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This thesis is a plea for finding and using biomarkers, to enhance precision medicine in 
the treatment of lung cancer patients, and a plea for speeding up the process towards 
precision medicine (or targeted therapy), because of the obvious benefits that will 
bring for patients and physicians, such as cutting out (or reducing) ineffective (futile ) 	
therapies and medication.
							       Anna Boulton

Dit proefschrift is een pleidooi voor het opsporen en gebruiken van biomarkers 
om precisiegeneeskunde (doelgerichte therapie) te verbeteren in de behandeling 
van longkankerpatiënten, en een pleidooi voor de versnelde ontwikkeling hiervan, 
vanwege de duidelijke voordelen die dit voor patiënten met zich mee zal brengen 
en voor artsen, die ineffectieve (nutteloze) of overbodige therapieën en medicijnen 
wellicht kunnen schrappen.
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General introduction and thesis outline

Chapter 1
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Chapter 1

Lung cancer is a significant global health concern, accounting for a substantial proportion 
of cancer-related morbidity and mortality, despite all therapeutic innovations of the 
last decades. Understanding the epidemiology of lung cancer is essential for effective 
prevention, early detection, and management strategies [1]. In Europe, almost 480,000 
new cases of lung cancer were diagnosed in 2020, representing almost 12% of all new 
cancer diagnoses, and more than 380,000 deaths related to lung cancer, corresponding 
to almost 20% of all cancer deaths [2]. Lung cancer remains the leading cause of cancer 
mortality in the Netherlands, for both males and females [3]. In the Netherlands, 15,377 
new lung cancer patients were diagnosed in 2022, while 13,163 people died of lung 
carcinoma in 2021 [4]. In Belgium, 7,897 people were diagnosed with lung cancer in 
2021 [5].

The incidence of lung cancer is strongly associated with smoking, with an estimated 
temporal lag of 2 to 3 decades [6]. Other risk factors include occupational exposures, 
such as asbestos, silica, radon, heavy metals, polycyclic aromatic hydrocarbons and air 
pollution by biomass. Epidemiology of lung cancer in never-smokers has revealed new 
insights in the etiology, such as genetic susceptibility and germ line mutations [7].
Historically and histologically, lung cancer is classified into two main types: non-
small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) [8]. SCLC is highly 
aggressive, characterized by rapid growth and early metastasis, necessitating systemic 
chemotherapy as the primary treatment modality. SCLC is characterized by the (current) 
lack of driver mutations. NSCLC accounts for approximately 85% of all lung cancer cases 
and can be further subdivided into major subtypes adenocarcinoma and squamous 
cell carcinoma. Adenocarcinoma is the most common subtype and typically arises in 
the peripheral lung tissues. Squamous cell carcinoma, on the other hand, originates 
from the bronchial epithelium and is most often associated with a history of smoking. 
NSCLC has more diverse treatment options, including surgery, radiation therapy, targeted 
therapies and immunotherapies, depending on the specific histological subtype and 
stage of the disease. Moreover, recent advances in molecular profiling techniques, 
such as immunohistochemistry (IHC) and genetic testing, have further refined the 
classification of lung cancer, allowing for personalized treatment strategies based on 
specific biomarkers expressed by the tumor cells. Within this context, the subtyping of 
tumor types becomes less important, since the focus is on treatment options.

Lung cancer is a complex disease with diverse clinical outcomes and responses to 
treatment. Based on more than 90,000 cases of lung cancer worldwide, prognostic 
factors have been identified to develop the staging system of lung cancer, crucial for 
treatment approach and prognosis [9]. The widely accepted staging system, established 
by the American Joint Committee on Cancer (AJCC), employs the TNM classification. T 

2024060-Birgitta Hiddinga.indd   102024060-Birgitta Hiddinga.indd   10 29-03-2024   10:0329-03-2024   10:03



11 

General introduction

(tumor) represents the primary tumor size and extent, N (Nodes) indicates lymph node 
involvement, and M (Metastasis) reflects distant spread. Stages range from I to IV, with 
higher stages indicating greater tumor dissemination. Currently, the 8th edition of TNM 
is in use, however, edition 9 will soon become applicable [10].
Roughly, stages I to IIIC are considered treatable with curative intent, stage IV is mainly 
considered manageable with palliative care [11].

Figure 1. Algorithm therapeutic options in lung cancer

In stage I, the options of surgery or stereotactic ablative radiotherapy (SABR) are 
considered in a multidisciplinary meeting, with surgery leading to a 5-year overall 
survival rate of about 70% and about 40% after SABR. This lower survival is not explained 
by a lesser treatment, but is due to the composition of the patient group treated with 
SABR [12]. Standard treatment for stage II is surgery, potentially followed by adjuvant 
chemotherapy, leading to an overall 5-year survival rate of 58%, varying from 40% in 
elderly patients to 66% in the younger category. Alternatives for less fit patients may 
include SABR or conventional radiotherapy [13]. Stage III-disease is diagnosed in a 
heterogeneous group of patients with significant differences in tumor volume and lymph 
node involvement. The main intention is curative treatment, but the overall survival rates 
are still poor, around 30% with combined chemoradiotherapy [14]. Since the introduction 
of (neo-)-adjuvant immunotherapy, the 5-year survival rate increases to about 45% [15].

Treatment of NSCLC stage IV has changed since the introduction of immunotherapy with 
a 5-year survival rate of 6% for chemotherapy, 25% for immunotherapy and 19% for 
the combination, respectively [16, 17, 18]. The discovery of targeted therapy has been 
a major advancement for a proportion of patients with advanced NSCLC harboring an 
epidermal growth factor receptor (EGFR) mutation or an anaplastic lymphoma kinase 

1
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(ALK)-rearrangement [19, 20]. Patients with an EGFR mutation reach a median overall 
survival of 23 months, resulting in a 5-year survival rate of 11% [21]. Patients with an 
ALK-rearrangement have a median survival of 48 months, with a 5-year survival of 46%. 
Because technology is developing faster than ever before and immunotherapy is now 
introduced in the lower stages of the disease, the current state can be likened to a 
snapshot. The spectrum of various treatments and combinations of modalities may be 
completely different one year from now, with better outcomes.

NEUROENDOCRINE TUMORS AND NEUROENDOCRINE 
CARCINOMAS

Neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs) are a distinct 
group, representing less than 20% of lung cancers [22]. The classification of lung 
NETs is primarily based on their histological features, including architectural patterns, 
cellular morphology, and IHC-expression. The spectrum ranges from the more benign 
typical carcinoid (TC) (grade 1) and atypical carcinoid (AC) (grade 2) tumors, to the 
grade 3 and 4 carcinomas: SCLC and large cell neuroendocrine (LCNEC), with both a 
high metastatic potential and a poor prognosis [23]. Their common expression, such as 
neuroendocrine granules and the secretion of paraneoplastic cytokines and hormones, 
reflects the common origin from the embryonal neuroendocrine crest. NETs arise from 
cells throughout the endocrine system. Although the different types of pulmonary NETs 
originate from the Kulchitsky cells of the bronchial mucosa, they are considered separate 
clinical entities that harbor different mutations causing different biology [22].

TC is characterized by well-differentiated tumor cells with uniform morphology, 
scarce mitotic activity, and absence of necrosis. AC, on the other hand, exhibits more 
aggressive features, including increased mitotic activity and focal necrosis [23]. LCNEC 
is characterized by sheets or nests of large cells with abundant cytoplasm, vesicular 
nuclei and prominent nucleoli.

