent research nurses collected data 
on demographics, BMI, medical history, medication use and filled out questionnaires 
(ACQ-7, MARS and AQLQ). The inclusion criteria for the DAMACY sub-analysis in this study 
were patients not treated with oral steroids. Eosinophilic asthma was defined by >3% 
eosinophils in sputum and/or peripheral blood eosinophilia ≥0.27x109 cells/L and other 
patients were assumed to suffer from non-eosinophilic asthma. The cut-off of 0.27x109 

cells/L was found by Wagener et al. to be the optimal cut-off for sputum eosinophilia with 
a positive predictive value of 79% and a negative predictive value of 91% 18. Both markers of 
eosinophilia were explicitly chosen for patient selection instead of the subjective measure, 
severity. Importantly, asthma severity is linked to symptom expression and it is known that 
symptom expression does not correlate well with eosinophilic inflammation 29.

At the base-line visit patients donated blood and underwent FeNO measurement and sputum 
induction. The NIOX VERO® (Aerocrine, Solna, Sweden) was used for NO-measurements, 
with 10 seconds expiration time and a reported maximum of max 10% variability between 
measurements 30. Sputum induction was performed according to the ERS guideline 31, using 
a DeVilbiss Ultraneb® for nebulisation of the salt solution. Cytospin slides of sputum cells 
were stained with May-Grünwald Giemsa and cells were differentiated and counted by an 
experienced and, for the outcome, blinded technician. A cut-off value of 3% eosinophils in 
sputum was used to classify patients with eosinophilic or non-eosinophilic inflammation. 

Table 1: Hierarchical levels of MFC data-analysis

Hierarchical levels

1 The multivariate (co)-expression of markers on single cells

2 Aggregation into cell populations with similar marker expression

3 Representation of cell populations in a specific individual/subject

4 The cellular representation in a specific (clinical) phenotype

Chapter_3_3_Bart.indd   183 26-5-2017   11:47:42



Chapter 3.3

184

Venous blood samples were collected in two sodium-heparin tubes, whole-blood cell count 
was performed at the routine hospital laboratory and the rest of the blood and sputum 
samples were transported on ice and processed within an hour at the Respiratory Laboratory 
of the Nuffield Department of Medicine. 

In a polystyrene tube 50µL of whole blood was stained with CD193 (eBioscience, APC, 
clone 5E8-G9-B4), CD3 (eBioscience, PerCP, SK7), CD4 (Biolegend, Alexa 700, OKT4), CD8 
(Biolegend, Pacific Blue, SK1), CD123 (Biolegend, PE-Cy7, 6H6), CD14 (Elnitrogen, PE-Texas 
Red, MHCD1417), CD16 (eBioscience, FITC, CB16) and CRTH2 (Miltenyi Biotec, PE, BM16). After 
staining red blood cells were lysed and fixed using BD Phosflow™ lyse/fix buffer according to 
manufacturer instructions. Subsequently cells were spun down with 500g during 5 min and 
washed with 2mL of phosphate buffered saline (PBS), again spun down with 500g during 5 
min and finally resuspended in 250µL PBS. Fluorescence intensities of antibody-fluorophore 
bound white blood cells were measured at the. 

Statistical analysis

The measured flow cytometry data files were fully loaded into Mathworks’ MATLAB without 
gating cell populations or setting new thresholds in Forward Scatter or Side Scatter. Data 
analysis was performed using DAMACY (Tinnevelt et al., unpublished results), a multivariate 
analysis strategy that combines Principal Component Analysis (PCA) and Orthogonal Partial 
Least Squares – Discriminant Analysis (OPLS-DA). DAMACY stands for Discriminant Analysis 
of MultiAspect CYtometry (DAMACY), a multivariate method that first maps the leukocyte 
composition of multiple individuals by using PCA biplots. Subsequently, the method finds 
correlation between specific cells to discriminate between clinical phenotypes. This results 
in a hematological map where regions of cells are coloured based on whether the cells 
are more or less represented in the clinical phenotype. In such plots (v.i.) arrows indicate 
relative marker expression related to the phenotypes. Based on the map the method can 
predict whether an individual belongs to a specific clinical phenotype. Thereby, DAMACY can 
integrate all four levels of MFC information (Table 1) and in this way differentiate between 
immunological phenotypes based on quantified co-expression of multiple markers on 
different cell populations. 

More specifically, MFC data from the BD LSRFortessa™ was loaded into MATLAB. Due to 
background corrections this data contains negative values. We assumed that negative 
fluorescence does not exist and therefore removed outliers in the negative part 32. Then 
from every column the minimum value was subtracted and 1 was added in order to perform 
common log transformation. From this point the data was split into a training and validation 
set for the cross validation. Next the data was centered using the median followed by scaling 
using the standard deviation. Principal Component Analysis was performed on the entire 
training dataset and the test samples were projected into the same space. Histograms 
were made based on the scores of Principal Component 1 and 3 and the histograms were 
smoothed 33. Then the histograms were unfolded so that each row contains an individual 
and each column is a histogram bin, a location within the PCA space. Then the training set 
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was split into a test set and a training set. The data was then mean centered and an OPLS-
DA model was built were the Y dummy variable would be -1 if the sample belonged to the 
one class and +1 for the other class. Based on the prediction of the discriminant analysis, 
the number of latent variables was determined. Then a final OPLS-DA model was built 
using the optimal number of latent variables and class was predicted for the validation set. 
A double cross-validation was performed to test the model until every subject had been 
selected. Double cross validation was leaving a control and a test subject out as a validation 
set while the rest functioned as calibration set. The final prediction plotted was the mean 
of the predicted class. Five comparisons were made:

•	 Healthy controls were compared to asthma patients as a group (analysis I) 
•	 Eosinophilic asthma was compared to healthy controls (analysis II)
•	 Non-eosinophilic asthma was compared to healthy controls (analysis III)
•	 Non-eosinophilic asthma was compared to eosinophilic asthma (analysis IV)
•	 Eosinophilic asthma defined by blood and sputum eosinophilia was com-

pared to non-eosinophilic asthma (analysis V)

Interpretation of DAMACY output (Figure 1)

Each analysis resulted in a figure with diagnostic score (Figure 1A) and a cellular heat map 
(Figure 1B). Figure 1A shows the prediction score with a certain diagnostic accuracy of the 
OPLS-DA model with asthma patients (blue crosses) and healthy controls (red rounds). The 
threshold is set by the model and separates asthma patients and controls with a certain 
diagnostic accuracy. 

The cellular heat map (Figure 1B) shows all cells that have different characteristics between 
patients and controls; cells that did not contribute to the model are not plotted. Cells with 
characteristics particularly found in patients are found in red areas in Figure 1B; cells char-
acteristic of controls are found in blue areas. The cellular markers on which this discrimina-
tion is based are represented by vectors. The direction of a vector indicates higher receptor 
expression of this specific marker and the length of the vector indicates overall marker 
variation. For example a cell high in CD8 appears high up ‘north’ of the origin of this plot. 

By saving the scores of each cell in different Principal Components and reloading them into 
FCS express 5 (De NOVO software, Glendale, CA ) we could back-gate the cell populations 
that were observed in the DAMACY Cellular Heat maps (Table 2). The back-gating functioned 
to cross-validate the populations present on the maps. These populations were studied 
for receptor expression using conventional gating to ensure the cell type. This step was 
necessary to assess the characteristics of cell populations identified by DAMACY.
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Results

Thirty-five participants were included for analysis, 24 asthma patients and 11 healthy 
controls. Based on the presence of sputum eosinophilia (≥3 % of non-squamous cells) and/
or blood eosinophilia (≥0.27x106/ml) 14 patients were diagnosed with eosinophilic asthma 
and 10 patients with non-eosinophilic asthma (Table 3, demographics at base-line).

Table 2: Result of back-gating in FCS Express 5.0 of DAMACY in Figure 1

Back-gated cell populations Cell type (based on receptor profile)

CD3+CD8++ high CD8 expression

CD3+CD8+ CD8+ T-lymphocytes

CD3+CD8+CRTH2+ Tc2 cells

CD16+CD193+CRTH2+ eosinophils

CD16+ neutrophils

CD123+CD193+CRTH2+ basophils

CD3+CD4+CRTH2+ Th2 cells

CD14+ monocytes

Table 3: Base-line table with eosinophilic/non-eosinophilic patients and healthy controls

Asthma patients n = 47
Eosinophilic

n = 14
Non-eosinophilic

n = 10
Controls 

n = 11

Age in years (mean) 57 57 39

Gender (M/F) 6/8 5/5 2/9

BMI, kg/m2 30 31 19

ACQ-7 2.28 2.25 N/A

FeNO (ppb) 48 17 28

% predicted FEV1 (L) 81 68 N/A

Total eosinophil count in PB (* 109/L) 0.47 0.10 0.16

IgE (kU/L) 384 208 23

Aspirin Sensitivity (yes/no) 5/9 2/8 0/11

Nasal Polyposis (yes/no) 7/7 0/10 0/11

GINA classification N/A

GINA 1 1 1 -

GINA 2 0 2 -

GINA 3 1 0 -

GINA 4 12 7 -

GINA 5 0 0 -
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Figure 1: Comparison between asthma patients (eosinophilic and non-eosinophilic) and healthy 
controls.

In the overall cohort eosinophils (blue, left upper corner) are typical of asthma patients and also basophils form 
a small blue population (left lower corner). Neutrophils overall show a larger variation in marker expression in 
healthy controls with two red additional neutrophil populations next to the high-density blue population of 
homogeneous neutrophils in asthma patients. Two other observations can be made: there is a population with 
higher CD8 expression at the top of the figure (blue) and there is a small blue population next to the bigger red 
CD8+ population that is CD3+CD8+CRTH2+. The latter cells are Tc2-cells.

Analysis I 

DAMACY on eosinophilic asthma (blue) versus healthy controls (red) (Figure 1)
Based on similarities and differences between groups asthma patients could be separated 
from controls with an accuracy of 90% (Figure 1). The overall representation shows two 
characteristic features:

1. The neutrophil population (most abundant cell type at the center) has 
less marker variation in asthma patients. In controls two additional red 
neutrophil populations appear next to the high-density blue population of 
asthma patients. The variation of CD16 expression is the most important 
factor in this difference. 

2. 5 distinct blue populations are more typical of asthma patients
a. CD123+CD193+CRTH2+ cells (basophils)
b. CD3+CD4+CRTH2+ (Th2 cells)
c. CD16+CD193+CRTH2+ cells (eosinophils)
d. CD3+CD8+CRTH2+ (Tc2 cells) 
e. CD3+CD8++ cells
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Analysis II 

DAMACY on eosinophilic asthma (blue) versus healthy controls (red)
In this comparison (Figure 2) groups could be separated with an accuracy of 71%. The 
aggregation of cell populations with similar marker expressions (Figure 2B) is as follows: 

1. Eosinophils are grouping together (the left upper corner of Figure 2B), 
notably eosinophils were also part of the group selection of eosinophilic 
asthma (≥0.27*106/ml eosinophils in peripheral blood)

2. In the eosinophilic asthma patients other cells such as CD3+CD8+CRTH2+ cells 
(Tc2 cells) form a population, this is the population next to the CD3+CD8+ 
cells from controls. 

3. CD123+CD193+CRTH2+ (basophils) are present in the eosinophilic asthma 
population and in lower concentrations in healthy controls

4. Importantly, two blue populations are missing in eosinophilic asthma patients 
compared to Figure 1B. The first population consists of CD3+CD4+CRTH2+ 
cells (Th2 cells), which merged with basophils (verified by back-gating) and 
the second population are the CD3+CD8++ cells

Figure 2: Controls versus severe eosinophilic asthma (eosinophils >0.25x109/L and/or sputum 
eosinophilia.

The patients with severe eosinophilic asthma are characterized by a large population of eosinophils, a smaller 
population of basophils, and a very small population of Tc2-cells. Notably controls have typically more variation 
in the expression of CD16.
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Analysis III 

DAMACY on control (red) versus non-eosinophilic asthma (blue)
To identify typical characteristics of non-eosinophilic asthma, patients were compared to 
healthy controls (Figure 3). The diagnostic accuracy of this classification was 80%. The 
following observations were made:

1. Neutrophils show less marker variation in non-eosinophilic asthma 
compared to controls, this is similar to eosinophilic asthma.

2. There are more CD3+CD8++ cells in non-eosinophilic asthma.
3. Although very small, the eosinophil population (left upper quadrant, blue) 

is still present as a population more typical of non-eosinophilic asthma 
compared to healthy controls.

Figure 3: DAMACY on control (red) versus non-eosinophilic (blue).

In controls there are two neutrophil populations visible, one higher and the other lower in CD16-expression. 
Monocytes are present in higher numbers in controls (lower left). In the non-eosinophilic group the overall 
expression of CD8 on CD3+CD8+ cells is higher.
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Analysis IV 

DAMACY on eosinophilic asthma (blue) versus non-eosinophilic asthma (red) 
As noticeable in Figure 4A, ‘diagnostic accuracy’, patients are not well separated. The 
diagnostic accuracy was random. Strikingly there are two patients with non-eosinophilic 
asthma that are very similar in blood profile compared to patients with eosinophilic asthma. 
Vice versa there are 5 patients with eosinophilic asthma that resemble the blood profile 
of patients with non-eosinophilic asthma. There is a marked difference between the two 
selected groups and their blood profiles; the 5 patients with eosinophilic asthma either had 
blood eosinophilia or sputum eosinophilia, while the rest of the group actually had both 
except for one. Based on this observation, we more strictly selected eosinophilic patients 
by selecting them both on sputum eosinophilia as well as blood eosinophilia. This new 
classification was used to run DAMACY again (Analysis V). 

The observations from the cellular heat map in Figure 4 are that non-eosinophilic patients’ 
neutrophils are overall higher in CD16 expression, as indicated by the red population which 
lies in the direction of the CD16 vector. The second observation is that the CD8+ population 
has higher CD8 expression in non-eosinophilic asthma, which is in line with Analysis III. 
Characteristic cells for eosinophilic asthma are eosinophils, basophils and Tc2-cells. This 
is similar to Analysis II.

Figure 4: Eosinophilic asthma (blue) versus non-eosinophilic asthma (red).

Comparing two extremes, non-eosinophilic patients’ neutrophils are overall higher in CD16 expression. 
Again eosinophils, basophils and Tc2 cells appear as characteristic cells for eosinophilic asthma. In the non-
eosinophilic group the CD8+ population has the highest CD8 expression.
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Analysis V 

“Second run” of DAMACY with more strictly defined eosinophilic asthma (blue) versus non-
eosinophilic asthma (red).
Eosinophilic asthma is now defined as blood eosinophilia >0.27x109/L and sputum eosino-
philia ≥3% of total cells. The diagnostic accuracy of eosinophilic versus non-eosinophilic 
asthma by this comparison is 79%, while Analysis IV led to a non-significant accuracy 
between the two groups. Compared to Figure 4, the cellular heat map of Figure 5 shows: 

1. An intense neutrophil population at the origin of the vectors with next to 
it two smaller blue populations with neutrophils more typical of patients 
with eosinophilic asthma, indicating more heterogeneity in the neutrophil 
population. There is more homogeneity in the neutrophilic population of 
non-eosinophilic asthma patients compared to patients with eosinophilic 
asthma. 

2. A large CD3+CD8++ population ‘north’ of the origin. 
3. Focussing on eosinophilic asthma: Tc2 cells (blue, far left upper corner), 

eosinophils (left of the origin of the vectors) and basophils (small blue 
population lower left of the origin) were more prominent in eosinophilic 
asthma. 

Figure 5: Second analysis of more strictly defined eosinophilic asthma (blue) versus non-
eosinophilic asthma (red).

Eosinophilic asthma is now defined as blood eosinophilia >0.27x109/L and sputum eosinophilia ≥3% of total 
cells. In this graph the non-eosinophilic group is more prominently present compared to Figure 4, characterized 
by a high intensity neutrophil population with more homogeneity in surface marker expression compared to 
eosinophilic asthma (two small blue populations right next to the high density red population at the origin of the 
vectors). In comparison with analysis IV there is better diagnostic accuracy, 79%.
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The two other comparisons from the second run of DAMACY are non-eosinophilic asthma 
versus controls (Figure S1, supplementary material) and eosinophilic asthma versus healthy 
controls (Figure S2, supplementary material). Figure S1 of the supplementary material is 
very similar to Figure S3, although with an improved diagnostic accuracy of 84%. Figure 
S2 (supplementary material) is almost identical to Figure 2, yet the diagnostic accuracy 
dropped to 63%. This is most likely due to a decrease in power with only 10 eosinophilic 
patients having both sputum and blood eosinophilia at the time of inclusion. The diagnostic 
accuracy of DAMACY is negatively influenced by low subject numbers.

Discussion 

In this study specific cellular patterns were found by studying immune profiles of leukocytes 
in peripheral blood of severe-asthma patients and healthy controls applying multi-color 
flow cytometry (MFC) in combination with a novel data analysis approach (DAMACY) 
(unpublished results by Tinnevelt et al. see attached manuscript submitted for publication). 
In addition to peripheral blood eosinophilia, severe eosinophilic asthma was characterized 
by larger populations of peripheral blood basophils and CD3+CD8+CRTH2+ (Tc2) cells 
compared to healthy controls. The eosinophilic profile was even more profound in the 
comparison between eosinophilic asthma and non-eosinophilic asthma (Analysis IV) with 
the characteristic presence of eosinophils, basophils, Th2 cells and Tc2 cells. Typical of 
non-eosinophilic asthma are a higher expression of CD8 in the CD3+CD8+ population and, 
in neutrophils, a higher CD16 expression with overall a more homogeneous surface marker 
profile compared to controls (supplementary Figure S1) and to non-eosinophilic asthma 
(Figure 5). 

Peripheral blood basophils, Tc2 cells and Th2 cells were associated with eosinophilic asthma. 
Basophils are known to be present in higher levels in peripheral blood of asthma patients 34. 
The specific cell population with receptor profile CD3+CD8+CRTH2+ (Tc2 cells) have not been 
identified as markers of eosinophil asthma before, but were present in higher numbers in 
peripheral blood of these patients. They have been linked to airway inflammation in asthma 35.  
In earlier studies Th2 cells were measured in higher concentrations in the airways, but 
were not found in higher concentrations in peripheral blood 36. Interestingly, our analysis 
identified a population of CD3+CD4+CRTH2+ cells that was higher in eosinophilic asthma 
patients compared to healthy controls. This population is likely consisting of Th2 cells, but 
receptor positivity is formally not the same as type-2 cytokine producing cells (T-helper 2 
cells). There is evidence to suggest that CD4+CRTH2+ T-cells are in fact Th2 cells 37. 

Overall the asthma patients are well separated by DAMACY from healthy controls (90% 
accuracy). Separating eosinophilic asthma from controls resulted in 71% accuracy and non-
eosinophilic asthma from controls in 80% accuracy. The explanation of a lower accuracy in 
eosinophilic asthma versus the overall asthma population is likely due to the low numbers 
of patients included in the analysis. The diagnostic accuracy of DAMACY will improve with a 
higher number of patients leading to a more accurate model and threshold for diagnosis. 
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An important note is that determination of the diagnostic accuracy of DAMACY analysis 
was not the primary goal of our study, nor did we validate accuracy by testing an external 
cohort of patients.

The fourth comparison, i.e. between eosinophilic and non-eosinophilic asthma, did not 
result in a significant accuracy. Looking into more detail at the diagnostic accuracy plot of 
Figure 4, three non-eosinophilic patients have a blood profile which resembles eosinophilic 
asthma and vice versa five eosinophilic patients have a non-eosinophilic blood profile. This 
implies that our biomarker selection approach using sputum and/or blood eosinophilia 
does not result in clear peripheral blood phenotypes. As presented in the Results section, 
a second analysis by DAMACY with a more strictly selected group having both sputum 
eosinophilia and blood eosinophilia led to a better classification with 79% accuracy to 
discriminate between non-eosinophilic and eosinophilic asthma (Figure 5). In Figure 5 
the classical eosinophilic asthma associated cells (eosinophils, Tc2 cells and basophils) are 
plotted in blue and in red the populations characteristic of non-eosinophilic asthma with 
a homogeneous neutrophil population and the presence of CD3+CD8++ cells. 

MFC has been used extensively in clinical studies in the past years to measure specific cell 
populations in peripheral blood. Generally, MFC data is visualized through ‘bivariate’ scatter 
plots with fluorescence intensities of two cell surface-bound epitopes for each cell within a 
sample followed by multiple gating to study the cell population of interest 38. This strategy 
cannot be used to compare intensities of more than two surface markers simultaneously 
(Table 1, levels 1 and 2). Another missing information criterion in flow cytometry data 
analysis is relative frequencies of cells in one subject compared to another (Table 1, level 
3). A third factor of importance can be the height of surface marker expressions at a single 
cell level compared between subject groups (Table 1, level 4). DAMACY on the other hand, 
uses relative frequencies, height of receptor expression per cell, correlations between 
receptor expression, and adds to this the testing of differences between subject in pre-
set groups e.g. asthma and non-eosinophilic asthma. It results in a diagnostic score and 
discriminate populations of cells typical of each of the two comparative groups. DAMACY 
requires non-gated flow cytometry data of two pre-selected groups and is, thereby, unbiased 
in cell analysis but influenced by group selection. Only at the end of the analysis process 
conventional back gating was used to understand which populations distinguish between 
asthma phenotypes. This specific concept is unique to the field. 

The peripheral blood samples were stained with a fixed antibody-panel: CD3, CD4, CD8, 
CD14, CD16, CD123, CD193, and CRTH2. The antibody-panel discriminates between white-
blood-cell types and has specific markers to measure Type-2 cells such as basophils, Th2 
cells, Tc2 cells and eosinophils. The panel was designed to be suitable for peripheral blood 
measurements in asthma patients. A fixed panel is necessary to compare samples between 
subjects and, on the other hand, implies a restriction because not all relevant cell types 
can be measured using this antibody-panel. For example, innate lymphoid cells, NK-cells 
and other T-cell subsets could not be measured. In future experiments additional and/or 
larger panels could add to the performance of DAMACY analysis. 
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Confirmation of the findings of this study requires replication and testing in treatment 
conditions to search for treatable traits 39. At this point in time our study is a proof-of-principle 
analysis of blood samples from a single center, using uniform pre-processing protocols 
and one flow cytometer. To obtain comparable data in multiple centers DAMACY requires 
the same pre-processing and well-calibrated flow cytometers with the same measurement 
features as used originally. 

The advantage of using Principal Component Analysis in DAMACY is the representation of 
multidimensional data in two or three principal components while maintaining almost 
all the information in the data 40. The method is unsupervised and does not require any 
additional input. The goal of the PCA is to map the differentiation of the cells, which may 
not lie in the first two PCs. In this case the best differentiation was obtained with PC1 and 
PC3. PCA is thus very suitable to identify trends in the data which would otherwise by missed 
by conventional two-dimensional sequential gating. 

The clinical implications of this study are (1) hypothesis generation by testing relevant 
surface markers to analyse a variety of cells, (2) improved diagnosis by assessing a more 
detailed cellular pattern in peripheral blood of asthma patients, and (3) the potential for 
monitoring success of treatment. All of these implications are not biased by a human 
intervention in the analysis (e.g. choice of gates etc.). 

Overall, our study confirms previous findings illustrating the power of this unbiased 
technique. It also brings new insight into peripheral blood profiles such as the identification 
of the new association of CD3+CD8+CRTH2+ cells (Tc2 cells) with eosinophilic asthma. It 
also showed an association of the presence of a high-density homogeneous neutrophil 
population and the presence of more CD3+CD8++ cells with patients suffering from non-
eosinophilic asthma. DAMACY both led to the identification of inflammatory patterns in 
peripheral blood of severe-asthma patients and seems a promising diagnostic technique 
which might ultimately lead to a better understanding of the pathophysiology of asthma 
and to an improved diagnosis of severe asthma.
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Supplementary Material

Supplementary Figure S1: Analysis V, second run of DAMACY.

Non-eosinophilic patients versus healthy controls.

Supplementary Figure S2: Analysis V, second run of DAMACY.

Eosinophilic patients versus healthy controls.
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Abstract

The severe eosinophilic asthma phenotype is associated with a high risk of exacer-
bation, persistent airway eosinophilia despite high-intensity inhaled corticosteroids 
and responsiveness to type-2 cytokine-targeted therapies. In two independent patient 
cohorts type-2 cytokine-secreting CD8+CRTH2+ Tc2 cells – rather than Th2 or ILC2 cells – 
and prostaglandin D2 (PGD2) and cysteinyl leukotriene E4 (LTE4) were enriched in blood 
and airways specifically in severe eosinophilic asthma. In vitro PGD2 and LTE4 functioned 
synergistically in Tc2 cell recruitment and activation. They regulated a diverse range 
of genes in Tc2 cells inducing type-2 cytokines and many other pro-inflammatory 
cytokines and chemokines which could contribute to eosinophilia in severe asthma. 
Thus, human Tc2 cells are important participants in severe eosinophilic asthma and 
constitute a potential target for therapeutic intervention.
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Introduction

Asthma is a chronic inflammatory disease of the lower respiratory airways characterized 
by airway hyper-responsiveness (AHR), infiltration of pro-inflammatory cells into the 
airway, mucus hypersecretion and airway remodelling. It is a common condition, affecting 
5-10% of the population and more than 300 million people worldwide 1. Up to 10% of this 
population have severe disease despite high intensity treatment, with significant morbidity, 
mortality and health service burden. Severe asthma is now recognised as a heterogeneous 
syndrome encompassing a range of abnormalities of airway function and distinct cellular 
mechanisms 2,3.

One important phenotype is eosinophilic asthma, defined by the presence of increased 
numbers of eosinophils in the airway 2,4. Eosinophils are important in defence against 
parasitic infection 5, but also significant players in the pathogenesis and severity of 
chronic inflammatory disorders of the airways including asthma 4. Through release of pro-
inflammatory mediators including granule-derived basic proteins, lipid mediators, cytokines 
and chemokines, activation of tissue eosinophils contributes to inflammation of the airways, 
leading to airway dysfunction and asthma exacerbations 6. Blood and sputum eosinophilia 
are associated particularly with exacerbations in patients with eosinophilic asthma 7. In 
a proportion of patients with severe asthma eosinophils persist in the airways despite 
taking high doses of inhaled corticosteroids (ICS), pointing to relative insensitivity to this 
standard asthma therapy 8. This phenotype is commonly linked to co-morbid rhinosinusitis, 
nasal polyposis and aspirin-induced bronchoconstriction 9. The pathogenic mechanisms 
of eosinophilic asthma are still unclear. Therefore understanding the main drivers of this 
phenotype is the key to further therapeutic advances.

Type-2 cytokines, including IL-4, IL-5 and IL-13, play crucial roles in orchestrating allergic 
inflammation including eosinophilic asthma. IL-4 drives the differentiation of CD4+ 
precursors into Th2 cells. IL-4 and IL-13 are potent activators of B cell antibody production, 
particularly IgE. IL-5 stimulates eosinophil release from bone marrow, and is chemotactic 
for eosinophils. It also activates mature eosinophils and prolongs their survival. IL-13 has 
additional roles in mucus hypersecretion and regulation of airway hypersensitivity. Increased 
local concentrations of type-2 cytokines are detected in both airway and bronchoalveolar 
lavage fluids (BAL) from patients with asthma 10. Anti-type-2 cytokines have been considered 
as new approaches to treat asthma 11. Notably Mepolizumab, an anti-IL-5 antibody, has 
shown clinical benefit in severe eosinophilic asthma by inducing significant reduction in 
circulating eosinophils, as well as asthma exacerbations 12,13. The major sources of type 
2 cytokines recognised in the human immune system so far are type-2 CD4+ T-helper 
cells (Th2), type-2 CD8+ cytotoxic T-cells (Tc2) and group-2 innate lymphoid cells (ILC2). 
Eosinophilic asthma is commonly considered as a Th2 disorder 14, as in mild to moderate 
asthma, increased numbers of Th2 cells are found in BAL and mucosal biopsies, and levels 
correlate with the degree of airway eosinophilia 15. In mouse models of asthma driven by 
ovalbumin (OVA), the genetic or antibody-mediated depletion of CD4+ T-cells abolished key 
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features of asthma, whereas the adoptive transfer of Th2 cells from mice with transgenic 
expression of an OVA peptide-specific T-cell receptor leads to the induction of asthma 
features 16,17. In recent years, numerous studies have identified a novel lineage negative 
type-2 cytokine-producing cell population, ILC2, in mice and human subjects 18-20, and 
established the importance of ILC2s in the initiation of airway eosinophilic inflammation 21.  
It has also been reported that peripheral blood ILC2 are increased in asthma patients 22.  
However, most studies performed thusfar on the role of type-2 immunity in allergic 
inflammation or asthma have focused on Th2 and ILC2 cells, while the role of Tc2 cells in 
human disease is largely unexplored.

All these three types of type-2 cytokine-producing cells highly express chemo-attractant 
receptor-homologous molecule expressed on Th2 cells (CRTH2), a receptor for mast cell lipid 
mediator prostaglandin D2 (PGD2) 

20,23. It has been well established that, through CRTH2, PGD2 
elicits chemotaxis, stimulates type-2 cytokine production, and suppresses apoptosis in Th2 
and ILC2s 24-27. CRTH2 antagonists have been shown to have mixed effects on symptoms and 
lung function in asthma with efficacy most apparent in patients with eosinophilic asthma 28  
and particularly patients with severe eosinophilic asthma 29. We have previously shown 
synergistic enhancement of PGD2 with other mast cell lipid mediators cysteinyl leukotrienes 
(cysLTs) including leukotriene C4 (LTC4), D4 (LTD4) and E4 (LTE4) in the activation of human 
Th2 and ILC2 cells 30,31. The role of these lipid mediators and their receptors in Tc2 cells has 
not been properly studied.

To investigate the immunopathogenesis of severe eosinophilic asthma, we conducted a 
cross-sectional comparison of immune-cell profiles in blood, BAL and bronchial biopsy 
in patients with mild (requiring β2-agonists only), moderate (controlled on inhaled 
corticosteroids) and severe (as defined by ATS/ERS taskforce on severe asthma) asthma 8. 
Patients were further stratified as eosinophilic asthma, defined as asthma in association with 
an induced sputum eosinophil count of >3% 32. Interestingly, we found that Tc2 but not Th2 
cells were significantly enriched in both peripheral blood and lung tissues in eosinophilic 
asthma. Such enrichment was also observed to be absent in ILC2 population in blood. To 
further understand the role of Tc2 cells in the disease, we also evaluated whether the airway 
environment was conducive to their activation via CRTH2 by measuring airway levels of 
PGD2 and LTE4, the interaction of Tc2 cells with these lipid mediators, and the transcriptional 
and functional responses of such stimulation. Furthermore, we investigated whether the 
activation of Tc2 cells could drive airway eosinophilia. These data provide compelling 
evidence for a role for Tc2 cells in severe eosinophilic asthma and additionally suggest a 
mechanism by which they may contribute to the abnormal type-2 cytokine production and 
eosinophil levels seen in this condition.
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Results

Tc2 cells enriched in eosinophilic asthma

CRTH2 is highly expressed on type-2 cytokine-producing human peripheral blood CD8+ 

Tc2 cells (Figure S1). Our cross-sectional comparison of the immune-cell profiles between 
asthma phenotypes in a cohort of 51 participants from Oxford, UK showed that Tc2 cells 
were significantly enriched in the blood of patients with severe eosinophilic asthma 
(Figure 1). The numbers of peripheral blood Tc2 cells detected with CD3, CD8 and CRTH2 
biomarkers (Figure 1A) were substantially higher in patients with severe eosinophilic 
asthma (~21.5±4.2x106/L, n=24) than in severe non-eosinophilic asthma (~7.4±2 x106/L, 
n=12, p=0.001) and healthy controls (~5±0.6 x106/L, n=15, p=0.001) (Figure 1B, Table 1). In 
contrast, the numbers of CD3+CD4+CRTH2+ Th2 cells and Lin-CD45highCD127+CRTH2+ ILC2s 
(Figure S2) did not differ significantly between groups (Figure 1B). Analysis of functional 
IL-5 and IL-13 producing CD8+ T-cells ex vivo detected with PrimeFlow assay also supported 
the finding of Tc2 enrichment in patients with severe eosinophilic asthma (Figure 1C).

In a second cohort of 74 participants from Southampton, UK (Table 1) 33 we used intracellular 
cytokine staining to measure CD3+CD8+IL-13+ (Tc2) cells in blood and airway tissues. These 
cells were also found to be increased in peripheral blood in asthmatic patients (~0.3% of 
CD8+ T-cells, n=47) when compared with healthy donors (~0.05%, n=19, p=0.04) (Figure 1D 
panel 1), and this increase correlated with asthma severity (Figure 1D panel 2, p=0.01) 
and was associated with the presence of nasal polyps (Figure 1D panel 3, p=0.008) and 
with a history of ever having smoked (Figure 1D panel 4, p=0.008), comorbidities known 
to be associated with severe asthma. By contrast frequencies of CD3+CD4+IL-13+ (Th2) cells 
were significantly increased in mild (steroid-naïve) asthma (0.5%, n=14) compared with 
health (0.19% n=22, p<0.01) but not in steroid-treated moderate or severe asthma (Figure 
S3). Interestingly, expression of the type-2 cytokine IL-4 in sputum T-cells was associated 
positively with peripheral blood Tc2 frequencies (rs=0.537, p=0.006), but negatively 
associated with peripheral blood Th2 frequencies (rs= -0.442, p=0.03) (Figure S4A).

Table 1: Study subject details. Mean ± SD
 Oxford Cohort Southampton Cohort

Control Severe asthma Control Asthma

Characteristic
Non-

eosinophilic Eosinophilic P-value
Non-

eosinophilic Eosinophilic P-value
(n=15) (n=12) (n=24) (n=22) (n=42) (n=10)

Age (y) 36.8 ± 11.7 60.8 ± 8.9 53.3 ± 14 0.0002 31.7 ± 11.9 38.4 ± 15.1 43.8 ± 15.4 0.1
Sex (male %) 15 67 50 64 38 80 0.03
Atopy (%) 23 33 58 0 81 100 <0.0001
BMI 22 ± 2.9 28.1 ± 3.4 32.1 ± 7.5 0.0003 25.5 ± 4.9 29.2 ± 7.8 28.12 ± 5.2 0.1
FEV1 (% pred) 104.2 ± 11.6 79.8 ± 22.4 73.9 ± 21.9 0.004 107.4 ± 13.8 88.6 ± 22.0 69.6 ± 22.3 <0.0001
Sputum eosinophils (%) 0.25 ± 0.12 1.4 ± 0.8 30.1 ± 25.0 <0.0001 0.25 ± 0.65 0.72 ± 0.67 10.4 ± 10.2 <0.0001
FeNO (ppb) 19 ± 6.6 23 ± 9.2 37.1 ± 38 0.5 17 ± 7.1 42 ± 45 63 ±48 0.001
Blood eosinophils (109/l) 0.13 ± 0.08 0.25 ± 0.29 0.59 ± 0.3 <0.0001 0.15 ± 0.07 0.21 ± 0.15 0.37 ± 0.28 <0.05
Serum IgE (IU/ml) 33 ± 53 319 ± 382 546 ± 860 0.0006 37 ± 30 251 ± 401 541 ± 698 0.0002
ICS dose 0 1367 ± 637 1758 ± 486 <0.0001 0 762 ± 794 1452 ± 1172 <0.0001
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Figure 1: Tc2 cells are enriched in peripheral blood from patients with severe eosinophilic asthma.

(A) Tc2 cell gating strategy: human whole blood was stained with a mixture of antibodies against immune-
cell surface markers and analysed with flow cytometry. CD3+CD8+CD4-CRTH2+ cells were gated as Tc2 cells. (B) 
Numbers of CD3+CD8+CRTH2+ Tc2, CD3+CD4+CRTH2+ Th2 and Lin-CD45highIL-7Rα+CRTH2+ ILC2 cells in peripheral 
blood were compared between healthy controls (n=15) and severe asthma patient groups (n=24 for eosinophilic 
and n=12 for non-eosinophilic, demographics in Table 1) in the Oxford cohort. Tc2 but not Th2 or ILC2 cells were 
enriched significantly in blood from the patients with severe eosinophilic asthma. (C) IL-5- and IL-13-producing 
Tc2 cells detected with PrimeFlow were increased in blood from patients with severe eosinophilic asthma. 
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Tc2 cells were found in the BAL fluid and sputum from the lungs of patients with severe 
eosinophilic asthma (Figure 2A). CD8 T-cells were detected abundantly in sections of 
bronchial biopsies (BB) from the same group of patients (Figure 2B). Consistent with the 
findings in peripheral blood (Figure 1), we observed a striking increase of CD3+CD8+IL-13+ 
cells in BB and BAL fluid in eosinophilic asthma (~2.05%, n=8 for BB; ~1.5%, n=9 for BAL) 
compared with non-eosinophilic asthma (~0.1%, n=24 for BB; ~0.2%, n=26 for BAL) and 
healthy controls (~0.2%, n=13 for BB; ~0.2%, n=17 for BAL; p<0.005) in the Southampton 
cohort (Figure 2C and 2D upper panels). Again, by contrast, Th2 cell frequencies in both BB 
and BAL were increased equally but non-significantly in eosinophilic and non-eosinophilic 
forms (Figures 2C and 2D bottom panels). When we investigated clinical correlates of Tc2 
inflammation, we observed that amongst asthmatics, high frequencies of BB Tc2 cells were 
associated with high bronchodilator reversibility (Figure S4B, p<0.05).

Stimulatory eicosanoid receptors and mediators enriched in eosinophilic asthma

Since Tc2 cells highly express CRTH2 and CysLT1, a leukotriene receptor (Figures S1 and 
S5), we also compared the expression level of CRTH2 and CysLT1 in the cells and the levels 
of their ligands in lung between asthma phenotypes (Figures 2E-H). In the Southampton 
cohort when CRTH2 expression was measured by microarray on sorted populations of 
CD3+ T-cells from induced sputum, we observed an increased expression in eosinophilic 
(median relative expression 1.10, n=6) compared with non-eosinophilic disease (0.984, 
n=25, p<0.01) (Figure 2E upper panel), although these differences were not significant in 
blood Tc2 measured by flow cytometry in the Oxford cohort (Figure 2E bottom panel). 
No significant difference in the expression of CysLT1 at gene level in sputum-derived CD3+ 
T-cells (Figure 2F upper panel) and protein level in blood Tc2 cells (Figure 2F bottom 
panel) was detected. The concentration of PGD2 in the airways assessed in induced sputum 
supernatant from asthma patients was significantly increased compared with healthy 
controls (~2.76±0.54 ng/g sputum, n=6, p<0.01) although no significant difference between 
eosinophilic (~5.4±0.59 ng/g sputum, n=11) and non-eosinophilic groups (~7.2±1.46 ng/g 
sputum, n=6, p=0.14) was detected (Figure 2G). LTE4 was only significantly increased in the 
lung from the patients with severe eosinophilic asthma (~164.5±52 ng/g sputum, n=10) 
but not in non-eosinophilic patients (~1.84±0.65 ng/g sputum, n=8) compared with that in 
healthy controls (~0.34±0.15 ng/g sputum, n=5, p=0.1) (Figure 2H).

Figure 1: Continued.

(D) Frequencies of IL-13 secreting CD3+CD8+ T-cells in peripheral blood determined by flow cytometry with 
intracellular cytokine staining were increased in asthmatic patients from the Southampton cohort (left panel), 
which was associated with asthma severity according to global physician assessment (left middle panel), history 
of nasal polyposis (right middle panel, Jonckhere-Terpstra test for linear trend) and history of smoking (right 
panel). *p<0.05, (Data in C are representative of 3 independent experiments).
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Figure 2: Tc2 cells, eicosanoid mediators and their receptors are increased in the lung from 
patients with eosinophilic asthma.

(A) Tc2 cells were detected in the BAL and sputum from severe asthma patients by flow cytometry. (B) CD3+CD8+ 
T cells (arrows) were detected in bronchial biopsies by using immunohistochemistry. (C-D) Frequencies of 
CD3+CD8+IL-13+ but not CD3+CD4+IL-13+ T-cells in bronchial biopsies (C) and BAL fluid (D) were increased in 
eosinophilic but not in non-eosinophilic asthma compared with healthy individuals determined with intracellular 
cytokine staining. (E) Relative expression of CRTH2 in T-cells, measured by microarray in FACS-sorted CD3+ cells 
from induced sputum from the Southampton cohort, was up-regulated in eosinophilic (n=6) but not in non-
eosinophilic (n=25) asthma compared with healthy controls (n=11) (upper panel). However, the up-regulation of 
CRTH2 by blood Tc2 cells determined by paired comparison between healthy controls (n=9) and severe asthma 
groups (n=4 for eosinophilic and n=5 for non-eosinophilic) from the Oxford cohort with flow cytometry was not 
significant (bottom panel). Healthy controls were used to define 1-fold. 
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Tc2 cell migration induced by PGD2 and LTE4

To explore the potential role of Tc2 cells and the lipid mediators enriched in eosinophilic 
asthma in the pathogenesis of lung inflammation in eosinophilic asthma, we isolated Tc2 
cells from human blood and cultured them for further in vitro investigation (Figure S6A). In 
culture, these cells showed at baseline higher type-2 gene expression signatures (IL17RB, 
GPR44, CLECL1, IL9R, NAMPT, AF208111, HPGDS, P2RY14, RG4, IRS2 and GATA3) but lower 
type-1 (IFNG, AIF1, LTA, TXK and IL18RAP) and killer cell gene signatures (KIR2DL1, KIR2DL4, 
KIR2DL5A, KLRF1, CD160 and TYPOBP) compared with other CD8+ cells (Figure S6B).

PGD2 and cysLTs are strong chemotactic agents for Th2 cells and many other types of immune 
cells 27,30,34. To investigate the potential mechanism of recruitment of Tc2 cell to inflamed 
airways, we examined the effect of these lipids on Tc2 migration. In a standard chemotaxis 
assay (Figure 3) both lipids caused cell migration in a typical bell-shaped dose-dependent 
manner, peaking at ~30 nM for PGD2 and ~10 nM for LTE4. The maximum response induced 
by PGD2 was higher (2.4 fold) than that induced by LTE4 (Figure 3A). Cell migration was 
synergistically enhanced by combined stimulation (Figure 3B). The contribution of PGD2 
and LTE4 on the cell migration was blocked by the CRTH2 antagonist TM30089 and the 
CysLT1 antagonist montelukast.

Enhancement of type-2 cytokine production in Tc2 cells by PGD2 and LTE4

Type-2 cytokines (IL-4, IL-5, IL-9 and IL-13) are important biomarkers associated with 
biological function of Tc2 cells. We investigated the effects of PGD2 or LTE4 on type-2 cytokine 
production in Tc2 cells (Figure 4). After treatment with increasing concentrations of PGD2 
or LTE4 for 3 hours, IL-5 and IL-13 production was elevated at both transcriptional (Figure 
4A) and translational (Figure 4B) levels in a dose-dependent manner with EC50=17.3 nM 
at mRNA) or 17.9 nM at protein on IL-5, and 21.1 nM at mRNA or 16 nM at protein on IL-13 
for PGD2; and EC50=4.5 nM at mRNA or 13.5 nM at protein on IL-5, and 7.4 nM at mRNA or 9 
nM at protein on IL-13 for LTE4. The cell responses to PGD2 were significantly stronger than 
those to LTE4. Compared with other type-2 immune cells (Th2 and ILC2),25,27,35 the effect of 
PGD2 on Tc2 cells is much more potent (Figure 4C). The effect of LTE4 is also more potent 
in Tc2 cells than in Th2 cells (Figure 4C).