IHC plays a vital role in the diagnosis and subclassification of lung NETs and NECs [24]. 
IHC markers, such as chromogranin A and synaptophysin, are used in confirming the 
neuroendocrine nature of the tumor, whereas CD56 and TTF-1 are more commonly 
expressed in NECs. LCNEC represents an intermediate grade neuroendocrine malignancy 
with both neuroendocrine and non-neuroendocrine components. Histologically, IHC 
markers such as synaptophysin, chromogranin A and CD56, are expressed in LCNEC, 
while TTF-1 expression may vary. Whereas Ki-67 has proved its role as a diagnostic 
and prognostic factor in gastro-entero-pancreatic NETs, the value in lung NETs is still 
debated [25].
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SCLC is the most aggressive subtype, associated with a high proliferation rate and rapid 
metastasis. Histologically, SCLC is characterized by small cells with scant cytoplasm, finely 
granular chromatin, and high mitotic activity. The classic morphological features of SCLC 
include nuclear molding, extensive necrosis, and a high nuclear-to-cytoplasmic ratio. 
SCLC demonstrates strong positivity for neuroendocrine markers such as synaptophysin, 
chromogranin A and CD56, with variable expression of TTF1.

IHC helps to distinguish between different subtypes and contributes to personalized 
treatment decisions.

A

C

B

D

Figure 2. Characteristic microscopic images of the 4 main types of neuroendocrine tumors in the 
lung (all haematoxylin and eosin stained): A. Typical carcinoid, B. Atypical carcinoid with central 
mitosis, C. Small cell lung carcinoma, D. Large cell neuroendocrine carcinoma.

1
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BIOMARKERS

Historically, biomarkers in lung cancer were based on clinical and pathological features 
in the patient that are associated with disease progression and overall survival, 
independent of therapy, so-called prognostic factors [26]. Prognostic biomarkers provide 
information about the natural course of the disease, while predictive biomarkers help 
identify patients who are more likely to respond to specific treatments [27]. For instance, 
the presence of EGFR mutations or ALK rearrangements in NSCLC has been identified as 
a strong prognostic indicator in NSCLC. EGFR mutations or ALK rearrangements predict 
the response to targeted therapies, such as EGFR tyrosine kinase inhibitors (TKIs) or ALK 
inhibitors (ALKi), respectively. Similarly, the expression of programmed death-ligand 1 
(PD-L1) has emerged as a predictive biomarker for the response to immune checkpoint 
inhibitors in NSCLC. The development of immunotherapy offers new perspectives in the 
treatment of NSCLC for a subset of patients, but lung cancer remains a fatal condition 
nevertheless [16].

Prognostic and predictive biomarkers have emerged as valuable tools in guiding 
treatment decisions and predicting patient outcomes. Their integration into clinical 
practice allows for personalized treatment strategies, optimizing therapeutic efficacy 
while minimizing unnecessary toxicities. Moreover, ongoing research aims to identify 
novel biomarkers and therapeutic targets to further enhance patient outcomes and 
improve treatment selection.

In the first part of this thesis, we investigate whether rare tumors such as NETs and NECs 
harbor biomarkers that were found in other tumor types to enable repurposing of drugs 
so patients can benefit from drugs that are already approved for other tumor types. Key 
questions are: What do we test and what medication is available as treatment of lung 
cancer? Can biomarkers act as a target for precision therapy and can biomarkers help us 
to evaluate therapy in order to detect early progression in a non-invasive manner? Will 
we be able to identify patients with biomarkers to stratify them for specific treatment 
options?

FINDING TARGETS FOR REPURPOSING OF DRUGS

SCLC is highly aggressive and frequently metastasizes at the time of diagnosis. It is 
characterized by an early response to chemotherapy but has a high rate of relapse. 
For patients with relapsed or refractory SCLC, the only approved second line therapy 
is topotecan [28]. For patients with NETs and NECs, treatment options remain limited, 
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despite the fact that the therapeutic arsenal has grown considerably [29]. Most recent 
attempts to allow new therapies to find their way into the clinic have failed.
It is ethical to include patients with relapsed or refractory SCLC without druggable 
driver mutations in clinical trials. Repurposing of drugs used for other indications and 
/or tumor types is an acceptable and innovative strategy to improve prognosis for 
patients with SCLC [30]. For example, in patients with glioblastoma multiforme and 
refractory astrocytoma whose tumor contained a methylated MGMT promoter, a survival 
benefit was observed when they were treated with radiotherapy and temozolomide 
[31]. Temozolomide is an alkylating agent that facilitates epigenetic gene silencing of 
the MGMT gene by promoter methylation. This is associated with the loss of MGMT 
expression, triggering cytotoxicity and apoptosis. Temozolomide is approved for use in 
patients with glioblastoma multiforme and in refractory astrocytoma and is usually well 
tolerated [32]. SCLC has aberrantly methylated methylguanine DNA methyltransferase 
(MGMT) [33]. In a retrospective series, the presence of the methylated MGMT promotor 
gene was 48% [34]. No prospective data are available in SCLC. Temozolomide has shown 
beneficial effects in patients with relapsed SCLC, especially in a subgroup with MGMT 
promoter methylation [34]. Stratification to MGMT promoter hypermethylation status 
might help select an SCLC patient population that can benefit from treatment with 
temozolomide.

In rare tumors with high medical need, it is important to overcome cancer-specific 
properties and to aim for targets that can influence outcome of therapy [30]. These 
targets are not only important as a guide for treatment options, but also to expand 
the range of therapeutic options. Furthermore, unravelling the genome of SCLC and 
discovering biomarkers is crucial for making choices in treatment [35].

K-RAS  MUTATION IN NSCLC

The Kirsten rat sarcoma viral oncogene homologue (K-ras) mutation is the most frequent 
genetic alteration found in NSCLC [36]. K-ras mutations occur in approximately 20-30% of 
NSCLC cases and are associated with heterogeneity in clinical characteristics and a poor 
prognosis to standard NSCLC therapies [37, 38]. The K-ras gene plays a crucial role in cell 
signaling pathways regulating cell growth and survival [39, 40]. Mutations in K-ras result 
in constitutive activation of downstream signaling pathways, promoting uncontrolled 
cell proliferation. In NSCLC, a paradigm shift occurred with the introduction of targeted 
therapy and immunotherapy. Limited data is available in K-ras mutated NSCLC and 
patients never really benefited from these improvements, until recently. With new 
targeted drugs on the horizon for a subgroup of the K-ras mutant NSCLC, immunotherapy 
can be considered the mainstay in the treatment of most K-ras mutated NSCLC patients 

1
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[41, 42]. Ongoing research focuses on developing novel therapies targeting K-ras mutant 
lung cancer, aiming to improve outcomes for this subgroup of patients.
In the second part of the thesis, we report on the feasibility studies in a cohort of patients 
with advanced K-ras mutated NSCLC. In the early days of treatment with immunotherapy 
in NSCLC, PD-L1 was used as a biomarker to predict responses to therapy [43]. However, 
when we started this study in 2015, we did not use PD-L1 to make therapy decisions, 
although K-ras mutation was mandated to enter the study once the other inclusion 
criteria were fulfilled.

CIRCULATING TUMOR DNA AND GUT MICROBIOME

In addition to the radiology assessment of response to treatment, patient ‘materials’, 
such as circulating tumor DNA (ctDNA) in the blood and the defense mechanism in the 
gut (gut microbiome), have attracted considerable attention in recent years [44]. As the 
gut microbiome is associated with response to immunotherapy, investigation is needed 
to verify whether the gut microbiome and circulating tumor DNA can act as selection 
criteria to treat patients with immunotherapy. Furthermore, patients would benefit if gut 
microbiome in combination with circulating tumor DNA in the blood could be used to 
simplify investigations. It would make it possible to closely monitor response and, should 
treatment fail, detect progressing disease more quickly, to prevent the unnecessary 
continuation of unhelpful medication. In this thesis, we investigated ctDNA and gut 
microbiome in a selected group of NSCLC patients harboring a K-ras mutation. During 
this time, immunotherapy became available as second or further line therapy after 
chemotherapy. The role of PD-L1 was not clear yet, and patients qualified for treatment 
with nivolumab regardless of PDL1-status.