Figure 2: Continued.

(F) Expression of CysLT1 (CYSLTR1) in T cells from sputum measured by microarray did not differ between healthy 
controls (n=14) and asthmatic groups (n=7 for eosinophilic, n=21 for non-eosinophilic) from the Southampton 
cohort (upper panel). Expression of CysLT1 in blood Tc2 detected by comparison paired between healthy controls 
(n=6) and severe asthma groups (n=6 for eosinophilic and n=2 for non-eosinophilic) from the Oxford cohort by 
flow cytometry did not differ significantly (bottom panel). (G-H) Levels of PGD2 (G) and LTE4 (H) in sputum from 
the Oxford cohort determined with ELISA were compared between healthy controls (n=6 for PGD2 and n=5 for 
LTE4) and severe asthma groups (n=10 for eosinophilic and n=8 for non-eosinophilic). *p<0.05. (Data in A are 
representative of >10 independent experiments; Data in B are representative of 3 independent experiments).

Chapter_4_Bart.indd   209 26-5-2017   11:55:29



Chapter 4

210

We then further examined type-2 cytokine production by Tc2 cells in response to the lipids 
alone (100 nM for PGD2 and 50 nM for LTE4) or combination (Figures 4D-E). Both PGD2 and 
LTE4 increased type 2 cytokine (IL-4/5/9/13) production. As previously noted (Figures 4A-
B), the effect of LTE4 was weaker compared with that of PGD2. However, the combination 
of these lipid mediators significantly enhanced the response, which was synergistic rather 
than additive. Using PrimeFlow assays to analyse the mRNA of IL-5 and IL-13 at individual 
cell level confirmed these data (Figure 4F). IL-5/13 positive cells were increased from 
2.88% (untreated cells) to 23.17%, 12.23% or 28.8% after treatment with PGD2, LTE4 or their 
combination respectively (Figure 4F). Among these positive cells, a fraction expressed IL-5 
dominantly, a fraction IL-13 dominantly, and only some produced IL-5 and 13 simultaneously, 
although almost all these cells (>90%) were capable of producing both cytokines following 
PMA/ionomycin stimulation (Figure S7).

Figure 3: Tc2 cells migrate in response to PGD2 and LTE4.

(A) Cell migration in response to various concentrations of PGD2 and LTE4 in chemotaxis assays. (B) Cell migration 
in response to the combination of PGD2 and LTE4 in the absence or presence of TM30089 and montelukast. 
*p<0.0001, (n=3).

Figure 4: PGD2 and LTE4 promote type 2 cytokine production in cultured Tc2 cells.          
(A) mRNA levels in Tc2 cells and (B) protein levels in the cell supernatants for IL-5 and IL-13 after treatment with 
various concentration of PGD2 and LTE4. (C) EC50 of PGD2 or LTE4 for IL-13 production in Tc2 cells compared with 
that in Th2 and ILC2 cells. (D) mRNA levels in Tc2 cells and (E) protein levels in the cell supernatants for type 2 
cytokines after treatment with PGD2 and LTE4 alone or their combination. The mRNA levels in control samples 
were treated as 1-fold. (F) Increase of IL-5- and IL-13-mRNA positive Tc2 cells after treatment with PGD2 and LTE4 
alone or their combination detected by using PrimeFlow RNA assay. *p<0.05, (n=3 for A, B, C and F; n=6 for D 
and E).
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Effect of PGD2 and LTE4 on the gene expression profile of Tc2 cells

To broadly explore the pathogenic features of Tc2 cells and their interaction with PGD2 
and LTE4, we investigated the cellular transcriptional responses to the lipids added either 
alone or in combination using microarrays. Three experimental replicates were prepared 
for each of the 4 groups (control, LTE4, PGD2, and their combination). The data showed 
broad transcriptional changes after treatment. The mRNA levels of 1104, 3360, and 4593 
genes were significantly modulated (P<0.05) (including upregulation and downregulation) 
by LTE4, PGD2, or their combination, respectively (Figure S8A). The effect of PGD2 was much 
broader and stronger than that of LTE4, and the effect of the combination treatment was 
mainly contributed by PGD2 (Figure S8B).

To focus on the gene regulation potentially relevant to T cell-mediated inflammation, we 
next studied the genes encoding cytokines, chemokines, their receptors, and cluster of 
differentiation (CD) molecules (Figure 5A; Table S1). A total of ~90 of these genes were 
significantly modulated, most of them upregulated, and the most obvious effects were 
on cytokines (IL3, IL5, IL8, IL13, IL22, CSF2, TNF and XCL1) (Table S1). Although a few of 
these were induced by LTE4 alone (e.g., GDF11, TNFSF13, CCL7, IL6R, CD14, CD46, CD99 and 
CD99L2), most were driven by PGD2 alone or by the combination. Some transcriptional 
changes were regulated only by the combination treatment (e.g., IL21, IL22, LASS1, CCL3, 
CCL4, IL1RL1, CD1E and CCL21). The microarray data were largely confirmed by PCRarray on 
human common cytokines although some significant effects (IL9 and CSF1) were detected 
only in PCRarray (Figure 5B).

To further verify these finding, we conducted q-PCR (Figure 5C) and Luminex (Figure 5D) 
assays on selected cytokines. At the mRNA level, most of genes (except CSF1) showed 
synergistic effects of PGD2 and LTE4. At the protein level, the effects of LTE4 were marginal 
in some cytokines (IL-3, IL-21 and IL-22), while the stimulatory effects of PGD2 were obvious 
in all the genes, and particularly significant in IL-8, IL-22, GM-CSF, CSF1, TNFα and CCL4. 
Combination treatment either additively (CSF1) or synergistically (all other genes) enhanced 
cytokine production. We also noticed that IL-2 enhanced the effect of the lipids on some 
cytokines (IL-5/8/13 and GM-CSF) production, particularly in PGD2 stimulation (Figure S9). 
The stimulatory effects of PGD2 and LTE4 on cytokine production by Tc2 cells were inhibited 
by TM30089 and montelukast respectively (Figure 5E).

Cytotoxic proteins are signature proteins of CD8+ cells. We therefore examined the effects 
of PGD2 and LTE4 on the production of perforin and granzymes (GZMA, GZMB and GZMK) 
in Tc2 cells (Figure S10). The cells expressed these without stimulation, and there was no 
significant effect of the lipids, although the activation of the cells by PMA (25 ng/ml) and 
ionomycin (750 ng/ml) down-regulated their expression.

Effect of endogenous PGD2 and LTE4 on the activation of Tc2 cells

To investigate the mechanism of Tc2 activation under more physiological conditions, we 
evaluated the impact of endogenously synthesized eicosanoids on Tc2 function. Human 
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Figure 5: PGD2 and LTE4 modulated gene transcription 
and production of cytokines, chemokines, and surface 
receptors in cultured Tc2 cells.

(A) Venn diagram and heat map showing significantly (p<0.05) 
regulated genes for cytokines, chemokines and surface receptors 
(red for up-regulation and green for down-regulation) in Tc2 cells 
detected by microarray aft er treatments with PGD2, LTE4 or their 
combination. (B) Up-regulated cytokine genes determined by 
using a PCRarray aft er the same treatments as those in (A). (C) 
The change of mRNA levels in cells measured with qPCR and (D) 
the change of protein levels in the cell supernatants detected by 
using Luminex assays for selected cytokines and chemokine aft er 
the same treatments as above. The mRNA levels in control samples 
were treated as 1-fold. (E) The cytokine production induced by PGD2 
and LTE4 detected with Luminex assay were inhibited by TM30089 
and montelukast. *p<0.05, (n=3 for B and C; n=6 for D; n=4 for E).
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mast cells were treated with IgE followed by crosslinking using an anti-IgE antibody 
(Figure 6A). Only low levels of PGD2 (~0.1 ng/ml) and LTE4 (~6 ng/ml) were detected in the 
supernatant from the mast cells before stimulation (supernatant UM). The supernatant from 
IgE/anti-IgE activated mast cells (supernatant SM) contained high levels of PGD2 (~11.5 ng/
ml) and LTE4 (~86.8 ng/ml), which were similar to the concentrations detected in sputum from 
patients with asthma (Figures 2C-D). Using these supernatants to treat Tc2 cells illustrated 
that the supernatant SM induced Tc2 cell migration (Figure 6B) and marked cytokine (IL-
5 and IL-13) production (Figure 6C). Both of these effects were reduced by TM30089 and 
montelukast and completely inhibited by the combination of the two compounds.

Figure 6: Tc2 cell activation in response to mast cell supernatant containing endogenous PGD2 

and LTE4 is mediated by receptors sensitive to TM30089 and montelukast respectively.

(A) Levels of PGD2 (black bars) and LTE4 (white bars) were increased in supernatants from mast cells stimulated 
with IgE and anti-IgE antibodies (supernatant SM) compared with supernatants from cells without stimulation 
(supernatant UM). (B) More Tc2 cells migration to supernatant SM (white bars) than to supernatant UM (gray bar) 
in a chemotaxis assay was reduced by TM30089 and montelukast. (C) IL-5 and IL-13 productions in Tc2 cells were 
significantly increased in response to supernatant SM (white bars) compared with that to the supernatant UM 
(grey bars), and were inhibited by TM30089 and montelukast. *p<0.05, (n=3 for A and B; n=4 for C).
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The role of Tc2 in eosinophilia

Eosinophil enrichment (eosinophilia), intrinsic to severe eosinophilic asthma, plays a critical 
role in lung inflammation 8. Cytokines produced by activated Tc2 cells included several that 
could potentially interact with eosinophils (Figures 4-5). To investigate the potential role of 
Tc2 cells in eosinophilia, we examined the ability of Tc2 products from Tc2 conditioned media 
to elicit relevant changes in human eosinophil behaviour (Figure 7). Since PGD2, LTE4, PMA 
and ionomycin are also strong stimulators to eosinophils, to avoid cross-stimulation, Tc2 
cells were stimulated with anti-CD3 and anti-CD28 antibodies (Figure 7A). This treatment 
promoted secretion of IL-5 and GM-CSF from resting levels ~600 and ~1300 pg/ml respectively 
in the supernatant from unstimulated Tc2 cells (supernatant UT) to ~1290 and ~2900 pg/
ml respectively in the supernatant from stimulated cells (supernatant 3/28).

First, we evaluated the effect of IL-5 derived from Tc2 on eosinophil recruitment using 
an eosinophil shape change assay, a biomarker of eosinophil migration (Figure 7B) 36. 
Recombinant human IL-5 (rhIL-5) induced eosinophil shape changes in fresh blood in a 
dose-dependent manner (Figure S11A). This effect could be inhibited with a neutralizing 
antibody against IL-5. The Tc2 supernatant 3/28 containing a high concentration of IL-5 had a 
stronger capacity to induce eosinophil shape change ex vivo compared with supernatant UT 
(Figure 7B). The eosinophil shape change was significantly, but not completely, inhibited by 
IL-5 neutralizing antibody suggesting involvement of IL-5 and other eosinophil-active factors.

Next, we examined the influence of GM-CSF released by Tc2 cells on eosinophil survival by 
measuring its ability to rescue cells from serum starvation-induced apoptosis (Figure 7C). The 
increase of Annexin V-positive (apoptotic) eosinophils after serum withdrawal was inhibited 
by rhGM-CSF in a dose-dependent manner, which was reversed by a neutralizing antibody 
against GM-CSF (Figure S11B). Similar protection against apoptosis was observed when the 
supernatant from activated Tc2 cells (3/28) was substituted for rhGM-CSF (Figure 7C). The 
protective capacity of supernatant 3/28 was reduced by the GM-CSF neutralizing antibody.

Several lines of evidence suggest that eotaxins play a central role in eosinophil recruitment 
to the lung tissue of patients with asthma 37. Bronchial epithelial cells are an important 
source of eotaxins in lung, and the expression of eotaxins in these cells is regulated by 
type-2 cytokines IL-4 and IL-13 38. We, therefore, investigated the potential role of IL-4 and 
IL-13 derived from Tc2 cells on eotaxin production in A549, a human alveolar epithelial cell 
line. As expected, the generation of eotaxins, particularly eotaxin-2 (CCL24) and eotaxin-3 
(CCL26), by A549 cells was induced by rhIL-4 and rhIL-13 (Figure S12A), and was reversed 
by neutralizing antibodies against IL-4 or IL-13 (Figure S12B). Using the supernatant of Tc2 
culture (UT) to replace rhIL-4/13 also up-regulated eotaxin production except eotaxin-1 
(CCL11) in A549 (Figure 7E). The supernatants from Tc2 cells activated by anti-CD3/CD28 
antibodies (3/28) or PGD2 combined with LTE4 (P/L) contain increased concentrations of 
IL-4 and IL-13 compared with the supernatant UT (Figure 7D), and showed even higher 
capacities to induce eotaxin production (Figure 7E). The eotaxin induction by Tc2 media 
was significantly inhibited by anti-IL-4 and IL-13 neutralizing antibodies.
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Figure 7: Cytokines released by human Tc2 cells promote eosinophil shape change and survival, 
and induce eosinophil chemokine production from airway epithelial cells.

(A) Concentrations of IL-5 (white bars) and GM-CSF (gray bars) were increased in the supernatants from Tc2 cells 
treated with anti-CD3 and CD28 antibodies (supernatant 3/28) compared with the supernatants from the cells 
without treatment (supernatant UT). (B) Supernatant 3/28 induced more eosinophil shape change in fresh blood 
than supernatant UT, which was reversed by adding anti-IL-5 antibody. (C) Supernatant 3/28 reduced annexin 
V positive eosinophils induced by serum withdrawal in the culture, which was reversed by adding anti-GM-CSF 
antibody. (D) Concentrations of IL-4 (white bars) and IL-13 (grey bars) were increased in the supernatants of Tc2 
cells treated with anti-CD3 and CD28 antibodies (supernatant 3/28) or 100 nM PGD2 and 50 nM LTE4 (supernatant 
P/L) compared with untreated cells (supernatant UT). (E) Tc2 supernatants, particularly from treated cells, 
induced CCL11/24/26 (eotaxin-1/2/3) productions in A549 cells, which were inhibited significantly by neutralizing 
antibodies against IL-4 and IL-13. *p<0.05, (n=3 for A; n=4 for B, C, D and E).
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Discussion

Tc2 cells are type-2 cytokine secreting CD8+ T lymphocytes that highly express CRTH2. In this 
study, we found that Tc2 cells were enriched in patients with severe asthma and persistent 
eosinophilia despite treatment with corticosteroids. Importantly, a similar conclusion was 
achieved in two independent asthma cohort studies with different strategies - Tc2 cells 
were enriched in both peripheral blood and lung samples and correlated with disease 
severity. The lipid mediators PGD2 and LTE4 were also increased in the lungs in eosinophilic 
asthma. The interaction of Tc2 cells with these lipid mediators induced strong activation 
of Tc2 cells, leading to cell migration and pro-inflammatory protein production. In turn, 
the cytokines produced by activated Tc2 cells also promoted eosinophil recruitment and 
survival directly or indirectly, suggesting a mechanistic interplay between these two cell 
types. All these data provide compelling evidence for a role for Tc2 cells in the pathogenesis 
of eosinophilic asthma.

CD4+ Th2 lymphocytes have long been believed to be the major driver in asthma patho-
genesis, particularly to allergic asthma, as Th2 cytokines (such as IL-4, IL-5 and IL-13) play 
key roles in causing many features of the disease. Elevated levels of blood Th2 cells have 
been observed in severe asthma, although they are not associated with eosinophilia 39. In 
a separate analysis of the Southampton cohort of asthma patients, we have shown blood 
and tissue CD4+ T-cells to be elevated only in mild, but not severe asthmatics 33, even though 
a proportion of severe asthmatics had evidence of atopy and had high concentrations of 
type-2 cytokines in their airways. This suggested a potential different cell source for type-2 
cytokines. Following the discovery of ILC2s, this novel group of type-2 cytokine producing 
lymphocytes has recently been considered as important new players mediating both innate 
and adaptive responses in asthma and allergy. In mouse asthma models, ILC2 can induce 
airway hyperreactivity in the absence of Th2 cells 40, and contribute to airway eosinophilic 
inflammation 21. It has been reported that circulating blood ILC2 are increased in asthma 
patients 22. In the asthma cohorts in the current study, we found that, although Th2 and 
ILC2 cells were slightly increased in asthmatic blood samples, these increases were not 
significant. Although we did not find raised ILC2 counts in blood, we cannot exclude the 
possibility that their numbers are increased in the lungs. In contrast, in the current study Tc2 
cells were significantly increased in numbers and this enrichment was associated with the 
severity of the disease, the presence of nasal polyps and bronchodilator reversibility. Tc2 
enrichment was also positively correlated with the increase of type-2 cytokine expression 
in the lung. In contrast, a Th2 increase was detected in mild asthma, and the frequencies 
of Th2 cells were negatively correlated with the expression of type-2 cytokine in the lung. 
Increase of Tc2 cells was also reported in atopic asthma and other non-atopic eosinophilic 
patients 41,42. It was also noted in the Unbiased BIOmarkers in PREDiction of respiratory 
disease outcomes (U-BIOPRED) project study that high submucosal CD8+ cells in bronchial 
biopsies were associated with high blood, sputum and submucosal eosinophils, and high 
expression of type-2 cytokines 43. The activation of circulating CD8+ but not CD4+ T-cells 
detected with microarray is associated with severe asthma 44. Furthermore, in a mouse 
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model, prevention of Tc2 cell differentiation by vitamin D3 reduced asthma development 45. 
Therefore, our findings strongly support the hypothesis that Tc2, a previously unappreciated 
lymphocyte subset, could be a key cell type contributing to type-2 immunity in asthma, 
particularly in the severe eosinophilic form of asthma.

Airway eosinophilia has long been associated with exacerbations of asthma 46 and has been 
suggested to play a role in airway remodelling 47. Eosinophils are granulocytic leukocytes 
characterized by the ability to store and release multiple specific basic proteins including 
major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidase (EPO) 
and eosinophil derived neurotoxin (EDN) and a number of proinflammatory cytokines, 
chemokines and growth factors including IL-2/3/4/5/10/12/13/16/25, CCL5/11/17/22, TNF 
and TGFα/β 48. These proteins can mediate eosinophil effector functions in the host defence 
against pathogens (e.g., helminths). However, in asthma, these granule proteins are cytotoxic 
and disrupt the protective pulmonary epithelial barrier allowing further inflammatory 
responses to occur 48,49. The relevance of eosinophilic inflammation in asthma is perhaps 
best illustrated by response to therapies. Sputum eosinophilia in asthma is associated 
with a good response to corticosteroid therapy 50. Other potential clinical strategies such 
as anti-IgE, anti-IL5 and CRTH2 antagonism aimed to normalize sputum eosinophils 
reduced exacerbation frequency and severity in clinical trials in asthma 12,13,28,29,46. Therefore, 
enrichment of eosinophils in the asthmatic lung is closely linked to the pathogenesis of 
eosinophilic asthma. Our in vitro mechanistic data have indicated that the activation of 
Tc2 cells can contribute directly or indirectly to airway eosinophilia. The IL-5 and GM-CSF 
secreted by activated Tc2 cells are sufficient to promote eosinophil migration and survival. 
Other Tc2 cytokines including IL-4 and IL-13 can stimulate airway epithelial cells strongly 
to produce eotaxins, potent chemokines to eosinophils via CCR3. Eotaxins function as 
orchestrators with IL-5 to promote eosinophilia in the inflamed lung 51. In mice with allergic 
airway sensitization, CD8+ T-cells were more critical than CD4+ T-cells in mediating respiratory 
syncytial virus induced lung eosinophilia and airway hyperresponsiveness 52. In a mouse 
model with virus-specific Tc2 cells, activation of Tc2 cells by viral infection induced lung 
eosinophilia 53. All this evidence suggests an important role of Tc2 cells in eosinophil-
mediated lung inflammation.

Unlike Th2 cells, in vivo-differentiated Tc2 cells retain some of their ability to produce the 
cytotoxins perforin, granzymes and granulysin when exposed to infected/dysfunctional 
somatic cells 54. Through the action of these cytotoxic proteins, they trigger apoptosis 
in targeted cells, raising the possibility that the death of target cells in Tc2 reactions may 
potentiate the inflammatory response. In-vitro cultured Tc2 cells used in our study exhibited 
their capacity to release cytotoxins. However, no effect of PGD2 and LTE4 on the production 
of cytotoxins in Tc2 was detected.

Both PGD2 and cysLTs are products of the oxidative metabolism of arachidonic acid derived 
mainly from activated mast cells in a IgE-dependent mechanism, although other types of 
inflammatory cells such as eosinophils, basophils, macrophages, dendritic and Th2 cells 
may also contribute to their production in some circumstances. These lipid mediators have 
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been detected in high concentrations at sites of allergic inflammation and play important 
roles in promoting airway inflammation and deterioration in lung function 55. In our asthma 
cohort, PGD2 was increased in the airways from both eosinophilic and non-eosinophilic 
severe asthma, while LTE4 was significantly enriched only in severe eosinophilic asthma, 
as noted by other investigators 56. Since most patients with severe eosinophilic asthma are 
non-atopic with low levels of IgE, the key cellular source of these lipids is still unclear. LTE4 is 
a stable metabolic product of cysLTs and the dominant form detected in biological fluids 57.  
Monitoring LTE4 levels in the urine, sputum and exhaled air is an index of activity of the cysLT 
synthesis pathway 58. LTE4 has lower affinity than LTC4 and LTD4 for both CysLT1 and CysLT2 
receptors 59,60. However, our previous studies have demonstrated that LTE4 showed higher 
efficacy than LTD4 and LTC4 in human Th2 and ILC2s, and the activity of LTE4 in these cells 
was completely inhibited by the CysLT1 antagonist montelukast 30,31,35. Combination of PGD2 
and cysLTs synergistically amplifies their pro-inflammatory effects in these cells. Human Tc2 
cells highly express the receptors for PGD2 (CRTH2) and cysLTs (CysLT1). The level of CRTH2 
is slightly increased in the Tc2 cells from eosinophilic asthma. Treatment with PGD2 or LTE4 
induces strong activation of Tc2 cells. Of relevance, we showed the potency of PGD2 on Tc2 
was higher than that on Th2 and ILC2 cells, and the potency of LTE4 in Tc2 was also higher 
than that in Th2 cells. The combination of PGD2 and LTE4 synergistically enhanced the 
responses in Tc2 cells. These effects were confirmed by using endogenous lipid mediators 
from activated human mast cells. These findings provide a potential mechanistic insight 
into the large clinical benefit of CRTH2 antagonism seen in severe eosinophilic asthma 28,29.

To define the impact of these mediators on Tc2 cell function we performed gene expression 
analysis. This suggested that their effects are not limited to induction of type-2 cytokines 
but rather include a broad range of different genes. They upregulated transcription of 
>2000 genes including genes for bioactive cytokines and chemokines for eosinophils. For 
example, IL-3, IL-5 and GM-CSF promote eosinophil differentiation and migration 61,62. TNFα 
delays eosinophil apoptosis and contributes to eosinophilic inflammation of airway 63.  
IL-25 plays important role in eosinophilic airway inflammation in a mouse model 64 and 
transgenic overexpression of IL-25 resulted in eosinophilia 65. CCL3, CCL4 and CCL7 are 
chemokines for eosinophils targeting CCR1 and CCR3 and CCR5 66,67. The data from our in 
vitro studies indicate the critical roles of these lipids in Tc2-mediated eosinophilic activities. 
One relevant finding was the impact of PGD2, LTE4 and their combination on expression of 
IL-5 by Tc2 cells. The EC50 for PGD2 induced IL-5 production was 17 nM, compared to 118 nM 
for ILC2 populations 27 and 63 nM for Th2 cells 25. This suggests that Tc2 cells stimulated in 
this way generate a strong and early IL-5 response, a finding that could be relevant to the 
clear clinical benefit of anti-IL-5 in severe eosinophilic asthma 13,68.

In conclusion, we have shown in clinical cohorts that type-2 cytokine-producing CD8+ Tc2 
cells are significantly enriched in in both peripheral blood and lung tissues in patients with 
eosinophilic asthma, particularly in severe disease. The lipid mediators PGD2 and LTE4 are 
also increased in the lung from the same patients. These lipids are strong chemokines and 
stimulators of Tc2 cells, and function synergistically in the recruitment and activation of Tc2 
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cells. Besides type-2 cytokines, Tc2 cells activated by the lipids produce a range of other 
proinflammatory cytokines and chemokines, which are sufficient to contribute directly or 
indirectly to eosinophilia in lung. Therefore, Tc2 cells are a potentially important target for 
therapeutic interventions to control severe eosinophilic asthma.

Materials and methods

Patients and clinical samples

For the Oxford cohort, patients meeting the latest ATS/ERS definition of severe asthma (8) 
with an induced sputum eosinophil count of >3% (eosinophilic, 24 subjects) or <3% (non-
eosinophilic, 12 subjects), and 15 healthy control subjects were recruited from Churchill 
Hospital, Oxford (Table 1). The ethics was approved by Leicestershire, Nottinghamshire 
Rutland Ethics Committee, UK (08/H0406/189). For the Southampton cohort, 22 healthy non-
atopic participants, 10 with eosinophilic asthma (sputum eosinophil count >3%), and 42 non-
eosinophilic asthma (Table 1) were enrolled from NIHR Southampton Respiratory Biomedical 
Research Unit and outpatient clinics at University Hospital Southampton 33. The study was 
approved by the Southampton and South West Hampshire Research Ethics Committee B.

Peripheral blood was collected and directly used for flow cytometry. Sputum was induced 
with nebulized saline solution (3-5%) after pre-treatment with salbutamol. Selected sputum 
plugs were broken down with 0.2% DTT, filtered and separated for cells for flow cytometry 
analysis and microarray, and supernatants for ELISA analysis. Bronchial biopsies and 
bronchoalveolar lavage (BAL) fluid were collected under bronchoscopy 33. The biopsies 
were dispersed with collagenase for 1 h to obtain bronchial mucosal cells, and BAL fluids 
were treated with 0.1% DTT and filtered for single cells, for flow cytometric analysis. For 
microarray, the cells from sputum were immediately FACS sorted for CD3+ T-cells using a 
FACS Aria IITM cell sorter (BD Biosciences). 

Tc2 cell preparation, culture and treatment 

Human CD8+CRTH2+ Tc2 cells were isolated from human CD Leucocyte Cones (National 
Blood Service, Oxford, UK). Briefly, PBMC were prepared by Ficoll-Hypaque gradient, 
followed by CD8 cell isolation using MACS CD8+ T-cell isolation kit. After a week’s culture in 
AIM V medium 50 U/ml rhIL-2, and 100 ng/ml rhIL-4, Tc2 cells were isolated from the CD8+ 
cell culture by positive selection using anti-human CD294 MicroBeads. The harvested cells 
were further amplified in X-VIVO 15 medium containing 10% human serum and 50 U/ml 
rhIL-2 before use.

For further gene or protein analysis, Tc2 cells were treated with PGD2, LTE4 or their 
combination in the presence or absence of other compounds at indicated concentrations 
for 4 h. The cell supernatants were collected for ELISA or Luminex assays, and the cell pallets 
were used for qPCR, RNAarray or microarray studies.
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For preparation of Tc2 conditioned supernatants, the Tc2 cells were treated with immobilized 
anti-CD3 and anti-CD28 antibodies or PGD2 (100 nM) and LTE4 (50 nM) in RPMI for 4 h, and then 
the supernatants were harvested and stored as Tc2 conditioned media for the treatment 
of fresh blood, eosinophils or A549 cells.

Human mast cell culture and activation

Human mast cells were cultured and treated as described previously 35. Briefly, the cells 
were cultured from CD34+ progenitor cells isolated from human cord blood (National Blood 
Service, Oxford) in a medium containing rhSCF (100 ng/ml) and rhIL-6 (50 ng/ml) for >12 
weeks. The cells were stimulated with human myeloma IgE (5 mg/ml) followed by goat 
anti-human IgE antibody (1 µg/ml) for 1 h. The supernatants of the cells were collected 
and measured for PGD2 and LTE4 with ELISA, or used as mast cell conditioned media for 
the treatment of Tc2 cells.

PrimeFlow RNA assay

The levels of transcription for IL-5 and IL-13 in individual Tc2 cells in whole blood or Tc2 
cultures were analysed with a PrimeFlow RNA Assay kit (eBioscience, Waltham, US) according 
to the manufacturer’s instructions. Briefly, fresh blood or purified Tc2 cells were treated with 
conditions indicated for 4 h or without treatment, and then were stained with the antibodies 
(Table S2) and viability dye followed by fixation and permeabilisation. Then the cells were 
hybridised with RNA probes for IL-5 and IL-13. The signals were amplified and labelled with 
fluorescent probes. The results were analysed with a BD LSRFortessa flow cytometer (BD 
Biosciences, Franklin Lakes, US).

Microarrays

For CD3+ cells sorted from sputa, RNAs were isolated using an Absolutely RNA Nanoprep Kit 
(Agilent, Santa Clara, US), and microarrays were performed using Affymetrix HT HG-U133+ 
PM GeneChips by Janssen Research & Development (Springhouse, Pennsylvania). For 
cultured Tc2 and CRTH2-CD8+ T-cells, RNAs were extracted with an RNeasy Mini kit (Qiagen, 
Venlo, Netherlands), and microarrays were conducted using an Illumina HumanHT-12v4 
Expression Beadchip at the Transcriptomics Core Facility, The Jenner Institute, University 
of Oxford. Pre-processing data analysis was performed using R language (www.R-project.
org) and Bioconductor packages (www.bioconductor.org/). Genes significant at a p<0.05 
were selected by using Limma Bioconductor package 69. Heat maps and gene hierarchal 
clustering were generated by using tmev microarray software suite.
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ELISA 

The levels of IL-4, IL-5, IL-13, and GM-CSF in the Tc2 supernatants were assayed with ELISA 
kits, and the concentrations of PGD2 and LTE4 in the mast cell supernatants were measured 
with a PGD2–MOX enzyme immunoassay kit and LTE4 enzyme immunoassay kit (Cayman 
Chemicals, Ann Arbor, US) respectively according to the manufacturer’s instructions. The 
results were measured in an EnVision Multilable Reader (PerkinElmer, Waltham, US).

Luminex assays

Multiple cytokine concentrations in the supernatants of Tc2 cultures or multiple eotaxin 
concentrations in the supernatants of A549 cells after various treatments as indicated in 
the results were measured using a Luminex Screening Assay kit (Bio-techne) as per the 
manufacturer’s instructions. Results were obtained with a Bio-Plex 200 System (Bio-Rad, 
Hercules, US).

PCRarray

The levels of mRNA for cytokines in the RNA samples from the Tc2 cells after treatments were 
assessed with PCRarray by using an RT2 Profiler PCRarray Human Common Cytokines PCR 
Array kit (Qiagen) in a LightCycler 480 Real-Time PCR System (Roche, Basel, Switzerland). 

Quantitative RT-PCR (qPCR)

qPCR was conducted as described previously 35. Primers and probes (Roche) used are listed 
in Table S3 in the Supplementary materials.

Flow cytometry analysis

For blood samples, fresh blood was labelled using antibodies (Table S2) followed by red 
blood cell lysis with a BD FACS Lysing Solution and washing. For cells from blood, sputum, 
BAL or bronchial biopsies, the cells were stained with multiple antibody cocktail and live/
dead dye (Table S2). For intracellular IL-13 staining, the cells were rested overnight in AIM-V 
medium and stimulated with 25 ng/ml PMA and 500 ng/ml ionomycin in the presence of 2 
µM monensin for 5 h. After surface marker staining, the cells were fixed with 1% formaldehyde 
and then treated with a Permeabilisation Buffer followed by incubation with anti-IL-13 
antibody. The samples were analysed with a BD LSRFortessa flow cytometer at Oxford or 
a BD FACS Aria cell sorter at Southampton.

Chemotaxis assays 

Tc2 cells were resuspended with RPMI 1640 media; 25 mL of cell suspension and 29-mL 
test compounds as indicated in the results or mast cell supernatants were applied to the 
upper and lower chambers, respectively, in a 5-µm pore sized 96-well ChemoTx plate (Neuro 
Probe). After incubation (37°C for 60 minutes), the migrated cells in the lower chambers 
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were collected and mixed with a Cell Titer-Glo Luminescent Cell Viability Assay kit (Promega, 
Fitchburg, US) and quantified by using an EnVision Multilable Reader.

Immunohistochemistry

Paraffin-embedded sections of bronchial biopsies were prepared by Oxford Centre for 
Histopathology Research. After deparaffin and rehydation, the sections were boiled in a 
Target Retrieval Solution (Dako, Glostrup, Denmark), followed by incubation with peroxidase 
blocking reagent (Bio-Rad, Veenendaal, The Netherlands) to block endogenous peroxidase 
activity and with normal horse serum to block non-specific-binding. The sections were then 
labelled with primary (goat anti-human CD3 and rabbit anti-human CD8) and secondary 
(peroxidase polymer-conjugated anti-rabbit followed by Cy5-tyramide) antibodies. After 
treatment with peroxidase blocking reagent again, the sections were further incubated 
with another secondary antibody (peroxidase polymer-conjugated anti-goat followed by 
Fluorescein-tyramide) and then 5 µg/ml DAPI solution. Images were acquired on an Olympus 
FV1200 inverted confocal microscope, and processed with ImageJ.

Eosinophil shape change assay

Fresh human blood was incubated with an equal volume of Tc2 conditioned media in the 
presence or absence of anti-IL-5 neutralizing antibody or other reagents as indicated in the 
results for 1 h. The samples were fixed with a Cytofix Fixation Buffer (BD Biosciences) followed 
by red blood cell lysis by using a RBC Lysis Solution (Gentra Systems, Minneapolis, US) and 
washings. Eosinophils were gated from granulocytes according to their autofluorescence 
during the flow cytometric analysis in a BD LSRFortessa flow cytometer. The eosinophil 
shape change was determined by the position shifting of the cells in forward scatter.

Eosinophil apoptosis assay

Eosinophils were prepared from human peripheral blood. Erythrocyte/granulocyte 
pellet was collected after Ficoll-Hypaque gradient, and then incubated with 3% dextran 
saline solution for sedimentation. Granulocytes were harvested from the supernatant of 
the sedimentation and further purified by lysis of the remaining erythrocytes with 0.6 M 
KCl hypotonic water, and followed by labelling with anti-CD16 microbeads. Unlabelled 
eosinophils were negatively selected by passing through a magnetic column and then 
resuspended in a RPMI 1640 medium. More than 80% purity of eosinophils was obtained 
for the assay.

After treatments with an equal volume of diluted Tc2 conditioned media in the presence 
or absence of anti-GM-CSF neutralizing antibody or other reagents as indicated in the 
results for 12 h, the eosinophils were labelled with Annexin V and then analysed with a BD 
LSRFortessa flow cytometer.
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Eotaxin production assay 

A549 cells (ATCC) were incubated with rhIL-4 and rhIL-13 in RPMI 1640 (5% FCS) or Tc2 
conditioned media in the presence or absence of anti-IL-4 and IL-13 neutralizing antibodies 
as indicated in the results for 16 h. The supernatants of the cells were harvested for ELISA 
and luminex assays.

Statistics

Data for clinical samples in Figures 1, 2, S2 and S3 were presented as median with 
interquartile range (IQR) and other data were presented as mean with SEM. Data were 
analysed using one-way ANOVA followed by the Newman–Keuls test or Student’s t test. 
Groups ranked according to disease severity were tested for linear trend using Jonckheere-
Terpstra test. Values of p<0.05 were considered statistically significant.

References

1.  Global Burden of Disease Study 2013 Collaborators, Global, regional, and national incidence, 
prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 
countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 
386, 743-800 (2015).

2.  P. Haldar, I. D. Pavord, D. E. Shaw, M. A. Berry, M. Thomas, C. E. Brightling, A. J. Wardlaw, R. H. 
Green, Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 178, 218-
224 (2008).

3.  W. C. Moore, D. A. Meyers, S. E. Wenzel, W. G. Teague, H. Li, X. Li, R. D’Agostino Jr, M. Castro, D. 
Curran-Everett, A. M. Fitzpatrick, B. Gaston, N. N. Jarjour, R. Sorkness, W. J. Calhoun, K. F. Chung, 
S. A. Comhair, R. A. Dweik, E. Israel, S. P. Peters, W. W. Busse, S. C. Erzurum, E. R. Bleecker; National 
Heart, Lung, and Blood Institute’s Severe Asthma Research Program, Identification of asthma 
phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. 
Care Med. 181, 315-323 (2010).

4.  P. Nair, What is an “eosinophilic phenotype” of asthma? J. Allergy Clin. Immunol. 132, 81-83 (2013).

5.  K. D. Stone, C. Prussin, D. D. Metcalfe, IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. 
Immunol. 125, S73-S80 (2010).

6.  A. H. Nissim Ben Efraim, F. Levi-Schaffer, Tissue remodeling and angiogenesis in asthma: the role 
of the eosinophil. Ther. Adv. Respir. Dis. 2, 163-171 (2008).

7.  J. Bousquet, P. Chanez, J. Y. Lacoste, G. Barnéon, N. Ghavanian, I. Enander, P. Venge, S. Ahlstedt, 
J. Simony-Lafontaine, P. Godard, F.-B. Michel, Eosinophilic inflammation in asthma. N. Engl. J. 
Med. 323, 1033-1039 (1990).

Chapter_4_Bart.indd   224 26-5-2017   11:55:31



Ch
ap

te
r 4

Type 2 cyToToxic T-lymphocyTes in severe eosinophilic asThma

225

8.  K. F. Chung, S. E. Wenzel, J. L. Brozek, A. Bush, M. Castro, P. J. Sterk, I. M. Adcock, E. D. Bateman, 
E. H. Bel, E. R. Bleecker, L. P. Boulet, C. Brightling, P. Chanez, S. E. Dahlen, R. Djukanovic, U. Frey, 
M. Gaga, P. Gibson, Q. Hamid, N. N. Jajour, T. Mauad, R. L. Sorkness, W. G. Teague, International 
ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 43, 
343-373 (2014).

9.  J. Mullol, C. Picado, Rhinosinusitis and nasal polyps in aspirin-exacerbated respiratory disease. 
Immunol. Allergy Clin. North Am. 33, 163-176 (2013).

10.  D. S. Robinson, Th2 cytokines in allergic diseases. Br. Med. Bull. 56, 956 –968 (2000).

11.  B. Hilvering, L. Xue, I. D. Pavord, Evidence for the efficacy and safety of anti-interleukin-5 treatment 
in the management of refractory eosinophilic asthma. Ther. Adv. Respir. Dis. 9, 135-145 (2015).

12.  P. Haldar, C. E. Brightling, B. Hargadon, S. Gupta, W. Monteiro, A. Sousa, R. P. Marshall, P. Bradding, 
R. H. Green, A. J. Wardlaw, I. D. Pavord, Mepolizumab and exacerbations of refractory eosinophilic 
asthma. N. Engl. J. Med. 360, 973–984 (2009).

13.  H. G. Ortega, M. C. Liu, I. D. Pavord, G. G. Brusselle, J. M. FitzGerald, A. Chetta, M. Humbert, L. E. Katz, 
O. N. Keene, S. W. Yancey, P. Chanez, MENSA Investigators, Mepolizumab treatment in patients 
with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198-1207 (2014).

14.  B. N. Lambrecht, H. Hammad H, The immunology of asthma. Nat. Immunol. 16, 45-56 (2014).

15.  D. S. Robinson, Q. Hamid, S. Ying, A. Tsicopoulos, J. Barkans, A. M. Bentley, C. Corrigan, S. R. 
Durham, A. B. Kay, Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic 
asthma. N. Engl. J. Med. 326, 298-304 (1992).

16.  L. Cohn, R. J. Homer, A. Marinov, J. Rankin, K. Bottomly, Induction of airway mucus production By 
T helper 2 (TH2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. 
J. Exp. Med. 186, 1737–1747 (1997).

17.  T. A. Doherty, P. Soroosh, D. H. Broide, M. Croft, CD4+ cells are required for chronic eosinophilic lung 
inflammation but not airway remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L229–L235 
(2009).

18.  D. R. Neill, S. H. Wong, A. Bellosi, R. J. Flynn, M. Daly, T. K. Langford, C. Bucks, C. M. Kane, P. G. 
Fallon, R. Pannell, H. E. Jolin, A. N. McKenzie, Nuocytes represent a new innate effector leukocyte 
that mediates type-2 immunity. Nature 464, 1367-1370 (2010).

19.  S. A. Saenz, M. C. Siracusa, J. G. Perrigoue, S. P. Spencer, J. F. Urban Jr, J. E. Tocker, A. L. Budelsky, 
M. A. Kleinschek, R. A. Kastelein, T. Kambayashi, A. Bhandoola, D. Artis, IL25 elicits a multipotent 
progenitor cell population that promotes T(H)2 cytokine responses. Nature 464, 1362-1366 (2010).

20.  J. M. Mjösberg, S. Trifari, N. K. Crellin, C. P. Peters, C. M. van Drunen, B. Piet, W. J. Fokkens, T. 
Cupedo, H. Spits, Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by 
expression of CRTH2 and CD161. Nat. Immunol. 12, 1055-1062 (2011).

21.  T. Y. Halim, R. H. Krauss, A. C. Sun, F. Takei, Lung natural helper cells are a critical source of Th2 
cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451-463 
(2012).

Chapter_4_Bart.indd   225 26-5-2017   11:55:31



Chapter 4

226

22.  K. R. Bartemes, G. M. Kephart, S. J. Fox, H. Kita, Enhanced innate type 2 immune response in 
peripheral blood from patients with asthma. J. Allergy Clin. Immunol. 134, 671-678 (2014).

23.  L. Cosmi, F. Annunziato, M. I. G. Galli, R. M. E. Maggi, K. Nagata, S. Romagnani, CRTH2 is the most 
reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in 
health and disease. Eur. J. Immunol. 30, 2972-2979 (2000).

24.  H. Hirai, K. Tanaka, O. Yoshie, K. Ogawa, K. Kenmotsu, Y. Takamori, M. Ichimasa, K. Sugamura, M. 
Nakamura, S. Takano, K. Nagata, Prostaglandin D2 selectively induces chemotaxis in T helper 
type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med. 
193, 255-261 (2001).

25.  L. Xue, S. L. Gyles, F. R. Wettey, L. Gazi, E. Townsend, M. G. Hunter, R. Pettipher, Prostaglandin D2 
causes preferential induction of proinflammatory Th2 cytokine production through an action 
on chemoattractant receptor-like molecule expressed on Th2 cells. J. Immunol. 175, 6531-6536 
(2005).