TISSUE

Innovations are moving fast. Molecular profiling techniques, such as next generation 
sequencing have become increasingly important in routine cancer diagnostics. Now that 
we are better able to examine the tumor’s characteristics and are gaining more insight 
into treatment options, we need better biomarkers to predict the outcome of the chosen 
therapy [39, 40]. New technologies, such as exhaled breath markers and metabolomics, 
are entering the field. Integration with next generation sequencing, imaging, radiomics 
and artificial intelligence is our future [45]. Meanwhile, obtaining tissue remains of the 
utmost importance, as tumor tissue is the “gold standard” to detect genetic alterations. 
Diagnostic techniques for assessing pulmonary lesions remain challenging. Transthoracic 
biopsies are currently the gold standard, and, although accurate, they are associated 
with an increased risk of complications [46]. With newer bronchoscopy techniques, such 

2024060-Birgitta Hiddinga.indd   162024060-Birgitta Hiddinga.indd   16 29-03-2024   10:0329-03-2024   10:03



17 

General introduction

as virtual bronchoscopy navigation (VBN), it is possible to obtain tissue from difficult-to-
reach abnormalities in the lung and to carry out next generation genetic sequencing to 
offer the appropriate treatment [47]. Or, in case of progressive disease, these techniques 
also make it possible to obtain new tissue and assess resistance mechanisms for a 
different choice of therapy. An adequate supply of tissue is important for the purpose 
of molecular analysis within the context of moving towards precision medicine.

AIM AND OUTLINE OF THIS THESIS

The aim of this thesis is
•	 to investigate the role of certain biomarkers in neuroendocrine tumors and 

neuroendocrine carcinomas
•	 to prospectively estimate the diagnostic relevance of ctDNA and gut microbiome 

in patients with non-small cell lung cancer
•	 to prospectively evaluate the role of virtual bronchoscopy navigation in patients 

with lung nodules, to obtain tissue for diagnosis and molecular analysis in order to 
optimize treatment.

Chapter 2 provides an overview of recent progress in the field of the systemic treatment 
of SCLC.

Chapter 3 contains an editorial written for a special issue on “Targeted therapy for 
small cell lung cancer”, revealing potential biomarkers to target therapy and to enable 
stratification of patient groups for more effective treatments.

As immunotherapy has moved forward to the lower stages of SCLC and new biomarkers 
have been revealed since the publication of chapters 2 and 3, we have added an 
Addendum (Current developments in the treatment of SCLC) to these chapters with 
information about the latest developments in the field of SCLC and specifically how 
targets can be found in different tumor types such as NETs and LCNECs to expand 
therapeutic options.

Chapter 4 deals with a systematic review of O6-Methylguanine-DNA methyltransferase 
(MGMT) in lung cancer conducted to evaluate whether MGMT promoter methylation 
can act as a prognostic or predictive biomarker to help select patients with lung cancer 
who may benefit from therapy with temozolomide.

Although novel targets in NETs and NECs are needed to improve outcome, our review 
shows that the presence of MGMT promoter methylation in NETs and NECs may act as a 

1
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predictive marker for response on treatment with temozolomide [34, 48]. The hypothesis 
is included that ALK rearrangement may act as a biomarker in patients with NETs and 
NECs, since ALK plays an important role in the nervous system [49].

In chapter 5 we focus on a retrospective analysis performed on tissue samples of patients 
with NETs and NECs, taken to establish the frequency of MGMT promoter methylation 
and the frequency of ALK expression and rearrangement.

In Chapters 6 and 7, the relevance of monitoring ctDNA in blood samples is investigated 
as well as the gut microbiome in a Dutch cohort of patients treated with anti-PD-1 
immunotherapy for advanced K-ras mutated NSCLC.

In chapter 8 we present a ‘Lesson of the Month’, revolving around an elderly patient 
with chronic myelomonocytic leukemia who was diagnosed with lung adenocarcinoma. 
Genetic testing of the lung tumor revealed several mutations, indicating a second 
primary malignancy that would not have been found by histopathology alone, stressing 
the importance of molecular analysis of tumor tissue.

Chapter 9 comprises a description of a single-center, prospective, observational study - 
NAVIGATOR - of patients undergoing a virtual bronchoscopy navigation (VBN) procedure 
to assess a pulmonary nodule. The correct diagnosis of a pulmonary nodule will allow for 
a more effective treatment plan, preventing unnecessary or more invasive procedures, 
such as surgery. We report on the diagnostic yield and the adaptation of treatment plans 
based on tissue and molecular analysis.

In chapter 10 we highlight the outcomes of the thesis and put them in perspective, with 
a glance at the future.

Hoofdstuk 11 is de Nederlandse samenvatting waarin we de uitkomsten van dit 
proefschrift in perspectief plaatsen en een blik werpen op de toekomst.
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ABSTRACT

Small cell lung cancer (SCLC) comprises about 15% of all lung cancers. It is an aggressive 
disease, with early metastasis and a poor prognosis. Until recently, SCLC treatment 
remained relatively unchanged, with chemotherapy remaining the cornerstone of 
treatment. In this overview we will highlight the recent advances in the field of staging, 
surgery, radiotherapy and systemic treatment. Nevertheless, the prognosis remains 
dismal and there is a pressing need for new treatment options. We describe the progress 
that has been made in systemic treatment by repurposing existing drugs and the addition 
of targeted treatment. In recent years, immunotherapy entered the clinic with high 
expectations of its role in the treatment of SCLC. Unravelling of the genomic sequence 
revealed new possible targets that may act as biomarkers in future treatment of patients 
with SCLC. Hopefully, in the near future, we will be able to identify patients who may 
benefit from targeted therapy or immunotherapy to improve prognoses.

Tweetable Abstract
Advances in radiotherapy, targeted treatment and immunotherapy are limited. Progress 
in treatment options are needed for the treatment of SCLC. Exome sequencing to identify 
targetable biomarkers could select patients who would benefit from certain therapies.
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INTRODUCTION

Small cell lung cancer (SCLC) is an extremely aggressive tumor type which accounts 
for about 15% of lung cancer cases [1, 2]. The cancer originates from neuroendocrine 
precursor cells and is characterized by its rapid growth and early metastasis, with more 
than 70% of patients presenting with metastasized disease [3]. Approximately 10–25% 
of patients have brain metastases at initial diagnosis, and an additional 40–50% will 
develop them during the course of their disease [3]. First-line treatment in metastatic 
SCLC consists of a combination of platinum and etoposide [4]. However, the majority of 
patients experience relapse within the first year of treatment, resulting in poor survival. 
Several agents or addition of a third drug have failed to show any improvement in 
outcomes. Even for patients without metastases at diagnosis, the curation rate remains 
low. Therefore, there is a high unmet need for therapies that could improve survival in 
patients with SCLC. The guidelines of the European Society of Medical Oncology (ESMO) 
and the American College of Chest Physicians (ACCP) endorsed by the American Society 
of Clinical Oncology (ASCO) have not been updated since 2013 [1, 5]. In this manuscript 
we will address the recent progress achieved in the field of staging, surgery, radiotherapy 
and systemic treatment, such as immunotherapy, since the landmark reviews published 
in the beginning of last decade [6, 7].

EIGHTH TUMOR-NODE-METASTASIS CLASSIFICATION

The prognosis of SCLC depends on the tumor stage. Previously, the classifications 
limited disease (LD-SCLC) and extensive disease (ED-SCLC) were used, where limited 
disease was defined as disease confined to the ipsilateral hemithorax, which can 
safely be encompassed within a single radiation field [8]. The Union for International 
Cancer Control (UICC) tumor-node-metastasis (TNM) staging system was developed for 
non-small cell lung cancer (NSCLC), and edition 8 uses tumor size and the number of 
metastases and affected organs to estimate prognoses for the different stages of this 
disease [9]. In clinical practice, as well as in clinical trials, the distinction between LD-
SCLC and ED-SCLC is still useful when deciding on a treatment plan.

SURGERY IN VERY LIMITED SCLC

Surgery in SCLC is not widely accepted but can be considered for very small biopsy-
proven tumors (very limited disease), cT1N0M0, with confirmed negative mediastinal 
staging. Most commonly, a surgically removed lung nodule of unknown origin turns out 
to be a small SCLC. In a systematic review, surgery was not supported in limited SCLC [10]. 
In several series data about correct staging and adjuvant therapy was unclear. Invasive 
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mediastinal staging is mandatory. There is a tendency towards offering surgery for very 
small SCLC with negative lymph nodes, but concurrent chemoradiation is an alternative 
choice. Data about adjuvant radiotherapy and adjuvant chemotherapy are insufficient 
to offer strong recommendations [1]. Prospective studies are needed to define the role 
of surgery and adjuvant treatment of very small SCLC.

RADIOTHERAPY IN LD-SCLC

For LD-SCLC, which represents around 30% of newly diagnosed SCLC, the standard 
treatment with curative intent consists of four cycles of platinum-doublet chemotherapy 
combined with radiotherapy, which improves overall survival compared with 
chemotherapy alone, even in elderly patients [11]. A concurrent approach is preferred, 
based on a median survival time of 27.2 months in the concurrent arm, compared with 
19.7 months in the sequential arm of a Japanese trial [12]. Timing of radiotherapy is 
crucial, the shorter the overall treatment time, the better the 5-year overall survival 
(OS), with the start of radiotherapy preferably coinciding with the first or second 
cycle of chemotherapy [13, 14]. Despite the older phase 3 trials preferring twice-daily 
radiotherapy, once-daily radiotherapy is still the standard of care in most centers for 
practical reasons, and most patients do not qualify for twice-daily radiotherapy due to 
comorbidity and performance status [15].

The phase 3 trial CONVERT compared once-daily radiotherapy (66 Gy in 6.5 weeks) with 
twice-daily radiotherapy (45 Gy in 30 fractions in 3 weeks) concurrently with platinum/
etoposide chemotherapy in localized SCLC [16]. The study was designed as a superiority 
trial, with the comparison of OS in both arms as the primary end-point, hoping to 
demonstrate the benefit of twice-daily irradiation. Of the 547 patients randomized, the 
two-year OS was 56% in the twice-daily radiotherapy arm versus 51% in the conventional 
arm, which was not statistically significant. No difference in toxicity between both arms 
was reported.

Encouraged by the assumed noninferiority and safety of twice-daily radiotherapy in SCLC, 
a Scandinavian phase 2 trial compared the efficacy and tolerability of standard-dose 45 
Gy in 30 fractions twice-daily and a high-dose 60 Gy in 40 fractions twice-daily, hoping 
to improve local control and thus survival [17]. Patients receiving the higher dose had 
a significantly longer 2-year OS (73% versus 46%; p=0.002) and median OS (42 months 
versus 23 months; p=0.027), without – unexpectedly – an increase in toxicity, and 
comparable tolerance for both arms [18]. The conclusion is that higher dose radiotherapy 
twice-daily in limited disease SCLC is feasible and tolerable compared with 45 Gy. The 
currently ongoing CALGB 30610 phase 3 trial is comparing once-daily high-dose thoracic 
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radiotherapy (70 Gy/45 fractions) with standard twice-daily radiotherapy (45 Gy) [19]. 
The other experimental arm (61.2 Gy) was discontinued at interim analysis.

These trials may shed more light on the issue of the optimal radiation schedule for 
radiotherapy in locally advanced SCLC.

RADIOTHERAPY IN ED-SCLC

Prophylactic cranial irradiation
As the brain is a common site of distant failure in patients with SCLC, prophylactic cranial 
irradiation (PCI) is recommended in patients after curative treatment for limited stage 
disease [20]. In an older meta-analysis, the incidence of brain metastases decreased 
more than 25% 3 years after PCI, with a doubling of survival, 42% versus 23% at 2 years 
[21]. However, these trials predate the current, more sensitive staging with MRI and 
positron emission tomography (PET) scans.

In a prospective trial, patients with stage IV SCLC with any response to chemotherapy, 
were randomized to PCI or no further treatment with the time to symptomatic brain 
metastases as the primary end-point [3]. Patients in the irradiated group had a lower 
risk of brain metastases at 1 year: the cumulative risk was 14.6% in the irradiated group 
and 40.4% in controls. The 1-year survival rate was 27.1% in the irradiation group and 
13.3% in controls. PCI appeared to be an effective add-on therapy, although the optimal 
total dose and fractionation schedule remains uncertain. Furthermore, the absence of 
systematic brain imaging before entering the study did raise concerns about the findings 
of this study. A Japanese phase 3 trial reassessed the efficacy of PCI in patients with 
metastasized SCLC with any response to chemotherapy [22]. Patients without brain 
metastases on MRI were randomized to PCI (25 Gy in 10 daily fractions of 2.5 Gy) or 
observation. After a planned interim analysis, the study was closed due to futility. The 
likelihood that PCI would be superior to observation at the end of the study was minimal. 
At 12 months follow-up, PCI reduced the incidence of brain metastases (32.9% versus 
59%) but did not improve OS (48% versus 54% at 1 year).

The results of the Japanese PCI study challenge the benefits of PCI. Although PCI is 
generally well tolerated, patients experience fatigue, nausea, cognitive decline and ataxia 
[23]. These adverse events may be mild and transient, but could also be progressive 
and persistent with structural brain damage on MRI. Currently, the guidelines support 
PCI if patients respond to chemotherapy. The accepted radiation dose is 25 Gy in 10 
fractions of 2.5 Gy. There is no role for routine hippocampal sparing [24]. The results of 
the Japanese trial has led to the dismissal of PCI in many centers. The EORTC Lung Cancer 
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Group is developing a randomized study of PCI versus watchful waiting with periodic brain 
MRI (PRIMALung). A randomized phase III study of the South-West Oncology Group is 
randomizing patients to either MRI surveillance alone, or MRI surveillance with PCI [25].

Consolidation thoracic radiotherapy
Intrathoracic tumor control after chemotherapy remains a problem, as most patients 
have persistent disease, with disease progression within 1 year. Beneficial effects of 
thoracic radiotherapy were described in a retrospective series [26]. In a randomized 
phase 3, after completion of chemotherapy and PCI, thoracic irradiation (30 Gy in 10 
fractions) was performed, resulting in an OS at 2 years of 13% versus 3% in controls [27]. 
The authors conclude that thoracic radiotherapy should be considered for patients with 
advanced disease with any response to chemotherapy. However, in clinical practice this 
advice is not implemented. Potentially, only patients with presenting symptoms of vena 
cava superior syndrome, central airway compression, or atelectasis of the lung may 
benefit from consolidation thoracic radiotherapy [27].