26.  L. Xue, A. Barrow, R. Pettipher, Novel function of CRTH2 in preventing apoptosis of human Th2 
cells through activation of the phosphatidylinositol 3-kinase pathway. J. Immunol. 182, 7580-7586 
(2009).

27.  L. Xue, M. Salimi, I. Panse, J. M. Mjösberg, A. N. McKenzie, H. Spits, P. Klenerman, G. Ogg, 
Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-
homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184-1194 (2014).

28.  R. Pettipher, M. G. Hunter, C. M. Perkins, L. P. Collins, T. Lewis, M. Baillet, J. Steiner, J. Bell, M. 
A. Payton, Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist 
OC000459. Allergy 69, 1223-1232 (2014).

29.  S. Gonem, R. Berair, A. Singapuri, R. Hartley, M. F. Laurencin, G. Bacher, B. Holzhauer, M. Bourne, V. 
Mistry, I. D. Pavord, A. H. Mansur, A. J. Wardlaw, S. H. Siddiqui, R. A. Kay, C. E. Brightling, Fevipiprant, 
a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a 
single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir. 
Med. 4, 699-707 (2016).

30.  L. Xue, J. Fergusson, M. Salimi, I. Panse, J. E. Ussher, A. N. Hegazy, S. L. Vinall, D. G. Jackson, M. 
G. Hunter, R. Pettipher, G. Ogg, P. Klenerman, Prostaglandin D2 and leukotriene E4 synergize to 
stimulate diverse TH2 functions and TH2 cell/neutrophil crosstalk. J. Allergy Clin. Immunol. 135, 
1358-1366 (2015).

31.  M. Salimi, L. Stöger, W. Liu, S. Go, I. D. Pavord, P. Klenerman, G. Ogg, L. Xue, Cysteinyl leukotriene 
E4 activates human ILC2s and enhances the effect of prostaglandin D2 and epithelial cytokines. 
J. Allergy Clin. Immunol. pii: S0091-6749(17)30051-9. doi: 10.1016/j.jaci.2016.12.958 (2017).

32. I. D. Pavord, C. E. Brightling, G. Woltmann, A. J. Wardlaw, Non-eosinophilic corticosteroid 
unresponsive asthma. Lancet 353, 2213-2214 (1999).

33. T. S. Hinks, X. Zhou, K. J. Staples, B. D. Dimitrov, A. Manta, T. Petrossian, P. Y. Lum, C. G. Smith, 
J. A. Ward, P. H. Howarth, A. F. Walls, S. D. Gadola, R. Djukanović, Innate and adaptive T cells in 
asthmatic patients: Relationship to severity and disease mechanisms. J. Allergy Clin. Immunol. 
136, 323-333 (2015).

Chapter_4_Bart.indd   226 26-5-2017   11:55:31



Ch
ap

te
r 4

Type 2 cyToToxic T-lymphocyTes in severe eosinophilic asThma

227

34. L. Fregonese, M. Silvestri, F. Sabatini, G. A. Rossi, Cysteinyl leukotrienes induce human eosinophil 
locomotion and adhesion molecule expression via a CysLT1 receptor-mediated mechanism. Clin. 
Exp. Allergy 32, 745-750 (2002).

35.  L. Xue, A. Barrow, V. M. Fleming, M. G. Hunter, G. Ogg, P. Klenerman, R. Pettipher, Leukotriene E4 
activates human Th2 cells for exaggerated proinflammatory cytokine production in response to 
prostaglandin D2. J. Immunol. 188, 694-702 (2012).

36.  E. N. Choi, M. K. Choi, C. S. Park, I. Y. Chung, A parallel signal-transduction pathway for eotaxin- and 
interleukin-5-induced eosinophil shape change. Immunology 108, 245-256 (2003).

37.  B. Lamkhioued, P. M. Renzi, S. Abi-Younes, E. A. Garcia-Zepada, Z. Allakhverdi, O. Ghaffar, M. D. 
Rothenberg, A. D. Luster, Q. Hamid, Increased expression of eotaxin in bronchoalveolar lavage and 
airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation. 
J. Immunol. 1159, 4593-4601 (1997).

38.  C. M. Lilly, H. Nakamura, H. Kesselman, C. Nagler-Anderson, K. Asano, E. A. Garcia-Zepeda, M. 
E. Rothenberg, J. M. Drazen, A. D. Luster, Expression of eotaxin by human lung epithelial cells: 
induction by cytokines and inhibition by glucocorticoids. J. Clin. Invest. 99, 1767-1773 (1997).

39.  N. S. Palikhe, C. Laratta, D. Nahirney, D. Vethanayagam, M. Bhutani, H. Vliagoftis, L. Cameron, 
Elevated levels of circulating CD4+ CRTh2+ T cells characterize severe asthma. Clin. Exp. Allergy. 
46, 825-36 (2016).

40.  J. L. Barlow, A. Bellosi, C. S. Hardman, L. F. Drynan, S. H. Wong, J. P. Cruickshank, A. N. McKenzie, 
Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways 
hyperreactivity. J. Allergy Clin. Immunol. 129, 191-198 (2012).

41.  S. H. Cho, L. A. Stanciu, S. T. Holgate, S. L. Johnston, Increased interleukin-4, interleukin-5, and 
interferon-gamma in airway CD4+ and CD8+ T cells in atopic asthma. Am. J. Respir. Crit. Care Med. 
171, 224-230 (2005).

42.  C. Stoeckle, H. U. Simon, CD8+ T cells producing IL-3 and IL-5 in non-IgE-mediated eosinophilic 
diseases. Allergy 68, 1622-1625 (2013).

43.  C. S. Kuo, S. Pavlidis, M. Loza, F. Baribaud, A. Rowe, I. Pandis, U. Hoda, C. Rossios, A. Sousa, S. 
J. Wilson, P. Howarth, B. Dahlen, S. E. Dahlen, P. Chanez, D. Shaw, N. Krug, T. Sandström, B. De 
Meulder, D. Lefaudeux, S. Fowler, L. Fleming, J. Corfield, C. Auffray, P. J. Sterk, R. Djukanovic, Y. Guo, 
I. M. Adcock, K. F. Chung, U-BIOPRED Project Team, A Transcriptome-driven Analysis of Epithelial 
Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am. J. Respir. Crit. 
Care Med. [Epub ahead of print] (2016).

44.  E. Tsitsiou, A. E. Williams, S. A. Moschos, K. Patel, C. Rossios, X. Jiang, O. D. Adams, P. Macedo, 
R. Booton, D. Gibeon, K. F. Chung, M. A. Lindsay, Transcriptome analysis shows activation of 
circulating CD8+ T cells in patients with severe asthma. J. Allergy Clin. Immunol. 129, 95-103 
(2012).

45.  M. Schedel, Y. Jia, S. Michel, K. Takeda, J. Domenico, A. Joetham, F. Ning, M. Strand, J. Han, M. 
Wang, J. J. Lucas, C. Vogelberg, M. Kabesch, B. P. O’Connor, E. W. Gelfand, 1,25D3 prevents CD8(+)
Tc2 skewing and asthma development through VDR binding changes to the Cyp11a1 promoter. 
Nat. Commun. 7, 10213. (2016).

Chapter_4_Bart.indd   227 26-5-2017   11:55:31



Chapter 4

228

46.  I. D. Pavord, S. Korn, P. Howarth, E. R. Bleecker, R. Buhl, O. N. Keene, H. Ortega, P. Chanez, 
Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-
controlled trial. Lancet 380, 651–659 (2012).

47.  A. B. Kay, S. Phipps, D. S. Robinson, A role for eosinophils in airway remodelling in asthma. Trends 
Immunol. 25, 477–482 (2004).

48.  F. Davoine, P. Lacy, Eosinophil cytokines, chemokines, and growth factors: emerging roles in 
immunity. Front Immunol. 5, 570 (2014).

49.  E. Frigas, S. Motojima, G. Gleich, The eosinophilic injury to the mucosa of the airways in the 
pathogenesis of bronchial asthma. Eur. Respir. J. Suppl. 13, 123s–135s (1991).

50.  R. H. Green, C. E. Brightling, S. McKenna, B. Hargadon, D. Parker, P. Bradding, A. J. Wardlaw, I. D. 
Pavord, Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. 
Lancet 360, 1715–1721 (2002).

51.  S. M. Pope, E. B. Brandt, A. Mishra, S. P. Hogan, N. Zimmermann, K. I. Matthaei, P. S. Foster, M. E. 
Rothenberg, IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent 
mechanism. J. Allergy Clin. Immunol. 108, 594-601 (2001).

52.  J. Schwarze, M. Mäkelä, G. Cieslewicz, A. Dakhama, M. Lahn, T. Ikemura, A. Joetham, E. W. Gelfand, 
Transfer of the enhancing effect of respiratory syncytial virus infection on subsequent allergic 
airway sensitization by T lymphocytes. J. Immunol. 163, 5729-5734 (1999).

53.  A. J. Coyle, F. Erard, C. Bertrand, S. Walti, H. Pircher, G. Le Gros, Virus-specific CD8 cells can switch 
to interleukin 5 production and induce airway eosinophilia. J. Exp. Med. 181, 1229–1233 (1995).

54.  M. Vukmanovic-Stejic, B. Vyas, P. Gorak-Stolinska, A. Noble, D. M. Kemeny, Human Tc1 and Tc2/
Tc0 CD8 T-cell clones display distinct cell surface and functional phenotypes. Blood 95, 231-240 
(2000).

55.  S. E. Sampson, A. P. Sampson, J. F. Costello, Effect of inhaled prostaglandin D2 in normal and 
atopic subjects, and of pretreatment with leukotriene D4. Thorax 52, 513–518 (1997).

56.  L. Mastalerz, N. Celejewska-Wójcik, K. Wójcik, A. Gielicz, A. Cmiel, M. Ignacak, K. Oleś, A. Szczeklik, 
M. Sanak, Induced sputum supernatant bioactive lipid mediators can identify subtypes of asthma. 
Clin. Exp. Allergy 45, 1779-89 (2015).

57.  A. Sala, N. Voelkel, J. Maclouf, R. C. Murphy, Leukotriene E4 elimination and metabolism in normal 
human subjects. J. Biol. Chem. 265, 21771-21778 (1990).

58.  J. M. Drazen, J. O’Brien, D. Sparrow, S. T. Weiss, M. A. Martins, E. Israel, C. H. Fanta, Recovery of 
leukotriene E4 from the urine of patients with airway obstruction. Am. Rev. Respir. Dis. 146, 104-
108 (1992).

59.  K. R. Lynch, G. P. O’Neill, Q. Liu, D. S. Im, N. Sawyer, K. M. Metters, N. Coulombe, M. Abramovitz, D. 
J. Figueroa, Z. Zeng, B. M. Connolly, C. Bai, C. P. Austin, A. Chateauneuf, R. Stocco, G. M. Greig, S. 
Kargman, S. B. Hooks, E. Hosfield, D. L. Williams Jr, A. W. Ford-Hutchinson, C. T. Caskey, J. F. Evans, 
Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399, 789-793 (1999).

Chapter_4_Bart.indd   228 26-5-2017   11:55:31



Ch
ap

te
r 4

Type 2 cyToToxic T-lymphocyTes in severe eosinophilic asThma

229

60.  C. E. Heise, B. F. O’Dowd, D. J. Figueroa, N. Sawyer, T. Nguyen, D. S. Im, R. Stocco, J. N. Bellefeuille, 
M. Abramovitz, R. Cheng, D. L. Williams Jr, Z. Zeng, Q. Liu, L. Ma, M. K. Clements, N. Coulombe, Y. 
Liu, C. P. Austin, S. R. George, G. P. O’Neill, K. M. Metters, K. R. Lynch, J. F. Evans, Characterization 
of the human cysteinyl leukotriene 2 receptor. J. Biol. Chem. 275, 30531-30536 (2000).

61.  R. A. Warringa, L. Koenderman, P. T. Kok, J. Kreukniet, P. L. Bruijnzeel, Modulation and induction of 
eosinophil chemotaxis by granulocyte-macrophage colony-stimulating factor and interleukin-3. 
Blood 77, 2694–2700 (1991).

62.  M. Takamoto, K. Sugane, Synergism of IL-3, IL-5, and GM-CSF on eosinophil differentiation and 
its application for an assay of murine IL-5 as an eosinophil differentiation factor. Immunol. Lett. 
45, 43-46 (1995).

63.  J. Choi, Z. Callaway, H. B. Kim, T. Fujisawa, C. K. Kim, The role of TNF-alpha in eosinophilic 
inflammation associated with RSV bronchiolitis. Pediatr. Allergy Immunol. 21, 474-479 (2010).

64.  H. Morita, K. Arae, H. Unno, S. Toyama, K. Motomura, A. Matsuda, H. Suto, K. Okumura, K. Sudo, 
T. Takahashi, H. Saito, K. Matsumoto, S. Nakae, IL-25 and IL-33 Contribute to Development of 
Eosinophilic Airway Inflammation in Epicutaneously Antigen-Sensitized Mice. PLoS One 10, 
e0134226 (2015).

65.  M. R. Kim, R. Manoukian, R. Yeh, S. M. Silbiger, D. M. Danilenko, S. Scully, J. Sun, M. L. DeRose, 
M. Stolina, D. Chang, G. Y. Van, K. Clarkin, H. Q. Nguyen, Y. B. Yu, S. Jing, G. Senaldi, G. Elliott, E. 
S. Medlock, Transgenic overexpression of human IL-17E results in eosinophilia, B-lymphocyte 
hyperplasia, and altered antibody production. Blood 100, 2330–2340 (2002).

66.  S. H. Oliveira, S. Lira, C. Martinez-A, M. Wiekowski, L. Sullivan, N. W. Lukacs, Increased responsiveness 
of murine eosinophils to MIP-1beta (CCL4) and TCA-3 (CCL1) is mediated by their specific receptors, 
CCR5 and CCR8. J. Leukoc. Biol. 71, 1019-1025 (2002).

67.  X. Z. Shang, B. C. Chiu, V. Stolberg, N. W. Lukacs, S. L. Kunkel, H. S. Murphy, S. W. Chensue, Eosinophil 
recruitment in type-2 hypersensitivity pulmonary granulomas: source and contribution of 
monocyte chemotactic protein-3 (CCL7). Am. J. Pathol. 161, 257-266 (2002).

68.  N. A. Hanania, P. Korenblat, K. R. Chapman, E. D. Bateman, P. Kopecky, P. Paggiaro, A. Yokoyama, J. 
Olsson, S. Gray, C. T. Holweg, M. Eisner, C. Asare, S. K. Fischer, K. Peng, W. S. Putnam, J. G. Matthews, 
Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA 
II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 
4, 781-796 (2016).

69.  M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, Limma powers differential 
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43, e47 
(2015).

Chapter_4_Bart.indd   229 26-5-2017   11:55:31



Chapter 4

230

Supplementary Material

Materials and methods

Reagents 
PGD2, and LTE4 were purchased from Enzo Life Science; TM30089 was supplied by ChemieTek; 
rhIL-5, rhGM-CSF, anti-CD3, anti-CD28 antibodies, human CD8+ T-cell isolation kit and anti-
human CD294 or CD16 MicroBeads were from Miltenyi Biotec Ltd; BD FACS Lysing Solution 
was supplied by BD Biosciences; X-VIVO 15 medium were purchased from Lonza; AIM V 
medium was from Invitrogen; Ficoll-PaqueTM Plus was supplied from GE Healthcare; RNeasy 
Mini kit and Omniscript reverse transcription kit were supplied from Qiagen; Real time 
quantitative PCR (qPCR) Master Mix and probes were from Roche; Primers were synthesized 
by Eurofins MWG Operon; rhSCF, rhIL-6 and anti-IL-4/5/13 neutralizing antibodies were 
purchased from Bio-techne; goat anti-human CD3 was from Santa Cruz; rabbit anti-human 
CD8 was from Abcam; peroxidase polymer-conjugated anti-rabbit and peroxidase polymer-
conjugated anti-goat antibodies were from Vector Laboratories; Fluorescein-tyramide 
and Cy5-tyramide were from PerkinElmer; human myeloma IgE was from Calbiochem; 
Anti-human GM-CSF antibody, Annexin V-APC and Human GM-CSF ELISA kit were obtained 
from BioLegend; Permeabilisation Buffer, human IL-4, IL-5 and IL-13 ELISA kit were from 
eBioscience; and rhIL-2, rhIL-4 and rhGM-CSF were from PeproTech and other chemicals 
were from Sigma-Aldrich.

Flow cytometric analysis for isolated Tc2 cells
For isolated Tc2 cells, the cells were stained with antibodies for surface markers (Table 
S2) and live/dead dye, and then the cells were fixed with 1% formaldehyde. For further 
cytotoxic molecule studies, the cells were treated with a Permeabilisation Buffer followed 
by incubation with antibodies against cytotoxic effector molecules diluted in the 
Permeabilisation Buffer. The samples were analysed with a BD LSRFortessa flow cytometer.

Analysis of correlation
The values of Rs were calculated by using Spearman’s rank correlation.
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Figures

Figure S1: IL-5 producing CD8+ T lymphocytes are CRTH2 positive.

IL-5-producing CD3+CD8+ T-cells in human peripheral blood ex-vivo from a healthy subject are detected by using 
PrimeFlow RNA assay. More than 90% of IL-5+ cells express CRTH2 on the cell surface. (n=3).

Figure S2: Gating strategies for Th2 and ILC2 cells in peripheral blood from the Oxford cohort.

Fresh bloods were stained with a mixture of antibodies against immune cell surface markers and analysed with 
flow cytometry. (A) Th2 cells were gated as CD3+CD4+CD8-CRTH2+ cells. (B) ILC2s were gated as lineage marker 
negative (CD3, CD4, CD8, CD14, CD16, CD19, CD56, CD123, CD11b, CD11c and FcεRI), CD45high, IL-7Rα (CD127)+ 
and CRTH2+.
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Figure S3: Blood Th2 cells are increased in mild asthma.

The frequencies of IL-Thirteen secreting CD3+CD4+ T cells in peripheral blood determined by flow cytometry with 
intracellular cytokine staining were increased in patients with mild asthma but not in moderate or severe asthma 
from the Southampton cohort.

Figure S4: Frequencies of Tc2 but not Th2 are correlated with lung inflammation.

(A) Relative expression of IL-4 in T-cells measured by microarray in FACS sorted CD3+ cells from induced sputum 
from the Southampton cohort, is correlated positively with peripheral blood CD3+CD8+IL-13+ (Tc2) frequencies, but 
negatively with peripheral blood CD3+CD4+IL-13+ (Th2) frequencies. (B) High Tc2 frequencies (≥ 0.9%, equivalent 
to the top decile of Tc2 frequencies in healthy controls) in bronchial biopsies are associated with high salbutamol 
bronchodilator reversibility in asthmatic subjects. Rs = Spearman’s correlation coefficient.
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Figure S5: CRTH2 and CysLT1 are highly expressed in Tc2 cells.

The levels of mRNA for the receptors for PGD2 (DP1 and CRTH2) and for cysteinyl leukotrienes (CysLT1, CysLT2, 
P2Y12 and GPR99) in Tc2 cells were compared by using qPCR. All the genes were normalized with GAPDH, and 
CysLT2 was treated as 1. The levels of CRTH2 and CysLT1 are significantly higher than other receptors. *p<0.05, 
(n=8).
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Figure S6: Tc2 cell culture shows high type-2 immunity related gene signature.

(A) Cultured Tc2 cells were >70% CD8 positive and >90% CRTH2 positive. (B) Significant (p<0.05) differences in 
gene transcriptions between Tc2 cells (CD8+CRTH2+) and other CD8+ cells (CD8+CRTH2-) was detected by using 
microarray. Tc2 cells express higher type-2 immunity related genes (red) but lower type-1 (green) and killer cell 
related genes (blue) than other CD8+ cells. p<0.05, (n=3 for B).
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Figure S7: All Tc2 cells are capable of producing both IL-5 and IL-13.

More than 90% of cultured Tc2 cells showed IL5 and IL13 double positive after stimulation with 25 ng/ml phorbol 
myristate acetate (PMA) and 750 ng/ml ionomycin examined for 4 h by using PrimeFlow RNA assay. (n=2).
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Figure S8: Large numbers of gene transcripts in Tc2 cells are modulated by PGD2 and LTE4.

(A) Venn diagram and (B) heat map representing total numbers of genes significantly regulated (p<0.05), 
including up-regulations (red) and down-regulations (green), by 50 nM LTE4, 100 nM PGD2 or their combination 
for 4 h in Tc2 cells detected with microarray. (n=3).
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Figure S9: IL-2 enhances cytokine production in Tc2 cells in response PGD2 and LTE4.

Release of IL-5, IL-8, IL-13 and GM-CSF by Tc2 cells in response to 100 nM PGD2 or 50 nM LTE4 detected with 
Luminex, particularly to PGD2, were increased in the presence of 50 U/ml IL-2. * p<0.05, (n=3).
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Figure S10: Production of cytotoxins in Tc2 cells are not affected by PGD2 and LTE4.

The expression levels of GZMA, GZMB, GZMK and perforin in Tc2 cells determined with flow cytometry were not 
changed by treatment with 100 nM PGD2, 50 nM LTE4 or their combination for 8 h. The reduction of the cytotoxin 
levels in Tc2 cells by 25 ng/ml PMA/750 ng/ml ionomycin was used as positive controls. Histogram shows a 
representative experiment for these assays (n=3).
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Figure S11: Effects of IL-5 and GM-CSF on eosinophil shape-change and apoptosis are inhibited 
by the neutralizing antibodies against these cytokines.