FIRST-LINE SYSTEMIC TREATMENT IN METASTASIZED SCLC

SCLC is very sensitive to chemotherapy and treatment usually induces rapid responses. 
The current first-line treatment in ED-SCLC is platinum-based chemotherapy, four to six 
cycles of cis- or carboplatin plus etoposide in Europe and the United States, and platinum 
plus irinotecan in Japan [4]. Carboplatin is generally preferred over cisplatin due to its 
similar efficacy and lower toxicity [28]. However, the majority of patients experience a 
relapse within the first year of treatment: some of them during treatment ( platinum-
resistant), some within 90 days from the treatment interruption ( platinum-refractory) 
and others 90 days or more after treatment stop ( platinum-sensitive) [29]. In platinum-
sensitive relapse, rechallenge with first-line chemotherapy is preferred [1, 5]. Adding a 
third cytostatic agent to this therapeutic backbone has previously been shown not to 
result in a better outcome [6].

SECOND-LINE THERAPY IN SCLC

Topotecan is the only drug that is formally approved as second-line treatment for SCLC 
and remains the standard of care. Oral topotecan had a response rate (RR) of 6–17% 
and a median survival of 25.9 weeks compared with a median survival of 13.9 weeks in 
a group that was assigned to best supportive care [30].
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IMMUNOTHERAPY

There is great interest in whether immune checkpoint inhibition (ICI) might play 
a role in the treatment of SCLC. The rationale for combining immunotherapy with 
chemotherapy in SCLC is the high mutational burden in this tumor, with potentially 
enhanced immunogenicity. Chemotherapy may stimulate the expression of tumoral 
antigens, priming the tumor for response to checkpoint inhibitory therapy.

Immunotherapy in adjuvant setting after curative chemoradiotherapy
Despite good initial responses to definitive treatment with curative chemoradiotherapy, 
outcomes remain poor, with a median progression free survival (PFS) of 15 months 
and OS of 25 months. The role of adjuvant immunotherapy in this setting was explored 
(table 1).

Table 1. Immunotherapy trials in small-cell lung cancer (SCLC)

Study [ref] Trial design Medication Number of 
patients

PFS (in mo) OS (in mo)

Adjuvant in limited disease

STIMULI [31] Phase 2, open-
label

1: nivolumab + 
ipilimumab
2: observation

153, closed 
early

10.7 was not 
met

ADRIATIC [32] Phase 3, RCT, 
double-blind

1: durvalumab + 
placebo
2: durvalumab + 
tremelimumab
3: placebo + 
placebo

600, recruiting

First line in metastasized SCLC

NCT01331525
[33]

Phase 2, RCT, 
double-blind

1: carboplatin 
/ etoposide + 
ipilimumab
2: carboplatin 
/ etoposide + 
placebo

42 6.9
1 year-PFS: 
15.8% (6 of 
35 pts)

17.0

2
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Study [ref] Trial design Medication Number of 
patients

PFS (in mo) OS (in mo)

NCT00527735
[34]

Phase 2, RCT, 
double-blind

1: carboplatin 
/ paclitaxel + 
placebo (control 
arm)

2: carboplatin 
/ paclitaxel + 
ipilimumab 
followed by 
paclitaxel + 
carboplatin 
+ placebo 
(concurrent arm)

3: carboplatin 
/ paclitaxel + 
placebo followed 
by carboplatin 
/ paclitaxel + 
ipilimumab 
(phased arm)

130 5.2

3.9

5.2

12.9

9.1

9.9

IDEATE
[35]

Phase 3, RCT, 
double-blind

1: cisplatin / 
etoposide + 
ipilimumab
2: cisplatin / 
etoposide + 
placebo

1,132 4.6

4.4

11.0

10.9

IMpower133 
[36, 37]

phase 3, RCT, 
double-blind

1: carboplatin 
/ etoposide + 
atezolizumab

2: carboplatin 
/ etoposide + 
placebo

403 5.2

4.3

HR PFS 0.78

12.3

10.3

HR OS 0.73

CASPIAN [39, 40] Phase 3, RCT, 
open-label

1: platinum / 
etoposide + 
durvalumab + 
tremelimumab

2: platinum / 
etoposide + 
durvalumab

3: platinum / 
etoposide

268

268

269

4.9
HR PFS 0.84

5.1
HR PFS 0.78

10.4
HR OS 0.82

12.9
HR OS 0.73

10.5

Table 1. Continued
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Study [ref] Trial design Medication Number of 
patients

PFS (in mo) OS (in mo)

KEYNOTE-604 
[42]

Phase 3, RCT, 
double-blind

1: platinum / 
etoposide + 
pembrolizumab

2: platinum / 
etoposide + 
placebo

453 4.5

4.3
HR PFS 0.75

10.8

9.7
HR OS 0.80

ECOG-ACRIN 
EA5161 [45]

Phase 2, RCT, 
double-blind

1: platinum / 
etoposide + 
nivolumab

2: platinum / 
etoposide

160 5.5

4.6
HR PFS 0.68

11.3

11.3
HR OS 0.67

REACTION [46] Phase 2, RCT, 1: platinum / 
etoposide + 
pembrolizumab

2: platinum / 
etoposide + 
placebo

5.4

4.7
HR PFS 0.84

12.3

10.4
HR OS 0.73

Maintenance after first-line chemotherapy

NCT02359019 
[47]

Phase 2, single 
arm

pembrolizumab 45 1.4
irPFS 4.7

9.2

Checkmate 451 
[48]

Phase 3, RCT, 
double-blind

1: nivolumab

2: nivolumab + 
ipilimumab

3: placebo

280

279

275

HR PFS 0.67

HR PFS 0.72

HR OS 0.84

HR OS 0.92

RAPTOR [49] Phase 2 -3, RCT 1: atezolizumab 
after response on 
chemotherapy and 
atezolizumab

2. atezolizumab 
+ (extra-)thoracic 
radiotherapy 
after response on 
chemotherapy and 
atezolizumab

138 phase 2

186 phase 3

Primary 
endpoint 
PFS in 
phase 2

Primary 
endpoint 
OS in phase 
3

Progression after first-line chemotherapy

Checkmate 331 
[50]

Phase 3, RCT 1: nivolumab
2: topotecan

569 7.5
8.4

2
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Study [ref] Trial design Medication Number of 
patients

PFS (in mo) OS (in mo)

Checkmate 032 
[51]

Phase 1 / 2, 
open-label

Nivolumab +/- 
ipilimumab in 
different dosages

1: nivolumab 3 
mg/kg

2: nivolumab 1 mg/
kg + ipilimumab 3 
mg/kg

3: nivolumab 3 mg/
kg + ipilimumab 1 
mg/kg

216

1: ORR 10%

2: ORR 23%

3: ORR 19%

Checkmate 032 
[52]

Phase 1 / 2, 
open-label

Nivolumab 
monotherapy 3 
mg/kg beyond 3rd 
line

ORR 11.9%

KEYNOTE-028 
[54]

Phase 1b, 
single arm

Pembrolizumab 24 9.7
ORR 33%

KEYNOTE-158 
[55]

Phase 2, single 
arm

Pembrolizumab 107 2.0 9.0
(PDL1+ 14.6 
mo and in 
PDL1- 7.7 
mo)

ORR 18.7%, 
ORR in 
PDL1+ 
35.7% and 
in PDL1-
:6.0%

IFCT-1603 [56] Phase 2, 
randomized, 
2:1

1: atezolizumab
2: conventional 
chemotherapy

49

24

1.4

4.3

9.5

8.7

BALTIC [57] Phase 2, open-
label

A:durvalumab + 
tremelimumab

21 ORR 9.5%

MISP-MK3475 
[58]

Phase 2, 
single-arm, 
open-label

Paclitaxel + 
pembrolizumab

26 5.0 9.1

ORR 23.1%

SCLC: small-cell lung cancer; RCT: randomized controlled trial; HR: hazard ratio; OS: overall survival; 
PFS: progression free survival; irPFS: immune related progression free survival; ORR: objective 
response rate; PD-L1: programmed death ligand-1.