(A) Fresh blood was incubated with various concentrations of rhIL-5 (left) or with 10 ng/ml rhIL-5 in the presence 
of various concentrations of anti-IL-5 neutralizing antibody (right) for 1 h, and then the shape change of 
eosinophils in the blood was measured using flow cytometry. The percentage shape change was increased with 
the concentration of IL-5, which was reversed by anti-IL-5 antibody in a dose-dependent manner. (B) Eosinophil 
apoptosis was induced by serum deprivation in the presence of various concentrations of rhGM-CSF (left) or 1 
ng/ml GM-CSF and various concentrations of anti-GM-CSF neutralizing antibody (right), and then cell apoptosis 
was determined with Annexin V staining by flow cytometry. Annexin V+ eosinophils were reduced with increasing 
concentrations of GM-CSF, which was inhibited by anti-GM-CSF antibody in a dose-dependent manner. (n=10 for 
A left; n=2 for A right; n=3 for B).
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Figure S12: Effects of IL-4 and IL-13 on eotaxin 3 production in A549 cells were inhibited by 
neutralizing antibodies against these cytokines.

(A) A549 cells were incubated with or without increased concentrations of rhIL-4 and rhIL-13 overnight. 
Concentrations of CCL24 and CCL26 in cell culture supernatants of the cell culture were measured by luminex 
assay. CCL26 increased with increasing concentrations of IL-4 and IL-13. (B and C) A549 cells were treated with 
100 ng/ml rhIL-4 and 100 ng/ml rhIL-13 in the presence of various concentrations of anti-IL-4 (B) or anti-IL-13 
(C) neutralizing antibodies. The production of CCL26 induced by the cytokines was partially inhibited by the 
antibodies in a dose-dependent manner. (n=3 for A; n=2 for B and C).
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Table S1: List of cytokine, chemokine, their receptor and CD molecule genes regulated by PGD2, 
LTE4 or their combination in Tc2 cells detected by microarray*

Up-regulation Down-regulation

Gene

Sample treatment

Gene

Sample treatment

PGD2 LTE4 PGD2 + LTE4 PGD2 LTE4 PGD2 + LTE4

IL3 + + +++** BMP8B - - -

IL5 + + ++ CYFIP2 - - -

IL8 + + +++ FLT3LG - -

IL10 + + + GDF11 - -

IL13 + ++ LASS1 -

IL16 + + + TNFSF13 - -

IL21 + TSLP - - -

IL22 ++ CCL2 -

IL24 + + CCL21 -

IL25 + + + IL3RA -

IL26 + + + IL6R - -

BMP1 + + IL7R - - -

CSF2 + + ++ IL11RA -

GDF11 + CCK1 - - -

TNF + + ++ CNTFR - - -

TNFSF8 + + + LEPR - - -

TNFSF11 + + + CMKLR1 - -

TNFSF13 + CD2 - - -

TNFSF14 + + + CD14 - -

LASS1 + CD40 - - -

LIF + + + CD46 - -

LTA + + + CD58 -

NAMPT + + CD99 - -

XCL1 + + ++ CD79A -

FASLG + + ++ CD79B - - -

CCL2 + + CD99L2 - -

Table S1 continues on next page.
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Table S1: Continued

Up-regulation Down-regulation

Gene

Sample treatment

Gene

Sample treatment

PGD2 LTE4 PGD2 + LTE4 PGD2 LTE4 PGD2 + LTE4

CCL3 + CD300LG - - -

CCL4 + GPR44 - - 

CCL7 +

CCL21 + +

CCL22 + + +

CCL25 + +

CD2BP2 + + +

CMTM4 + +

PF4V1 + +

PPBP + + +

IL1RL1 +

IL2RB + + +

IL2RG + + +

IL3RA + +

IL6R +

IL11RA + +

CD1E +

CD7 + + +

CD14 +

CD28 + + +

CD40LG + + +

CD44 + +

CD46 +

CD53 + +

CD55 + + +

CD58 + +

CD59 + + +

Table S1 continues on next page.
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Table S1: Continued

Up-regulation Down-regulation

Gene

Sample treatment

Gene

Sample treatment

PGD2 LTE4 PGD2 + LTE4 PGD2 LTE4 PGD2 + LTE4

CD69 + + +

CD79A + +

CD82 + + +

CD99 +

CD99L2 +

CD109 + + +

CD151 + + +

CD164 + + +

CD226 + + +

* The concentrations of PGD2 and LTE4 were 100 nM and 50 nM respectively.
** ++ indicates fold change ≥3; +++ indicates fold change ≥6.

Table S2: Antibodies used for flow cytometry and PrimeFlow RNA assays

Antigen Clone Supplier Used for

CD3 SK7 BioLegend Flow cytometry

CD3 UCTH1 eBioscience Flow cytometry, PrimeFlow

CD4 L200 BD Biosciences Flow cytometry

CD4 OKT4 BioLegend Flow cytometry, PrimeFlow

CD8 SK1 BioLegend Flow cytometry, PrimeFlow

CRTH2 BM16 Miltenyi Biotec Flow cytometry, PrimeFlow

CysLT1 polyclonal Novus Biologicals Flow cytometry

Granzyme A 356412 R&D Systems Flow cytometry

Granzyme B GB11 BD Biosciences Flow cytometry

Granzyme K 24C3 Immunotools Flow cytometry

IL-13 11711 R&D Systems Flow cytometry

perforin B-D48 BioLegend Flow cytometry
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Table S3: Primers and probes used for q-PCR

Gene Primer Probe No.

CSF1 5’-GCAAGAACTGCAACAACAGC-3’
5’-ATCAGGCTTGGTCACCACAT-3’

19

CSF2 5’-TCTCAGAAATGTTTGACCTCCA-3’
5’-GCCCTTGAGCTTGGTGAG-3’

1

CYSLT1 5’-ACTCCAGTGCCAGAAAGAGG-3’
5’-GCGGAAGTCATCAATAGTGTCA-3’

29

CYSLT2 5’-CTAGAGTCCTGTGGGCTGAAA-3’
5’-GTAGGATCCAATGTGCTTTGC-3’

48

DP1 5’-CCTGGAGGAGCTGGATCA-3’
5’-GCTCCATAGTAAGCGCGATAAA-3’

18

GAPDH 5’-AGCCACATCGCTCAGACAC-3’
5’-GCCCAATACGACCAAATCC-3’

60

GPR44 5’-CCTGTGCTCCCTCTGTGC-3’
5’-TCTGGAGACGGCTCATCTG-3’

43

GPR99 5’-CAACCTGATTTTGACTGCAACT
5’-GGATAATCGTGGTATAGCAAAGTG

16

IL3 5’-TTGCCTTTGCTGGACTTCA-3’
5’-CTGTTGAATGCCTCCAGGTT-3’

60

IL4 5’-CACCGAGTTGACCGTAACAG-3’
5’-GCCCTGCAGAAGGTTTCC-3’

16

IL5 5’-GGTTTGTTGCAGCCAAAGAT-3’
5’-TCTTGGCCCTCATTCTCACT-3’

25

IL8 5’-AGACAGCAGAGCACACAAGC-3’
5’-ATGGTTCCTTCCGGTGGT-3’

72

IL9 5’-CTTCCTCATCAACAAGATGCAG-3’
5’-AGAGACAACTGGTCACATTAGCAC-3’

59

IL13 5’-AGCCCTCAGGGAGCTCAT-3’
5’-CTCCATACCATGCTGCCATT-3’

17

IL21 5’-AGGAAACCACCTTCCACAAA-3’
5’-GAATCACATGAAGGGCATGTT-3’

7

IL22 5’-CAACAGGCTAAGCACATGTCA-3’
5’-ACTGTGTCCTTCAGCTTTTGC-3’

6

P2Y12 5’-TTTGCCTAACATGATTCTGACC-3’
5’-GGAAAGAGCATTTCTTCACATTCT-3’

27

TNF 5’-CAGCCTCTTCTCCTTCCTGAT-3’
5’-GCCAGAGGGCTGATTAGAGA-3’

29
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Asthma is a heterogeneous disease that is highly prevalent in the western world. Around 4% 
of this large asthma population suffers from severe asthma which is an invalidating disease 1,2.  
Today only a small group of these difficult-to-treat patients with specific characteristics 
receive biologicals that reduce exacerbations and have marginal side effects. Identifying 
the right patient for the right treatment has been proven challenging but essential (Chapter 
1.2) 3,4. Therefore, the research in this thesis focuses on improving diagnostic value of blood 
tests and sputum sample-tests in asthma patients. Three research directions were explored 
to improve the diagnostic value of blood and sputum cells for asthma phenotyping.  

•	 The value of eosinophil and neutrophil activation in vivo in blood and 
sputum 

•	 Non-linear principal component analysis to study a combination of clinical 
parameters and measures of activation of blood cells 

•	 Improvement of flow cytometry data analysis to evaluate the added value 
of a multivariate approach for disease diagnosis in general and for asthma 
in particular.

Activation state of eosinophils and neutrophils in peripheral blood

Peripheral blood eosinophils need to become (pre)activated to arrest on the endothelium 
and extravasate into the airways 5,6. Eosinophilic asthma is characterized by airway 
eosinophilia and hence peripheral blood eosinophils need to be (pre)activated to migrate. 
We hypothesized that the (pre-) activation state of peripheral blood eosinophils was different 
in this specific phenotype compared to eosinophils from neutrophilic asthma and controls 
(Chapter 2.1).

There was already evidence to support the activation state of eosinophils is changed in 
asthma. Johansson and colleagues suggested eosinophil priming and activation is deficient 
in peripheral blood during active eosinophilic inflammation in the airways 7. Luijk et al. found 
active FcγRII (CD32), the main IgG receptors on blood eosinophils, was upregulated after 
segmental lung challenge 8,9. Both findings seem contradictive because there is deficiency 
in priming and activation in one study and activation after lung challenge in the other. 
However, in our studies we found very similar patterns. The activation state of granulocytes 
was tested by in vitro stimulation with N-Formylmethionine-leucyl-phenylalanine (fMLF). 
fMLF is a strong activation and chemotactic factor for polymorphonuclear leukocytes 10. 
In the Utrecht cohort and Oxford test cohort (Chapter 2.1) we observed that peripheral 
blood eosinophils did not respond to the fMLF stimulation in patients with a clear airway 
eosinophilia which is similar to the findings of Johanson et al. 11. In eosinophilic asthma the 
activation markers Mac1 (CD11b) and to a lesser extent active FcγRII (CD32 recognized by the 
antibodies A17 and A27 12) were less upregulated after stimulation with fMLF compared to 
the other inflammatory phenotypes diagnosed by sputum induction. Eosinophils isolated 
from patients with mild asthma and neutrophilic or paucigranulocytic airway inflammation 
were hyper-responsive for fMLF compared to controls and patients with eosinophilic asthma. 
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This is in line with the findings of Luijk et al. describing granulocyte responsiveness in a 
group of mild-asthma patients 8. The main findings (Figure 1) were (i) that patients with 
airway eosinophilia have refractory peripheral blood eosinophils and (ii) different states 
of activation of granulocytes correlate with different states of inflammation in asthma.

The presence of refractory eosinophils in peripheral blood indicative for systemic 
inflammation in asthma patients is in line with refractory neutrophils in peripheral blood after 
inflammatory complications following femur fracture and more severe COPD patients 13,14. 
The same or very similar methods were used to measure the activation state of neutrophils 
in these latter studies. Hietbrink et al. assessed neutrophil responsiveness by in vitro 
stimulation with fMLF in trauma patients that were admitted to the ICU with a femur 
fracture 13,15. Some of these patients developed late (>3 days) inflammatory complications, 

Figure 1 A-D: A-C: responsiveness of blood granulocytes for the innate stimulus fMLF.

Responsiveness is depicted as fold induction of respectively MoPhabA17, CD11b and MoPhabA27 with on the 
x-axis the diff erent asthma phenotypes based on sputum induction. Only CD11b reaches a significant diff erence 
in the eosinophilic group compared to the other groups. However in the NLPCA analysis in Chapter 2.1 all these 
measures were essential to discriminate between patients by making use of ‘multivariate advantage’. 

D: overall model of Mac-I and FcγRII priming/activation and inflammatory subtypes.
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which was associated to impaired responsiveness of neutrophils at the day of trauma. Lo 
Tam Loi et al. studied neutrophils activation states in COPD patients 14. They applied the 
unique characteristics of a CD11b antibody clone, VIM12, to activate respiratory burst of 
neutrophils. This response was markedly decreased in COPD patients compared to controls. 
Among the COPD patients, the group with the lower half intensity of respiratory burst had 
a more severe disease state. Also the response to fMLF was lower in the more severe COPD 
group who had a higher symptom score, lower diffusion capacity and impaired exercise 
tolerance. This finding in neutrophils shows striking similarity to refractory eosinophils in 
eosinophilic asthma and is integrated in Figure 2. Notably, the pattern of low neutrophil 
responsiveness was not observed in asthma patients.

Figure 2: Integrated identification of Asthma, COPD and Trauma subtypes by analysis of the 
functional phenotype of blood eosinophils (fMLF) and neutrophils (fMLF and respiratory burst).

With the increase of systemic inflammation the priming and activation state changes from a low state (green) to 
a high state (orange) and in severe systemic inflammation from (red) to a dysfunctional refractory state (blue). 
Adapted from Chapter 6 of the thesis of Dr. Lo Tam Loi. https://dspace.library.uu.nl/handle/1874/298639 and 
from Chapter 4 of the thesis of Dr. Hietbrink et al. https://dspace.library.uu.nl/bitstream/1874/30517/1/hietbrink.
pdf.

State of eosinophils in airway tissue

Recently, Mesnil et al. described phenotypically different eosinophils in airway tissue of 
healthy and diseased mice and airway tissue of asthma patients. They found that eosinophils 
appear to exist in two forms in the airways of mice: resident eosinophils (rEos) present in the 
parenchyma and inflammatory eosinophils (iEos) in the peribronchial tissue 16. After house 
dust mite challenge in mice rEos remained unchanged and present in the parencyma and 
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at the same time iEos were recruited into the airway tissue. Mice lacking rEos showed an 
increase in Th2 cell responses to inhaled allergens (Mesnil et al. used ΔdblGATA, C.Cg-Gata1 
tm6Sho/J mice purchased from The Jackson Laboratory). In non-asthmatic human lungs 
rEos (Siglec-8+CD62L+IL-3Rlo) in tissue could be differentiated from (Siglec-8+CD62LloIL3Rhi) 
iEos in sputa of asthmatic patients. However, taking our results (in Chapter 2.2) into 
consideration, the activation profile of sputum cells is overall high. Therefore, comparing 
sputum cells to tissue cells does not seem to be a strong point to prove the existence of two 
cellular phenotypes. In this line of reasoning, low expression of CD62L (shedding in active 
state) and high expression of IL3R does not necessarily prove the iEos are actually different 
phenotypes of eosinophils in ‘human asthma’ as was stated by Mesnil and colleagues 16. 
On the other hand the finding of subsets of eosinophils in the airways could be in line with 
findings of changes in activation state in peripheral blood eosinophils (Chapter 2.1) 7,8.  
In severe eosinophilic asthma there is a high concentration of highly activated sputum 
eosinophils and a high concentration of refractory peripheral blood eosinophils, yet it is 
unclear what the activation state is of eosinophils in lung tissue. 

One hypothesis could be that responsive eosinophils extravasate into the lung tissue 
under influence of signaling chemokines such as IL-5, which results in a remaining signal 
unresponsive group in peripheral blood (refractory eosinophils) and activated eosinophils 
in the tissue (inflammatory eosinophils). These iEos are likely to have shed CD62L during 
migration, have high expression of activation markers, and accumulate and degranulate 
around the bronchial wall 17,18. Finally this eosinophil phenotype ends up degranulated and 
still highly activated in the airways and can eventually be found in sputum. Parenchymal 
rEos might respond to the degranulation and activation of iEos by becoming more activated 
and could even start to function as sources for IL-5 production thereby causing a positive 
feedback loop that recruits again influx of more iEOs. The feedback loop could explain the 
pathophysiology in persistent eosinophilic asthma and is suspected to be refractory to 
treatment with oral steroids 19. 

One of the relatively novel treatment options for airway eosinophilia is anti-IL-5 therapy, 
which should affect eosinophil dynamics throughout the human body as IL-5 is important 
in eosinophil production, differentiation, proliferation, survival, chemotaxis and priming 20. 
Mice deficient in IL-5 (IL-5--/- knock-out) do not show a response to helminth infection but 
do have normal eosinophil levels in peripheral blood with standard morphology 21. Mice 
deficient in IL-5 have a functional difference in response to specific triggers compared to 
wild type mice. In IL-5--/- knock-out mice allergen challenge does not lead to eosinophilia, 
airway hyperresponsiveness and lung damage 22. Those phenomena do occur in wild type 
mice. IL-5 plays in important role in airway remodeling as was shown in IL-5 knockout mice 
challenged by OVA which had significantly less peribronchial fibrosis and significantly lower 
peribronchial smooth muscle thickness compared with WT mice challenged with OVA 23. In 
humans 20 weeks of anti-IL-5 treatment (Mepolizumab) lead to a median reduction of 100% 
of eosinophils in peripheral blood and only to an average of 52% reduction in bone marrow 
eosinophils, 55% reduction of eosinophil number in airway mucosa and a 79% reduction 
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of eosinophils in bronchial alveolar lavage (BAL) fluid 24. This illustrates the sensitivity of 
peripheral blood for a blocking signal of IL-5 and at the same time it shows the insensivity 
of bone marrow, tissue and also the airways for relatively short term IL-5 blockade. 

Activation state of eosinophils and neutrophils in the airways (sputum)

In Chapter 2.2 we studied the endobronchial compartment by measuring sputum eosinophils 
and neutrophils and more specifically the association of sputum eosinophilia with neutrophil 
activation in sputum. There was no association between sputum eosinophilia and neutrophil 
activation nor was there a difference in sputum eosinophil activation between eosinophilic 
and non-eosinophilic asthma. However, both sputum neutrophils and eosinophils were 
characterized by an activated and degranulated phenotype compared to peripheral blood 
cells; degranulation of all granule types were detected in sputum cells, combined with an 
increased expression of the activation markers (activated) Mac-1 (CD11b), Programmed 
Death-Ligand 1 (CD274) and a decreased expression of CD62L. CD69 expression was only 
increased on sputum eosinophils. 

Interestingly, sputum granulocytes show an overall highly activated state and concurrently 
express an immune-suppressive marker (PDL-1). Blockade of the PD-1 receptor (CD274) was 
shown to restore CD4+ cell functioning in vitro, although this was not specifically tested in 
neutrophils 25. The expression of CD274 on sputum cells of asthma patients suggests an 
ability of these cells to modulate inflammation in asthma instead of merely causing tissue 
damage and contributing to the inflammatory cascade. 

The state and function of eosinophils in peripheral blood, tissue and airways in 
eosinophilic asthma 

The combination of refractory eosinophils in peripheral blood, the highly activated 
eosinophils in sputum and the data published by Mesnil et al. seem to fit a hypothesis of one 
cell type with seemingly opposing functions; rEos down-regulating a type-2 response and 
in their absence iEos causing eosinophilic inflammation. This paradigm of counter acting 
functions within one cell type fits with a hypothesis launched by Lee et al. named the LIAR 
hypothesis, stating eosinophils are regulators of Local Immunity And/or Remodeling/Repair 
in both health and disease 26. This perspective goes against the view that eosinophils are 
always destructive and damaging end-stage inflammatory effector cells. And it launches 
the idea of eosinophils having a role in healthy tissue homeostasis with a damaging role 
only in non-homeostatic situations. Therefore, in eosinophilic asthma it seems important 
to objectify the role of tissue eosinophils and ultimately to aim for restored healthy tissue 
homeostasis regulated by eosinophils. 
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Non-linear Principal Component Analysis on clinical and cellular data 

The clinical and cellular data variables gathered in the Utrecht and Oxford asthma cohorts 
consist of multiple data levels: continuous and categorical. Dimension reduction was 
required to test whether a combination of multiple variables with different data levels has 
the potential to improve asthma phenotyping 27,28. A widely used unsupervised method to 
reduce data dimensionality is Principal Component Analysis (PCA). However, PCA is only 
suitable for continuous data (linear) and, therefore, we choose to use non-linear principal 
component analysis (NLPCA) and thereby aim for multivariate advantage 29–31. 

NLPCA brought two main findings: (i) The granulocyte response contributes to diagnostic 
accuracy (see Chapter 2.1) (ii) 6 clinical markers were important to discriminate between 
patients with eosinophilic and non-eosinophilia asthma: FeNO, eosinophil count, ACQ, 
nasal polyposis, aspirin sensitivity and medication use (Figure 3, bottom panel, NLPCA). 
At least as important was the demonstration of clinical markers that were excluded; among 
these markers were for example presence of allergy, BMI, age and smoking history. This 
is specifically interesting, because there is a lot of interest in the asthma research field 
for the importance of allergy, BMI, age and smoking in the pathogenesis of asthma. Our 
cohort consisted of patients visiting tertiary centers in The Netherlands or the UK with an 
overrepresentation of severe asthma patients. This precludes generalization for the disease 
as a whole, but it does provide direction for the better understating of the pathogenesis 
of severe asthma. In severe asthma clearly eosinophilic disease is important and of lesser 
importance is the presence of allergy, obesity and age (Chapter 2.1). This is in line with other 
unbiased cohort studies focusing on more severe asthma such as the Leicester cohort and 
goes against specific hallmarks of the disease in general 32. 