Table 1. Continued

2024060-Birgitta Hiddinga.indd   322024060-Birgitta Hiddinga.indd   32 29-03-2024   10:0329-03-2024   10:03



33 

Recent developments in the treatment of SCLC

The STIMULI phase 2 study of maintenance nivolumab plus ipilimumab in LD-SCLC was 
conducted to evaluate whether adjuvant immunotherapy might improve outcomes after 
completion of concomitant chemoradiotherapy and PCI [31]. After randomization of 
153 patients of the 222 planned patients, the study was closed due to slow accrual. It 
did not meet its primary end-point of improving PFS (10.7 months versus 14.5 months). 
Treatment failure in the immunotherapy arm was mostly due to toxicity; treatment 
failure in the observation arm was due to disease progression.

In the ongoing phase 3 ADRIATIC trial, 600 patients with at least stable disease after 
concomitant chemoradiotherapy, with or without PCI, will be randomized 1:1:1 to 
receive durvalumab plus placebo, durvalumab plus tremelimumab, or double placebo 
for a maximum of 24 months [32]. Primary end-points are PFS and OS for durvalumab, 
with or without tremelimumab, compared with placebo. Currently, adjuvant ICI have no 
role in the treatment of locally advanced SCLC after completion of chemoradiotherapy 
with or without PCI.

Immunotherapy in first-line metastasized SCLC
Two pivotal phase 2 studies introduced immunotherapy to SCLC, combining the CTLA-4 
inhibitor ipilimumab with first-line chemotherapy [33, 34] (table 1). In the first study, the 
primary end-point of 1-year PFS was not met [33]. The second phase 2 study showed a 
slightly better outcome for patients treated in the phased ipilimumab versus concurrent 
ipilimumab with chemotherapy [34].

In the large phase 3 study, IDEATE, patients were randomly assigned to receive 
chemotherapy (platinum/etoposide) plus ipilimumab or placebo every 3 weeks for a total 
of four doses in a phased schedule [35]. The primary end-point OS was not met, with 
higher toxicity in the chemotherapy/ipilimumab arm. Ipilimumab may not be effective 
without corresponding T-cell activation in the tumor environment.

The IMPOWER-133 study was designed to evaluate the safety and efficacy of atezolizumab 
versus placebo in combination with carboplatin/etoposide in 403 treatment-naive 
participants with metastasized SCLC [36]. The hazard ratio (HR) for disease progression 
or death was 0.77 (p=0.02). The addition of atezolizumab to chemotherapy in the first-
line treatment of metastasized SCLC resulted in a longer OS (33.5% long-term survivors 
versus 20.4% for placebo) and PFS than chemotherapy alone [37]. Although only 43% of 
tumor specimens were evaluable for programmed death ligand-1 (PD-L1), neither PD-L1 
nor the tumor mutational burden (TMB) were found to discriminate long-term survivors. 
Chemotherapy plus atezolizumab had a comparable safety profile to chemotherapy 
alone, and did not result in impaired quality of life [38]. Atezolizumab has been approved 
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for registration by both the US Federal Drugs Administration (FDA) and the European 
Medicines Agency (EMA) [2].

In the phase 3 CASPIAN-trial, the addition of durvalumab and tremelimumab to 
chemotherapy was also evaluated in treatment-naive patients with metastasized 
SCLC [39]. Patients were randomly assigned (in a 1:1:1 ratio) to durvalumab plus 
chemotherapy, durvalumab/tremelimumab plus chemotherapy, or platinum/ etoposide 
alone. First-line durvalumab plus chemotherapy significantly improved OS (22% after 
24 months) in patients with advanced SCLC compared with chemotherapy alone. No 
additional benefit of tremelimumab was observed [40]. However, three times more 
patients derived long-term benefit when treated with durvalumab plus chemotherapy 
compared with chemotherapy alone [41]. Patients in all arms with a PFS >12 months 
had improved overall response rate (ORR), duration of response and OS compared 
with the PFS pembrolizumab arm, the significance threshold was not met (HR 0.8, 95% 
CI 0.61–0.98). ORR was 71% in the pembrolizumab arm and 62% for placebo. Adding 
pembrolizumab to chemotherapy did not decrease quality of life [43, 44].

These phase 3 studies showed an improved OS and PFS by adding immunotherapy 
to first-line chemotherapy, with an acceptable safety profile and quality of life, which 
supports this regimen as standard of care.

The phase 2 ECOG-ACRIN EA5161-study randomized between platinum/etoposide plus 
maintenance nivolumab and platinum/etoposide plus observation [45]. The median 
PFS (primary end-point) and OS were clinically significant, 5.5 months and 11.3 months 
in the nivolumab plus chemotherapy arm versus 4.6 months and 9.3 months in the 
chemotherapy arm, respectively.

In the phase 2 REACTION-study, chemotherapy with or without pembrolizumab in first-
line treatment showed similar results with a not significant PFS of 5.4 months versus 
4.7 months [46].

Maintenance immunotherapy after first-line chemotherapy
The results of maintenance immunotherapy after completion of first-line chemotherapy 
are disappointing [47, 48]. In the phase 3 CheckMate-451 trial, patients with responses 
after completion of first-line chemotherapy were randomized between nivolumab, 
nivolumab with ipilimumab, or placebo as maintenance therapy [48]. Maintenance 
immunotherapy did not improve OS, but favorable PFS suggests that some patients 
could have benefited from maintenance therapy. In a phase 2 study with pembrolizumab, 
PD-L1 could be assessed in 30 of 45 patients and was positive (PD-L1 expression >1%) 
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in three patients [47], having a PFS of 10, 11 and 13 months. Each unit increase in 
baseline circulating tumor cells correlated with worse PFS (p=0.052; adjusted for brain 
metastases, age and gender). Biomarkers to identify the patients most likely to benefit 
from immunotherapy in the maintenance setting are also lacking.

The RAPTOR trial is evaluating a new strategy of whether thoracic radiotherapy plus 
maintenance atezolizumab after response on first-line atezolizumab and chemotherapy 
is better than atezolizumab maintenance alone in patients with metastasized SCLC [49].

Immunotherapy in second-line therapy and beyond
Nivolumab has been investigated in the phase 3 CheckMate-331 trial versus topotecan 
or amrubicin as second-line therapy after progression on standard chemotherapy [50]. 
The study resulted in a median OS of 7.5 months with nivolumab versus 8.4 months 
with chemotherapy (HR 0.86, 95% CI 0.72–1.04). Immunotherapy in second-line therapy 
showed no improvement in therapy for SCLC.

Ongoing approaches include combinations of anti-CTLA-4 (ipilimumab and 
tremelimumab) and anti-PD-(L)1 therapy (nivolumab, pembrolizumab, atezolizumab 
and durvalumab). In the CheckMate-032 trial, nivolumab/ ipilimumab, and nivolumab 
alone, were evaluated in pretreated patients with SCLC [51, 52]. The responses were 
fast and durable for patients with relapsed SCLC, regardless of platinum sensitivity or 
PD-L1 status. Nivolumab monotherapy is approved in the United States as third-line 
or later based on the pooled data of this trial. In a separate analysis of the pooled 
nivolumab monotherapy cohort in CheckMate-032, the ORR was 21.3% in patients 
with a high TMB versus 4.8% in those with a low TMB [53]. In the nivolumab plus 
ipilimumab arm the efficacy was also enhanced in the high TMB group, suggesting TMB 
may nevertheless have a role as a biomarker for immunotherapy in SCLC, but this has 
to be further explored.

Several phase 1 and 2 studies evaluated diverse ICIs, which all failed to show efficacy in 
patients with relapsed SCLC [54–58]. Although in a selected patient category with PD-L1 
expression, a slightly better ORR was noted.