The question arises: Does the selection of a multidimensional analysis method influence the 
interpretation or conclusions of these cohort studies? NLPCA unlike PCA is not a common 
method to be used for dimension reduction in clinical studies, but it is in an early stage of 
development for this type of analysis 30,31. It is only recently that larger studies such as the 
Leicester cohort of Haldar and colleagues, the American SARP (Severe Asthma Research 
Programme) cohort, the ADEPT-cohort (Airway Disease Endotyping for Personalized 
Therapeutics) and U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory 
Disease Outcome) consortium gathered high-dimensional and high-density data for which 
advanced statistical methods were required 32–36. In these large cohorts data analyses were 
chosen based on the research question, nature of the data and preference of the authors. 
For these four cohorts clustering techniques were chosen such as k-means clustering, 
Ward’s minimum-variance hierarchical clustering method or fuzzy partition-around-medoid 
clustering (FPAM). Disadvantages of these methods are supervision, for example k-means 
clustering and FPAM requires prior choice of the number of clusters. Another disadvantage 
is sensitivity for outliers, which is a weakness of Ward’s method. Therefore, the preference 
of the authors for the different methods also included the degree of supervision or bias in 
the data 37. Prosperi et al. described the challenges in variable and analysis selection in 
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Figure 3: MFC and/or clinical data analysis methods on different hierarchical levels.

FLOOD: Output from the Response Model of FLOOD (Chapter 3.1) containing neutrophils in white dots with grey lines 
representing 80% CI of individual subjects after LPS challenge and a cyan line containing the 80%CI of neutrophils 
from healthy controls. DAMACY: Output from DAMACY with a diagnostic score (A). In blue are asthma patients from 
the oxford cohort and in red healthy controls. The right hand cellular heat map (B) contains characteristic cells from 
asthma patients (blue) and cells from healthy controls (red). PCA: eosinophils in blood (red) and in sputum (blue), 
not visible here are the surface marker expressions underlying the differences of location in this graph. 
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multidimensional datasets with clinical data and advised to carefully select variables for 
inclusion and to carefully select the analysis method depending on the research question 
and nature of the data 38.

The method that was chosen for the analysis of clinical and laboratory data in Chapter 
2.1, NLPCA, is unsupervised. It can integrate different types of variables: categorical and 
continuous. NLPCA reduces the dimensionality of data and results in this study in a score 
per patient (Chapter 2.1) and a certain number of axes (Principal Components) interpretable 
for analysis, preferably three or lower. In Chapter 2.1 these axes represent the data of 12 
variables. The subsequent discriminant analysis was logically supervised and aimed to 
test the possibility of predicting sputum eosinophilia based on the original data coming 
from blood measurements, FeNO and clinical markers. Finally, an important advantage of 
NLPCA is the insightfulness of the output of the analysis (score and loading plot) instead of 
other visualization methods such as k-means clustering plots that can be very challenging 
in interpretation 39. 

Studies taking the step from asthma phenotype to phenotype-based treatment decisions are 
limited 32. Based on Chapter 2.1 it would be attractive to develop an intervention study using 
cell activation data and clinical parameters to diagnose eosinophilic asthma in patients 

Figure 3: Continued.

NLPCA: (A) Score plot with four groups of patients (rounds). 1. Green rounds = the patient has sputum 
eosinophilia and is predicted to have it by the developed prediction model in Chapter 2.1. 2. Blue rounds = no 
sputum eosinophilia and was predicted so 3. Orange rounds = patients with sputum eosinophilia not identified 
by the prediction model. 4. Red rounds = patients without sputum eosinophilia that were identified to have 
sputum eosinophilia. (B) Loading plot with the 12 markers that remained after dimension reduction. The vectors 
represent each marker and can be used to determine the characteristics of each score (rounds in A).
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not on oral steroids. Such intervention or treatment itself could be any of the biologicals 
known to suppress eosinophilic inflammation. The Utrecht and Oxford cohort data could 
serve as a training set and would improve the diagnostic accuracy on forehand 40.  

Multidimensional analysis of Multicolour Flow Cytometry data 

Multicolor Flow Cytometry (MFC) has become an elementary technique to study receptor 
profiles on single cells. The technique has been rapidly improved and, by using multiple 
lasers with different wavelengths and innovation in antibody-bound fluorescent labels, an 
increasing amount of epitopes can be measured simultaneously on a single cell. However, 
with this increase of labels the analysis of flow cytometry data has become more complex. 
Immunologists are now confronted with multi-dimensional datasets while being used to 
analyse flow cytometry data two-dimensionally 41–43. The amount of biplots required to fully 
interpret a flow cytometry experiment with 10 labels is ((10*10)-10)/2 = 45 biplots. Clearly 
MFC biplots with fluorescence intensity are very important for many research questions, yet 
a considerable amount of information is lost by two-dimensional analysis only (Chapter 3.1). 

In this thesis several analysis methods for MFC data have been described and used to 
answer a variety of research questions. Roughly MFC data contains four hierarchical levels 
for interpretation (DAMACY asthma Chapter 3.3): 

1.  The multivariate (co)-expression of markers on single cells 
2.  Aggregation into cell populations with similar marker expression 
3.  Representation of cell populations in a specific individual/subject
4.  The cellular representation in a specific (clinical) phenotype

The ideal flow cytometry analysis technique combines these four levels. However, it is very 
challenging to develop a method incorporating all levels and hence a variety of analyses 
exists with a focus on one or two levels. Logically, the choice of analysis depends on the 
research question. Within this thesis several methods were used to analyse MFC data and/
or clinical data, all of these are displayed in Table 1. and in Figure 3. 

FLOOD (FLow cytometric Orthogonal Orientation for Diagnosis) is a PCA based method 
that reveals disease specific marker patterns (Figure 3, top panel, FLOOD). Benchmarks 
are used to highlight deviations of challenged from unchallenged individuals based on cell 
concentration and surface marker expression. We demonstrate its power in an in vivo study 
of the response of healthy humans to lipopolysaccharide (LPS) challenge and an in vivo 
study of the response of elite rowers to an intense anaerobic exercise stimulus (rowing). 

In the LPS challenge (Chapter 3.1) in healthy human volunteers, FLOOD reveals a reproducible 
pattern of challenge specific markers on blood neutrophils. An automated gating approach 
identified two directions of the response (score plot) and the relevant vectors responsible 
for these directions (loading plot). In summary, the unsupervised analysis based on 
two directions identified two new neutrophil types, one with low L-selectin expression 
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and elevated expression of integrin chains CD11c, CD11b and activation marker CD69 
corresponding to hypersegmented neutrophils and the other population that has higher 
L-selection levels and lower CD16, CD11b, CD11c and CD69 that is similar to neutrophils 
with banded nuclei described earlier by Pillay and colleagues 44. 

In high-intensity anaerobic exercise (Chapter 3.2) FLOOD analysis was performed on MFC 
data of leukocytes and neutrophils of elite rowers. Although the amount of leukocytes 
increases significantly, the cells show less surface marker variation after the exercise 
stimulus. This is mostly due to the relatively high increase in neutrophils. The neutrophil 
count rises from ~3.5 million neutrophils/mL at time point t=pre to ~9 million neutrophils/
mL 2h after exercise. 

Subsequent FLOOD analysis on gated neutrophils shows a large population with neutrophils 
with similar characteristics as neutrophils present before exercise. This is caused by a known 
exercise-induced shift from the marginated pool to the freely circulating pool of neutrophils 45.  
The marginated pool is supposed to consist of neutrophils present in the capillary bed of 
organs such as in the liver. The exercise-induced neutrophil shift was studied into most 
detail shortly after mild exercise and not after intense anaerobic exercise and is generally 
considered to consist of ‘regular’ mature neutrophils 46. There are a few studies on exercise-
induced neutrophilia that show results pointing into the direction of exercise induced 
mobilization of neutrophils with other characteristics compared to neutrophils present in 
homeostasis 47,48. The origin of these neutrophils was not studied. 

After intense anaerobic rowing exercise we found an increase of CD16dim and CD64dim 
neutrophils compared to neutrophils present before exercise. These CD16dimCD64dim 
‘exercise-associated’ neutrophils have an overall higher expression of activation markers 
CBRM1/5, CD11b, CD11c and CD62L compared to the pre-exercise neutrophils. In percentage 
of total neutrophils the ‘exercise-associated’ neutrophils increase from 8% to 20%. Corrected 
for an increase in total neutrophil count, this type of cell goes from 0.3x109/L to 1.8x109/L, 
which is a 6-fold increase. 

The function of the exercise-associated neutrophils is unclear, yet they do show similarities in 
surface marker expression with banded neutrophils that also have a lower CD16 expression 
and high expression of CD62L. However, banded neutrophils express less CD11b, CD11c and 
CBRM1/5 compared to ‘mature’ cells 44. Unpublished results of Leliefeld et al. (Koenderman 
group) indicate CD16dimCD62Lbright neutrophils mobilised after LPS challenge are superior in 
bacterial killing capacity compared to other neutrophil phenotypes. If exercise-associated 
neutrophils are in fact superior in bacterial killing capacity compared to ‘mature’ neutrophils 
requires additional future experiments. 

One can only speculate about the origin of neutrophils mobilized after exercise. The vast 
majority of neutrophils has similar characteristics as neutrophils present before exercise 
and is likely to originate from organ vasculature such as present in the liver, spleen and lung. 
The exercise-induced neutrophils with a CD16dimCD64dim profile and upregulated activation 
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markers could originate from another location such as the bone marrow which is more 
associated with younger neutrophils. Future studies should focus on the morphology and 
detailed receptor characteristics of exercise-associated neutrophils to establish their origin. 

In summary both LPS challenge and anaerobic exercise induce neutrophilia in peripheral 
blood. FLOOD can identify and describe subpopulations of cells that were changed or 
mobilized as a result of a stimulus. It does so in a very detailed manner based on surface 
marker expression. In the future FLOOD based sorting strategies might improve cell selection 
for laboratory assays by the ability to pre-select stimulus associated cells based on multiple 
surface marker characteristics simultaneously.

DAMACY (Discriminant Analysis of MultiAspect CYtometry) was used in Chapter 3.3 to 
analyse MFC data of asthma patients and test whether (i) cell profiles in peripheral blood 
would discriminate between asthma patients and controls, (ii) what cell populations were 
characteristic of severe eosinophilic asthma and (iii) what cell populations were typical of 
severe non-eosinophilic asthma (Figure 3, second panel, DAMACY). Eosinophilic asthma 
was defined based on the biomarkers blood eosinophilia (>0.27x109/L) and/or the presence 
of sputum eosinophilia (>3% of non-squamous cells). The main findings in this chapter are 
the typical pattern of blood eosinophils, basophils, Th2 cells and Tc2 cells in eosinophilic 
asthma and, in non-eosinophilic asthma, a pattern with a very homogeneous neutrophil 
population and the presence of cells that highly express the CD8 receptor. Whether these 
cells are in fact Tc1 cells is unclear, the presence of intracellular IFN-γ was not measured. 
The identification of Tc2 cells in eosinophilic asthma by DAMACY strengthens the finding in 
the last chapter of this thesis that describes a higher concentration of Tc2 cells in peripheral 
blood of severe eosinophilic asthma patients with asthma defined by the ERS/ATS guideline 
(Chapter 4) 2. 

DAMACY also provided diagnostic scores which reached fair accuracy discerning asthma 
patients from healthy controls with 90% accuracy. Separating eosinophilic asthma from 
controls resulted in 71% accuracy, and non-eosinophilic asthma from controls in 80% 
accuracy. The explanation of a lower accuracy in eosinophilic asthma versus the overall 
asthma population is likely due to low numbers of patients included in the analysis. Future 
studies should aim for high numbers of patients to increase diagnostic accuracy and 
optimized flow cytometry panels to further improve inflammatory pattern recognition in 
peripheral blood of asthma patients.

Although multidimensional analysis techniques for MFC analysis are becoming more 
common, it is challenging to combine this technology with clinical datasets to unravel 
pathophysiology, diagnose disease, personalize medicine and monitor treatment 49. There 
are no studies yet that incorporate MFC data to their full extent and capacity in clinical studies 
on asthma. In Chapter 3.3 (DAMACY) flow cytometry data were analysed in an unbiased way, 
but not yet combined with clinical data such as sex, age, FeNO, symptom expression etc. The 
combination of MFC data and clinical data is likely to lead to new discoveries as shown in a 
preliminary way in Chapter 2.1 where refractory eosinophils were found to associate with 
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known markers of eosinophilic asthma such as FeNO, nasal polyps and peripheral blood 
eosinophilia. A next step would be to integrate FLOOD and DAMACY with clinical data to 
further investigate asthma phenotypes and ultimately asthma endotypes 3. 

Tc2 cells in severe eosinophilic asthma

In Chapter 4 a strong association was found between levels of Tc2 cells in peripheral blood 
and severe eosinophilic asthma defined by blood eosinophilia and/or sputum eosinophilia. 
Additionally, the lipid mediators Prostaglandin D2 (PGD2) and cysteinyl Leukotriene E4 (LTE4) 
were found to be present in high concentration in the airways of these patients. The in vitro 
susceptibility of Tc2 cells to stimulation with PGD2 and LTE4 and the ability of Tc2 cells to 
secrete type-2 cytokines upon activation suggest an important role of these cells in severe 
eosinophilic asthma. 

Targeting this cell could be a promising treatment approach for patients with severe 
eosinophilic asthma by blocking the PGD2 receptor with CRTH2-antagonists. The first clinical 
studies with CRTH2-antagonists showed varying results in general asthma populations 50–53.  
Adequate pre-selection of patients has proven to be essential to reach clinical effect. 
Pre-selection of patients for treatment with CRTH2-antagonists could comprise of MFC 
measurements and subsequent DAMACY analysis to identify possible responders on 
forehand; DAMACY analysis found Tc2 cells to be characteristic of eosinophilic asthma 
defined by blood and/or sputum eosinophilia independent of the ERS/ATS classification 
that was used in Chapter 4. 

In this same study type-2 innate lymphoid cells (ILC2s) were not found to be present in higher 
concentrations in peripheral blood nor in the airways of patients with severe eosinophilic 
asthma 54. ILC2s are hypothesized to be essential producers of type-2 cytokines such as 
IL-4, IL-5 and IL-13 in non-allergic asthma 55. The absence of these cells seems to indicate 
the role of this cell type is limited in severe eosinophilic asthma, although it is important 
to notice it is very challenging to study these cells in the airway tissue compartment due to 
low numbers present and technically demanding laboratory assays for cell identification. 

A fundamental question that has not been addressed in both Chapter 3.3 and Chapter 4 is 
what the link is between cytotoxic T-cells and asthma. In the classic allergic cascade there 
is no place for these cells. A possible explanation for their presence in severe eosinophilic 
asthma was described by Coyle et al. who found virus-specific CD8+ T-cells become potent 
IL-5 producers in the presence of TH2 cells 56. They switch off IFNγ production and contribute 
to increased airway eosinophilia in mice. This study possibly links viral infections in asthma 
patients to airway eosinophilia. Whether this mechanism actually plays a role in human 
severe eosinophilic asthma has to be established. 

Discussion_Bart.indd   260 21-5-2017   23:10:54



Di
sc

us
si

on

General discussion

261

Conclusion 

In this thesis the activation state of blood eosinophils and neutrophils was discovered 
to contribute significantly to the diagnostic accuracy of a quick and low-invasive test for 
eosinophilia asthma. In patients with eosinophilic airway inflammation, blood eosinophils 
are more refractory to stimulation with fMLF. 

A multi-dimensional reduction approach based on Non-linear PCA reduced dimensions 
of cellular and clinical parameters, making use of the multivariate advantage. Subsequent 
Discriminant Analysis of PCA scores of the Utrecht asthma cohort lead to a prediction model 
that was validated by the independently measured Oxford cohort of asthma patients. In 
contrast to blood, sputum eosinophils and neutrophils were found to be overall highly 
activated, independent of the asthma phenotype being eosinophilic or non-eosinophilic. 
Hence, sputum eosinophil and neutrophil activation do not have diagnostic value for 
asthma phenotypes. 

In the subsequent two chapters, the MFC analysis method FLOOD was described. FLOOD 
identifies and describes subpopulations of cells that are changed or mobilized as a result 
of a stimulus. FLOOD showed its potential in the human LPS challenge study by clearly 
visualizing two subpopulations in an unsupervised fashion that were already known to be 
present but were not yet described in so much detail regarding specific receptor profile. 
FLOOD also identified exercise-associated neutrophils in elite rowers after intense anaerobic 
exercise. The exercise-associated neutrophils show similarities to banded cells appearing 
after LPS challenge. Additional functional assays (e.g. bacterial killing capacity) will be 
required to verify whether these neutrophils are in fact similar. 

DAMACY, a second multivariate MFC analysis method, proved helpful in diagnosing asthma in 
general and eosinophilic asthma specifically. Moreover, it identified an important unknown 
subset of CD3+CD8+CRTH2+ cells, known to be Tc2 cells. In the last chapter of this thesis Tc2 
cells are found to be present in higher numbers in peripheral blood and airways of patients 
with severe eosinophilic asthma. In vitro assays show an activation response of Tc2 cells 
by PGD2 and LTE4, both lipid mediators that were measured in higher concentrations in the 
airways of patients with severe eosinophilic asthma. Therefore Tc2s might play an important 
role in severe eosinophilic asthma and could be a promising target of therapy.

In summary, this thesis shows that a combination of detailed cellular measurements and 
improved multi-dimensional and unbiased analysis methods of MFC data lead to the 
development of promising diagnostic steps to further phenotype asthma with the ultimate 
goal to improve asthma care. 
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Future directions

•	 To objectify the role of tissue eosinophils in health and disease. 

•	 To aim for restored tissue homeostasis in eosinophilic asthma.

•	 To develop a prospective pharmaceutical intervention study using cell activation data 
and clinical parameters to select eosinophilic asthma in patients not on oral steroids. 
The Utrecht and Oxford cohort data can serve as a training set and would likely 
improve the patient pre-selection with the aim to reach maximum treatment effect. 
The pharmaceutical intervention could involve any compound known to suppress 
eosinophilic inflammation. 

•	 To develop high-dimensional flow cytometry antibody panels relevant for eosinophilic 
asthma and use unbiased analysis such as DAMACY for cell population discovery, 
recognition of inflammatory patterns and monitoring treatment responses in asthma.

•	 To use FLOOD based sorting strategies that improve cell selection for laboratory assays 
by the ability to pre-select stimulus-associated cells based on multiple surface marker 
characteristics simultaneously. 

•	 To target eosinophilic inflammation by CRTH2-antagonists in a preselected patient 
group that is characterized by high concentrations of eosinophils, basophils and Tc2-
cells in peripheral blood which can be identified by MFC measurements and subsequent 
unbiased DAMACY analysis.
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Fenotypering van astma door multidimensionele analyse
Met de nadruk op kenmerken in perifeer bloed van patiënten met ernstig astma

Ernstig astma komt in Nederland bij 4% van de astmapatiënten voor en veroorzaakt een 
hoge ziektelast, meer dan de helft van de astma-gerelateerde zorgkosten en in zeldzame 
gevallen overlijden. Bij deze groep patiënten is er een grote behoefte aan biomarkers om 
het ontstekingstype vast te stellen, de therapierespons te voorspellen en de therapie te 
monitoren. 

Dit proefschrift laat zien dat het mogelijk is om eosinofiel astma van andere astma fenotypes 
te onderscheiden door gebruik te maken van gedetailleerde celeigenschappen in het bloed 
van de patiënt in combinatie met klinische kenmerken zoals symptoomexpressie, FeNO 
(stikstofoxide in uitademingslucht) en aantallen eosinofielen. 

Daarnaast toont het aan dat verbeterde analysemethodes van flowcytometriedata 
veelbelovend zijn om verschillende typen astma in het bloed te kunnen onderscheiden. 
FLOOD is een analysetechniek waarmee de cellulaire respons op een stimulus heel 
precies kan worden worden vastgesteld. DAMACY is een analysetechniek waarmee 
verschillende groepen van patiënten op basis van celeigenschappen van elkaar kunnen 
worden onderscheiden. Deze techniek laat ook zien welke celeigenschappen daarin de 
doorslag geven. De flowcytometrie-analysemethoden zijn overigens breed toepasbaar 
om onderzoeksvragen met betrekking tot celeigenschappen te beantwoorden en dus niet 
alleen geschikt voor astmapatiënten. 

In het laatste hoofstuk wordt beschreven dat type-2 cytotoxische T-cellen een rol spelen 
bij ernstig eosinofiel astma. Deze cellen zijn niet eerder in verband gebracht met astma. 
Tc2 cellen zijn gemeten in hogere aantallen in bloed, weefsel en sputum van patiënten 
met ernstig astma en worden sterk geactiveerd door PGD2 en LTE4. PGD2 en LTE4 zijn lipide-
mediatoren die in hoge concentraties voorkomen in de luchtwegen van patiënten met 
ernstig eosinofiel astma.  

Samengevat laat het zien dat verdieping in de receptorexpressie van bloedcellen met behulp 
van multivariate data-analysemethoden en aanvullend fundamenteel immunologisch 
onderzoek toegevoegde waarde hebben voor (1) fenotypering van astmapatiënten en (2) 
het verkrijgen van inzicht in de mechanismen die een rol spelen bij de immuunrespons die 
zich voordoet bij verschillende astmapatiënten. Beide zijn nodig om behandelmethoden te 
ontwikkelen en de meest effectieve behandelmethoden op de juiste patiënt toe te passen. 
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Inleiding

Astma is een verzamelnaam voor verschillende ontstekingsvormen van de luchtwegen met 
uiteenlopende symptomen. De gemeenschappelijke overeenkomst van deze astma-subvor-
men is reversibele luchtwegobstructie en een zekere symptoomlast. Het komt wereldwijd 
bij ruim 300 miljoen mensen voor. In Nederland komen jaarlijks ~600.000 mensen bij de 
huisarts met astmatische klachten. De meeste van deze mensen zijn goed te behandelen met 
ontstekingsremmers (inhalatiesteroïden) en luchtwegverwijders (β2-sympaticomimetica). 
Een klein deel (4%) van deze 600.000 patiënten heeft ernstig astma. Deze kleine groep heeft 
een hoge ziektelast, komt veel bij verschillende artsen en moet regelmatig in het ziekenhuis 
worden opgenomen met een astma-aanval. Bovendien is dit deel verantwoordelijk voor 
meer dan de helft van de asthma-gerelateerde zorgkosten. 

De definitie van ernstig astma bestaat uit het optreden van een hoge symptoomlast, met 
vaak een piepende ademhaling, benauwdheidsklachten, kortademigheid en hoestklachten. 
De symptoomlast is te meten met vragenlijsten, zoals de Asthma Control Questionnaire 
(ACQ). Tevens is het optreden van een astma-aanval onderdeel van de definitie, waarbij 
2 of meer aanvallen per jaar als criterium voor de diagnose geldt. Een astma-aanval (of 
exacerbatie) is een plotselinge toename van symptomen gedurende langer dan 48 uur 
waarvoor een prednisonkuur wordt voorgeschreven door de huisarts of longarts. Er is 
sprake van een ernstige astma-aanval als een patiënt moet worden opgenomen in het 
ziekenhuis. Tot slot is persisterende luchtwegobstructie een criterium. Luchtwegobstructie 
wordt gedefinieerd door een verminderde hoeveelheid uitgeblazen lucht in 1 seconde (tot 
minder dan 80%) en een vermindering van de hoeveelheid uitgeblazen lucht ten opzichte 
van de maximaal uitgeademende lucht zonder tijdsbeperking.

De definitie van ernstig astma is een ‘klinische definitie’ waarbij er geen rekening gehouden 
is met de onderliggende onstekingsziekte. Om een onderliggende onsteking te meten wordt 
er gebruik gemaakt van biomarkers. Een biomarker is een objectief te meten, ziektegere-
lateerde indicator die bij voorkeur (1) specifiek is voor een aandoening, (2) geschikt is om 
de ziekte-activiteit over de tijd te meten en (3) patiëntvriendelijk te meten is. Voor astma 
zijn er diverse biomarkers die tot op zekere hoogte aan deze criteria voldoen. De drie be-
langrijkste biomarkers zijn (1) het percentage eosinofielen in sputum, (2) stikstofoxide in 
uitademingslucht (FeNO) en (3) het aantal eosinofielen in het bloed. Eosinofielen zijn witte 
bloedcellen die tot het type granulocyten behoren. Eosinofielen zijn bij een deel van de 
patiënten met ernstig astma in hoge mate aanwezig in bloed, sputum en in het longweefsel. 

Studies uit het verleden hebben uitgewezen dat het starten van een prednisonkuur bij de 
aanwezigheid van meer dan 3% eosinofielen in het sputum leidt tot minder astma-aanvallen. 
Het meten van eosinofielen in sputum is echter beperkt gebleven tot een aantal specialis-
tische klinieken.Dit heeft te maken de beschikbaarheid van expertise, tijd en middelen om 
de vereiste sputuminductietechniek te kunnen verrichten.
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FeNO wordt beschouwd als een surrogaatmarker voor eosinofiele inflammatie in het 
sputum, maar is niet bewezen effectief als behandelindicator. De verrichte klinische studies 
lieten geen afname van longaanvallen zien bij gebruik van inhalatiesteroïden. 

Tot slot is het aantal eosinofielen in bloed gebruikt als biomarker in studies met anti-IL-5 
therapie bij patiënten met ernstig astma. IL-5 (Interleukine-5) is een cytokine dat een 
belangrijke rol speelt in de proliferatie, differentiatie en activatie van eosinofielen. Uit studies 
met anti-IL-5 is gebleken dat een hoger aantal eosinofielen van positief voorspellende 
waarde is voor het verlagen van longaanvallen en het verminderen van steroïdgebruik bij 
patiënten met astma. Uit deze studies blijkt echter ook dat sommige patiënten erg goed 
reageren en anderen niet. 

Samengevat zijn er drie belangrijke biomarkers voor ernstig astma die in wisselende mate 
effectief zijn gebleken. Ondanks deze drie markers kan er bij een aanzienlijk deel van de 
patiënten met ernstig astma geen therapierespons voorspeld worden. Er is behoefte aan 
een (combinatie van) minimaal invasieve, specifieke biomarker(s) om therapierespons 
goed te voorspellen. Deze test moet toepasbaar zijn in de tweedelijnszorg (ziekenhuizen). 
Het grootste deel van dit proefschrift draagt in fundamentele zin bij aan de ontwikkeling 
van een dergelijke test. 

Deel 1. Biomarkers en immunotherapie

In Hoofdstuk 1.1 worden verschillende biomarkers voor het fenotyperen van astma beschre-
ven. De huidige klinisch relevante biomarkers die worden verkregen uit sputum, broncho-
alveolaire lavage, uitademingslucht, urine en bloed zijn niet specifiek genoeg, te tijdrovend 
en/of te invasief. De meest veelbelovende markers zijn te vinden in uitademingslucht en 
bloed. Beide technieken om markers te verkrijgen zijn minimaal invasief en de specificiteit 
van markers is aan het verbeteren. Het combineren van meerdere markers zou bovendien 
nog bij kunnen dragen aan een verbeterde fenotypering. 

Hoofdstuk 1.2 is een overzicht van het gebruik van biomarkers om aan de juiste patienten 
de juiste immunotherapie te geven. Het is essentieel gebleken om biomarkers te gebruiken 
voor het selecteren van de juiste astmapatiënt voor een specifieke immunotherapie. Op 
dit moment zijn FeNO en periostinspiegels in serum van goede voorspellende waarde 
voor een therapierespons op anti-IgE en anti-IL4-α behandeling, terwijl het aantal bloed-
eosinofielen een effectieve voorspeller is voor de therapierespons op anti-IL-5. Op dit 
moment zijn er beperkte vooruitzichten voor patiënten met ernstig astma en een non-
eosinofiel biomarkerprofiel. Neutrofiele ontsteking en Th17 gemedieerde processen zijn 
het onderwerp van huidige studies voor die groep patiënten.
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Deel 2. Het fenotyperen van astma met behulp van de granulocytenrespons in 
bloed en sputum 

Hoofdstuk 2.1 bevat de resultaten van de AIR-studie (Asthma Inflammatory Research). 
Deze studie had tot doel om een non-invasieve bloedtest te ontwikkelen om de gouden 
standaard voor astma-ontstekingstypen (sputumanalyse) te vervangen. De activatie-status 
van eosinofielen en neutrofielen is in de studie gebruikt om het bloedprofiel van patiënten 
in meer detail te beschrijven. De studie met 115 patiënten uit het UMC Utrecht leidde tot 
een multivariaat model bestaande uit klinische parameters zoals symptoomexpressie en de 
hoogte van FeNO in combinatie met cellulaire parameters zoals de respons van eosinofielen 
en neutrofielen op de stimulus fMLP (N-Formylmethionyl-leucyl-fenylalanine). De basis 
voor dit model werd gelegd door non-lineaire principale component analyse (NLPCA) te 
gebruiken, gevolgd door discriminantanalyse (DA). 

Het multivariate model werd gevalideerd door 34 astmapatiënten uit Oxford te includeren 
en op dezelfde manier het bloedonderzoek te verrichten en klinische parameters te meten. 
De diagnostische test die op basis van het Utrecht-cohort ontwikkeld was, kon met 91% 
sensitiviteit en 92% specificiteit sputumeosinofilie vast te stellen in het Utrecht-cohort 
en met respectivelijk 77% en 71% sensitiveit en specificiteit in het Oxford-cohort. Het 
verschil in diagnostische kwaliteit tussen de twee cohorten is waarschijnlijk te wijten aan 
prednisongebruik in het Oxfort cohort.

Hoofdstuk 2.2 bevat eveneens data afkomstig van het cohort van de AIR-studie, maar was 
een sub-studie met als doel om te bestuderen of de activatiestatus van neutrofielen in het 
sputum gebruikt kan worden om klinische verschillen tussen patiënten te onderscheiden. Uit 
de resultaten blijkt dat neutrofielen in het sputum diffuus geactiveerd en gedegranuleerd zijn, 
onafhankelijk van de aanwezigheid van eosinofielen in het sputum of klinische kenmerken 
zoals de hoogte van FeNO en symptoomexpressie. Ook eosinofielen in het sputum waren 
diffuus geactiveerd en gedegranuleerd. Een opvallende nevenbevinding was de expressie 
van CD274 (PD-L1) op neutrofielen en in mindere mate op eosinofielen in sputum. Dit 
suggereert dat granulocyten in sputum een immuunregulatoire werking kunnen hebben. 

Deel 3. Multidimensionele analyses van flowcytometriedata

Flowcytometrie is een analysemethode om cellen te meten in een vloeistofstroom door 
gebruik te maken van licht. Er kan ook gebruik gemaakt worden van fluorescent gelabelde 
markers om bijvoorbeeld receptoren op cellen te meten. In Hoofdstuk 3.1 wordt een 
analysemethode beschreven, genaamd FLOOD, die het mogelijk maakt om complexe 
hoog-dimensionele flowcytometriedata te analyseren. De analysemethode FLOOD werd 
hier gebruikt om het verschil tussen receptor-eigenschappen op neutrofielen van gezonde 
individuen (controles) te onderscheiden van die van vrijwilligers die een stimulus hebben 
gekregen met deeltjes bacteriewand in de bloedbaan (LPS, lipopolysaccharide). LPS 
geeft een heftige fysiologische respons met hoge koorts, een versnelde hartslag en een 
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verlaagde bloeddruk. Dit hoofdstuk laat zien dat FLOOD in staat is om een zeer precieze 
beschrijving te geven van het verschil in receptorprofiel tussen neutrofielen van controles 
en LPS-gestimuleerde vrijwilligers. De methode kan ook gebruikt worden voor andere 
onderzoeksomstandigheden waarbij de receptorprofielen van de ene groep met de andere 
worden vergeleken of van het ene tijdspunt met het andere.

In Hoofdstuk 3.2 wordt de neutrofielenrespons van roeiers op nationaal niveau op een 
inspanningsprikkel beschreven. De precieze verandering in receptorexpressie kon worden 
bepaald met FLOOD. Dit liet zien dat een anaerobe inspanningsprikkel zorgde voor een 
neutrofilie en dat er naast toename van het aantal neutrofielen ook neutrofielen met 
andere eigenschappen aanwezig waren dan bij een toestand van homeostase. Het bloed 
van de roeiers bevatte na de inspanning zesmaal meer neutrofielen (van 0,3 naar 1,8x106/
mL cellen) met CD16lowCD64low expressie en over het geheel genomen meer CD11b, CD11c, 
CBRM1/5 en CD62L. De rol van deze neutrofielen is nog niet duidelijk en zal in de toekomst 
met functionele celtesten moeten worden vastgesteld.

In Hoofdstuk 3.3 wordt DAMACY ingezet, een tweede flowcytometriedata-analysemethode, 
om verschillen tussen onstekingsvormen van astma te beschrijven. Een specifiek gekozen 
panel met fluorescent-gelabelde antistoffen werd gebruikt om bloedcellen van patiënten 
met astma te bestuderen en middels DAMACY te beschrijven. Hieruit bleek ernstig eosinofiel 
astma te worden gekenmerkt door basofielen, Th2 cellen en Tc2 cellen. Non-eosinofiel 
astma wordt gekenmerkt door een lagere receptorvariatie van CD16 op neutrofielen en de 
verhoogde aanwezigheid van CD3+CD8++ cellen ten opzichte van CD3+CD8+ cellen. 

Deel 4. Type-2 cytotoxische T-cellen in patiënten met een ernstige vorm van 
eosinofiel astma

In Hoofdstuk 4 wordt de aanwezigheid van type-2 cytotoxische T-cellen (Tc2) voor het eerst 
in verband gebracht met ernstig eosinofiel astma. In twee verschillende cohortstudies in 
Oxford en in Southampton werden deze cellen in hogere concentraties gevonden in bloed, 
sputum en weefsel van astmapatiënten met eosinofiel astma in vergelijking met andere 
astmapatiënten en gezonde controles. Daarnaast werden de lipide-mediatoren PGD2 en 
LTE4 in hoge concentraties in sputum gemeten, deze mediatoren kunnen Tc2 activeren en 
aantrekken. Tevens zorgen PGD2 en LTE4 voor de upregulatie van genen die geassocieerd 
zijn met type-2 ontstekingsreacties. Naast de reeds bekende Th2 (type-2 T-helpercellen) en 
ILC2 (lymphoide cellen van het aangeboren immuunsysteem) zijn ook Tc2 nu geassocieerd 
met ernstig eosinofiel-astma.
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Dankwoord
Met veel plezier heb ik de afgelopen jaren onderzoek kunnen doen en veel mensen hebben 
in die tijd bijgedragen aan de totstandkoming van dit proefschrift. Graag grijp ik het best 
gelezen deel van dit proefschrift aan om iedereen te bedanken. Het gaat om patiënten, 
collega’s, vrienden en familie uit alle windstreken, van Utrecht tot Nijmegen en van 
Coevorden tot Oxford. 

Om verder te komen met klinisch onderzoek en voor nieuwsgierigheidsgedreven onderzoek 
zijn er veel vrijwilligers nodig. Al deze mensen wil ik heel erg bedanken voor het meedoen 
aan verscheidene studies. In het geval van dit proefschrift gaat het om astmapatiënten en 
gezonde vrijwilligers uit het UMCU en het Nuffield department of Medicine. Het gaat ook om 
roeiers van Orca en Triton en om vrijwilligers voor de LPS challenge-studies in Nijmegen. 
Op een betere en gezondere toekomst!

En dan, Leo, toen ik eind 2010 bij je kwam om te praten over onderzoek was ik zoekende. 
Dat gesprek ging van moleculaire biologie naar klinisch onderzoek, van actualiteit naar 
persoonlijke karaktereigenschappen en uiteindelijk gaf je enthousiast een rondleiding op 
het laboratorium. Ik was overdonderd en dacht meteen dat ik veel van je zou kunnen leren. 
Het bijzondere is dat onze verstandhouding ruim 6 jaar later in de basis niet is veranderd, 
ik heb veel van je geleerd de afgelopen jaren en kan nog steeds veel van je leren. Als het 
volgend jaar lukt om wat tijd vrij te maken voor onderzoek naast de drukke kliniek, dan kijk 
ik weer uit naar mooie projecten. Reken daar maar op!

Jan-Willem, voordat ik begon met onderzoek deed ik mijn semi-arts-stage onder jouw 
supervisie en werd ik steeds enthousiaster over de longgeneeskunde. Het vertrouwen dat je in 
reactie daarop gaf werd duidelijk op belangrijke momenten. Het begon met de mogelijkheid 
om te starten met een promotietraject. En vervolgens was je erg betrokken toen de kliniek 
onderbezet was en ik bijsprong als ANIOS, bij het opzetten van de AIR-studie en ook op het 
moment dat ik naar Oxford ging. Later, toen ik AIOS was in de kliniek en er doorheen zat heb je 
me opgevangen, vaderlijk toegesproken en weer op de rails gezet. Dat zal ik niet snel vergeten.

Ian, you gave me the opportunity to come to Oxford. The experience of working with you 
and Luzheng has been very important to me. You have been a great mentor. Hopefully we 
will be able to work together again in the future. But first, as you strongly recommended, 
it is time for clinical training.

Luzheng, I learned a lot from you. Our regular meetings to discuss data and results were 
always fruitful. We are able to strongly disagree without running into difficulties, but even 
managed to turn this into something better and that is quite unique.

René, in het begin startte je als co-promotor en met name als astma-expert om de AIR-studie 
mee op te zetten. Dat is zeker goed gelukt, we hebben 115 patiënten kunnen includeren en 
mooie resultaten behaald. Hopelijk kunnen we onze zorg voor astmapatiënten in het UMCU 
verder verbeteren door de ontwikkelde bloedtest verder uit te werken.
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Simone, jij was heel erg belangrijk voor de klinische studies die we hebben uitgevoerd: de 
AIR-studie, de INCREASE-studie en de EHLA-studie. Het was erg fijn om met je te werken, 
door je strakke organisatie en precisie. Heel veel succes met de komende studies op de IC. 
Het longfunctielaboratorium was ook altijd heel erg behulpzaam, Mitzy, Sijmen, Monique 
en anderen. 

Oscar, jij fietst ergens tussen collega’s, mentoren en vrienden door. Wonderlijk genoeg heb 
je de voorgenoemde ‘petten’ alledrie op, om maar in je eigen woorden te blijven. Als er 
een ding is dat ik van jou heb geleerd, dan is het wel dat je met plezier, overtuiging en een 
spoortje absurdisme, extreme prestaties kunt leveren. Op de fiets kun je PCA-based flow 
cytometrie bedenken en door onvoltooide manuscripten heen buffelen kan op een terras 
in zonnig Zuid-Afrika. We gaan vrolijk verder.

Mariska, bedankt voor het mooie ontwerp van de omslag en de steun met de laatste 
ontwerploodjes.

Het Koenderman lab, in zijn volle bezetting door de jaren heen: Susanne, Tamar, Janesh, 
Pieter, Lennart, Okan, Sacha, Vera, Marjolein, Marta, Daria, Michel, Adele, Deon, Lei, Karin, 
Corneli, Nienke, Selma, Erinke etc.

Daan, het was geweldig om de INCREASE-studie met jou te runnen. Zo toegewijd als je 
bent aan roeien en fietsen, zo heb ik je ook meegemaakt bij de FACS en bij het benaderen 
van roeiers. 

Susanne, door ons review-artikel in het prille begin, de discussies en de congressen zijn 
we allebei gegroeid en hebben we tegelijkertijd veel plezier gehad. Hopelijk kruisen onze 
wegen weer in de toekomst.

UMCU, stafleden, AIOS, ANIOS, verpleegkundigen, velen door de jaren heen, heel erg bedankt 
voor het includeren van patiënten. 

Oxford: Mona, Sam, Simei, Katie, Clare, Tim, Linda, Jenny, Kirsty, Rahul, Gareth.

Jeroen, door jouw inspanning en de wederzijdse wil om van elkaars wetenschappelijke 
wereld meer te begrijpen, zijn we gekomen tot een aantal uitgewerkte methodes om flow 
cytometrie data te analyseren. Dat was ook zeker niet mogelijk zonder de onophoudelijke 
samenwerking met studenten en promovendi op de afdeling, in het bijzonder Gerjen, Rita, 
André en Mariëtta.

Carien, jij bent onderweg in je promotietraject en maakt veel vergelijkbaars mee. Het is 
bijzonder om te merken hoe we in de loop van de jaren dichter naar elkaar toe groeien. Best 
eng die genetica, of is het toch nurture? Coen, jij bent op authentieke wijze zo belangrijk, 
zo bleek maar weer in Noorwegen. Papa, mama, soms is onvoorwaardelijke liefde moeilijk 
te begrijpen. Het is er altijd geweest, in goede gesprekken, advies en betrokkenheid en ook 
zonder uitingsvorm. 
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Anne, we hebben lange tijd samen onze dromen na kunnen jagen. Een groot deel van dit 
proefschrift is op die manier ontstaan en dat is een mooie gedachte. 

Isaac, je lichte natuur en onbuigzame karakter heeft geleid tot vele onvergetelijke reizen. 

Sander, Koen, Michiel, Pieter en Lucas, afzonderlijk en gezamenlijk hebben jullie bijgedragen 
aan dit proefschrift. Van diepe gesprekken tot lange fietstochten, van verre reizen tot 
nachtelijke uurtjes, het is me erg dierbaar. Annemiek, Guusje, Lotte, Loes, Lena, Iris en Nynke 
zijn daar onlosmakelijk aan verbonden. 

Beide paranimfen: Tamar, wetenschap pruttelt en borrelt naast een koffie-automaat. We 
hebben een mooie tijd gehad op het lab, op congressen en op feestjes. Pipetboys for life. 
Michiel, met jou heb ik het meest van gedachten gewisseld over ervaringen in de wetenschap. 
Laten we dat zo houden.  

Lieve Mirthe, het is verbazend hoeveel ruimte je me hebt gegeven om aan de afronding van 
dit proefschrift te werken, zelfs toen we elkaar net kenden en ik avonden achtereen achter 
de computer kroop. Dat een doktersromance aan zou zetten tot schrijven was misschien 
te verwachten, maar ik heb het sterke gevoel dat er nog veel meer zal volgen.
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Bart Hilvering was born on the 24th of October in Coe-
vorden. After completing his secondary education at the 
Nieuwe Veste Gymnasium in Coevorden, he started stu-
dying Medicine at the Utrecht University in 2003.

During his studies he started a randomised controlled 
trial at the Meander Medical Center in Amersfoort to study 
intraperitoneal pain blockade during laparoscopic chole-
cystectomy. In 2010 he obtained his Medical degree and in 
2011 he started his PhD on severe eosinophilic asthma at 
the Eijkman school of Infection & Immunity which is part
of the University Medical Center Utrecht. The main focus of his PhD was the development 
of a blood test to phenotype severe asthma. The research was supervised by Prof. dr. Jan-
Willem Lammers and Prof. dr. Leo Koenderman and co-promotor dr. René Schweizer. 

In 2014 he was awarded with a long-term fellowship by the European Respiratory Society 
and went for a year to the Nuffield department of Medicine in Oxford where he worked 
as a clinical research fellow at the laboratory of Prof. Ian Pavord. Under co-supervision of 
the immunologist dr. Luzheng Xue, he studied the role of type-2 Innate Lymphoid Cells 
in peripheral blood, broncho-alveolar lavage and tissue of patients with severe asthma. 

In 2015 Bart returned to the University Medical Center in Utrecht to start his training in 
Respiratory Medicine. Currently he works at the St. Antonius Hospital in Nieuwegein as a 
Registrar in Internal Medicine.
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