Biomarkers in immunotherapy
PD-L1 and TMB are also emerging as biomarkers of response to immune checkpoint 
inhibitors in various cancer types, including SCLC [53, 59]. Most SCLC tumors seem to lack 
PD-L1 expression [60]. A recently conducted study speculates that only 2% of patients 
with SCLC exhibit amplification of the gene CD274, which encodes for PD-L1 expression, 
and only this small subgroup may be susceptible to ICI [61]. Currently, PD-L1 has no 
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clinical application in SCLC. Some evidence exists that high TMB may be associated with 
a response to ICI, but large phase 3 studies in patients with first-line metastasized SCLC 
failed to confirm this [36, 60]. The predictive role of TMB in SCLC has to be defined. The 
diagnosis of SCLC is made on small biopsies and the evaluation of PD-L1 in tumor tissue is 
challenging. Further investigation is ongoing to assess biomarkers such as TMB in tissue 
and in blood [62]. Liquid biopsies are less invasive for patients [63].

RECOMMENDATIONS IN CLINICAL PRACTICE

Patients with SCLC still have a poor prognosis and little progress has been made during 
the last few decades. Surgery for very small SCLC after adequate mediastinal staging 
seems feasible, but the role of adjuvant chemotherapy is still undecided. Radiotherapy 
is of additional value in all stages of the disease. For treatment with a curative intent, 
the proposed radiotherapy schedule of twice-daily irradiation, 45 Gy in 30 fractions 
seems feasible, and also for elderly patients. From a pragmatic perspective, once-daily 
radiotherapy should be considered when twice-daily radiotherapy is impractical. After 
completion of chemoradiotherapy, current guidelines support PCI in case of any response 
to chemotherapy, with most commonly a radiation dose of 25 Gy in 10 fractions of 
2.5 Gy. Discussion about the benefits of PCI, both in the localized and metastasized 
setting is ongoing. Another option is watchful waiting with periodic brain MRI. Thoracic 
radiotherapy should be considered for patients with advanced disease who have any 
response to chemotherapy and present with symptoms such as vena cava superior 
syndrome, central airway compression and atelectasis of the lung.

Chemotherapy remains the mainstay of the treatment of advanced SCLC. The addition 
of checkpoint inhibition to the standard backbone chemotherapy has added a modest 
but significant improvement in outcomes, but predictive biomarkers are yet to come.

FUTURE PERSPECTIVES

Unravelling the genomics of SCLC and the subsequent discovery of biomarkers is crucial 
for treatment selection [64]. Whole exome sequencing may help in identifying these 
biomarkers and targets [65, 66]. For example, in SCLC, loss of TP53 and RB1 occurs most 
frequently, which results in proliferation and replication stress in SCLC and is associated 
with early metastasis and rapid resistance against chemotherapy [64]. Amplification 
of the MYC family of oncogenes occurs in 20% of SCLC and is associated with shorter 
survival [67]. MYC downregulation suppresses tumor growth.

The clinical relevance of biomarking SCLC lies in preferential targeting of different routes 
or combinations thereof, or even combining treatment modalities.
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Targeting the DNA damage repair pathway
Recent preclinical studies identified predictive biomarkers of response to DNA damage 
repair (DDR)-targeted therapies in SCLC. Repair proteins such as poly-(ADP)-ribose 
polymerase (PARP), WEE1, ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) 
and its major downstream effector checkpoint kinase 1 (CHK1) seems attractive to target 
[68]. PARP, WEE1, ATR and CHK1 prevent entry of cells with damaged or incomplete 
replicated DNA into mitosis and thus suppress replication stress. Inhibition of these 
proteins results in cell death. AZD1775 (adavosertib) is a highly selective, potent small 
molecule inhibitor of WEE1. This small molecule is being tested in several phase 1 and 2 
studies, both alone and in combination with PARP inhibition or chemotherapy [69, 70].

Veliparib
Veliparib is a PARP-inhibitor; a small molecule that traps the DNA-repair enzyme PARP 
on DNA single-strand breaks and blocks its catalytic activity, thus potentially enhancing 
the damage to DNA caused by chemotherapy. The randomized phase 2 trial of platinum/
etoposide plus veliparib or placebo showed a median PFS of 6.1 months versus 5.5 
months in favor of veliparib [71]. Recent genomic sequencing led to the identification 
of Schlafen 11 (SLFN11), a predictive biomarker for sensitivity to PARP inhibition in 
monotherapy in SCLC [72]. SLFN11 expression is high in SCLC and decreases significantly 
after treatment with veliparib. Prospective validation of the potential of SLFN11 as a 
predictive biomarker in patients treated with veliparib is warranted.

Temozolomide
Temozolomide (Temodal™) is a triazene derivative causing DNA breakage by adding an 
alkyl group to the guanine base of DNA. It is an oral drug, well tolerated and not very 
toxic, with excellent penetration into the central nervous system [73]. Beneficial effects 
of treatment with temozolomide in patients with SCLC were reported, especially in 
a subgroup associated with the presence of MGMT promoter methylation, although 
the difference did not meet statistical significance [74]. The RR in an unselected group 
was 22% in second-line, 19% in third-line, and 38% in patients with brain metastases. 
Temozolomide is strongly synergistic with PARP inhibition by preventing the repair of 
alkylated bases [75]. A phase 2 trial evaluated temozolomide with either veliparib or 
placebo in patients with relapsed SCLC [76]. Translational objectives included PARP-1 and 
SLFN11 immunohistochemical expression, MGMT promoter methylation and circulating 
tumor cell quantification. Four-month PFS and median OS did not differ between the 
two arms, but a significant improvement in ORR, which was a secondary end-point, 
was observed with temozolomide/ veliparib compared with temozolomide/placebo 
(39% versus 14%). In patients with SLFN11-positive tumors treated with temozolomide/
veliparib a significantly prolonged PFS (5.7 versus 3.6 months) and OS (12.2 versus 7.5 
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months) were observed, suggesting PARP-inhibitor sensitivity as a promising biomarker 
in SCLC. These findings were confirmed in a single-arm trial with olaparib, reporting a 
lesser effect in platinum-resistant disease [77].

Lurbinectedin
Lurbinectedin is a selective inhibitor of oncogenic transcription, promoting tumor 
cell death and normalizing the tumor microenvironment [78]. In the phase 2 basket 
trial, 105 patients were treated with lurbinectedin after failure of platinum-based 
chemotherapy [79]. Activity of lurbinectedin appeared to be greater in patients with a 
longer chemotherapy-free interval: ORR of 45% versus 22% in the platinum-resistant 
arm. Among all patients, median PFS was 3.5 months (2.6 versus 4.6 months) and the 
median OS was 9.3 months (5.0 versus 11.9 months). The most common toxicities were 
leukopenia and neutropenia. In the phase 3 ATLANTIS-trial comparing lurbinectedin/
doxorubicin with either topotecan or cyclophosphamide / doxorubicin / vincristine in 
second-line metastasized disease, the primary end-point OS was not met [80].

Drug resistance is often a problem of the DDR network. AXL is recognized as the 
key determinant in both intrinsic and acquired resistance to chemotherapeutic, 
immunotherapeutic and molecularly targeted agents in SCLC by epithelial-to-
mesenchymal transformation (EMT) [81]. High levels of AXL and EMT predict resistance 
to PARP, ATR and WEE1 targeting. AXL-inhibition induces DNA damage and replication 
stress and promotes sensitivity to PARP and ATR inhibitors [82, 83]. In addition SLFN11 
holds promise as a potential biomarker, while cells with low levels of SLFN11 were more 
sensitive to AXL/ATR inhibition [84].

Strategies on combinations of DDR-inhibitors or targeting multiple pathways are to be 
explored. Inhibitors of the DDR pathway confers a synergistic effect on immunotherapy, 
radiotherapy and chemotherapy; for example, temozolomide [83, 85]. PARP inhibition 
enhances the effect of radiotherapy in SCLC in a preclinical model [86]. A continuing 
challenge in SCLC is the intra-tumor heterogeneity. Blocking various routes of growth 
to tackle the tumor might be the answer.

Targeting the genomic and epigenomic alterations
Potential targetable genomic alterations are mutations in PTEN or RET, and amplifications 
of fibroblast growth factor receptor 1 (FGFR1) [87–89]. The latter are present in 6% of 
SCLC [89]. RET mutations are found in 1–2% of SCLC [88]. RET mutated SCLC also seems 
to express MYC more often. Inactivation of RB1 leads to overexpression of enhancer 
of zeste homolog 2 (EZH2) which promotes tumor genesis in SCLC [90]. In this process, 
downregulation of SLFN11 due to overexpression of EZH2 makes SCLC resistant to 
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chemotherapy [91]. The combination of an EZH2 inhibitor and chemotherapy, such 
as cisplatin or temozolomide, can circumvent resistance by preventing loss of SLFN11. 
Expression of EZH2 can act as biomarker and therapeutic target in SCLC.

Pazopanib
Pazopanib is a tyrosine kinase inhibitor that inhibits downstream signaling of vascular 
endothelial growth factor receptor (VEGFR)-1, -2 and -3. These targets are considered 
interesting given the importance of neoangiogenesis in SCLC and the role of VEGF 
overexpression in development of resistance to chemotherapy. In a multicenter, single-
arm phase 2 trial, 58 patients were treated with pazopanib in second-line [92]. The 
platinum-refractory cohort was closed early due to futility. Median PFS and OS in cohort 
the platinum-sensitive cohort were 3.7 months and 8.0 months, respectively, with an 
ORR of 13.8%. Pazopanib is a tolerable and effective salvage treatment in patients with 
platinum-sensitive SCLC. However, with its modest effect, pazopanib will likely play no 
role except in FGFR1-amplified SCLC [93].

Alisertib
Alisertib is a selective oral Aurora kinase A (AURK) inhibitor. AURKs are mitotic regulators 
required for normal cell proliferation [94]. Errors in mitosis may either lead to cell death, 
or to aneuploidy and a mitotic dysregulator might offer a therapeutic target with relative 
sparing of normal cells. A phase 1–2 study in five cancer types reported a promising ORR 
of 21% for the SCLC arm [95]. This was further explored in a phase 2 trial randomizing 
between paclitaxel plus alisertib (based on preclinical evidence of synergy) or paclitaxel 
plus placebo, and reported a median PFS of 3.3 months for the alisertib arm, which was 
not significantly better than placebo (the ORR of 22% was confirmed) [96]. In a subset 
of patients with high MYC expression, PFS for the alisertib arm was significantly better 
(4.6 months versus 2.3 months), but as this analysis was not part of the protocol, this 
will not be further explored. In spite of this discovery of MYC as a potential biomarker 
in SCLC, development of alisertib was halted.

Targeting the immune system and genomic instability
Defects in the DDR pathway have been associated with enhanced responses to immune 
checkpoint blockade due to high TMB and genomic instability [97]. Recently, it was found 
that co-targeting DDR proteins such as PARP and CHK1 can increase expression of PD-L1 
and antitumor immune response of anti-PD-L1 in SCLC [98, 99]. These findings suggest 
that DDR targeting in combination with immunotherapy could be successful.
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Drug-delivery challenges
Novel drug-delivery systems such as antibody drug conjugates (ADC) bring medication 
in the vicinity of the tumor and should help to target tumor cells without damaging 
healthy cells.

Rovalpituzumab-tesirine
An initially very promising target was delta-like protein 3 (DLL3), a Notch ligand that 
is highly expressed in about two-thirds of SCLC [100]. Activation of Notch inhibits the 
growth of SCLC-cells in vitro. Rovalpituzumab-tesirine (Rova-T) is an ADC that binds to 
DLL3, with an ORR of 18% in the phase 1 trial, which increased to 39% in high (>50%) 
DLL3-expressors [101]. The subsequent phase 2 TRINITY trial selected DLL3-expressing 
tumors in extensively pre-treated patients (at least two lines) but found only an ORR of 
12.4% and an OS of 5.7 months, with DLL3-high patients only performing slightly better 
than DLL3-non high patients [102]. Grade 3–5 toxicity was found in 63%, with 10% grade 
5 toxicity. We may conclude that Rova-T is the first targeted agent in SCLC to target DLL3, 
but results are disappointing. As a result of this, the product was withdrawn and ongoing 
studies TAHOE (versus topotecan) and MERU (maintenance after chemotherapy) closed 
prematurely [103, 104].

Recently, a definition of four molecular subsets of SCLC have been proposed: acheate-
scute homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), yes-associated 
protein 1 (YAP1) and POU domain class 2 homebox 3 (POU2F3) [105, 106]. These 
molecular subtypes appear to be associated with distinct expression profiles and 
possible therapeutic sensitivities [107]. For instance, both ASCL1-high and NEUROD1-
high neuroendocrine subtypes are characterized by marked expression of insulinoma-
associated protein 1 (INSM1), a marker of super-enhanced landscapes in SCLC [105]. SCLC 
with high NEUROD1 expression have high MYC expression [108]. High MYC expression 
and amplification predicts sensitivity to AURK and CHK1 inhibitors. In combination with 
chemotherapy, it strongly suppresses tumor progression and increases survival [67]. MYC 
activates Notch, so ASCL1 and NEUROD1 subtypes could benefit from DLL3 inhibitors 
such as Rova-T. The combination of Rova-T and immunotherapy, however, was not well 
tolerated despite antitumor activity in third-line and beyond [109]. Subtypes with low 
ASCL1, NEUROD1 and POU2F3 expression act as inflamed SCLC and can benefit from 
the addition of immunotherapy to chemotherapy [110].
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CONCLUDING REMARKS

The histopathology and tumor biology of SCLC is complex. Simple strategies to target 
the tumor are not successful in achieving a long survival advantage. Several approaches 
have the potential to overcome the well-known treatment failures of the last decades.

Firstly, recent studies have shown progress in finding biomarkers to serve as targets for 
treatment. Extensive exome sequencing in patients with SCLC is the future to create a 
landscape of predictive biomarkers in SCLC. Epigenetic alterations, gene amplifications 
and mutations can act as biomarkers in this context. Consequently, biomarker-driven 
patient selection is needed to stratify patients for treatments. Distinct molecular 
subtypes appear to be associated with therapeutic sensitivities. The key to success lies in 
the treatment combination or targeting dual pathways that have additional or synergistic 
effects. Overcoming intra-tumor heterogeneity is an extra hurdle where combination 
therapy, concomitantly or sequentially, is probably a “conditio sine qua non”. Secondly, 
it is expected that adding other treatment modalities, such as radiotherapy or 
immunotherapy, to biomarker-driven drug combinations will have synergistic effects 
to overcome resistance mechanisms. Lastly, novel drug-delivery systems should help to 
target tumor cells while preventing deleterious effects due to interaction with healthy 
cells.

With possible biomarkers having been discovered, the design of future trials should 
allow the study of a targeted treatment in a biomarker enriched population. Importantly, 
referrals of patients for clinical trials with biomarker-selected targeted treatments is 
warranted to improve the prognosis for patients with SCLC.
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Small-cell lung cancer (SCLC) is an aggressive cancer that originates from the 
neuroendocrine crest. It comprises about 15% of lung cancers and has a dismal prognosis 
[1]. The 5-year survival has hardly increased in recent decades and is now 6% [1]. In 
the last decade, few new treatment modalities were implemented, and treatment with 
chemotherapy and radiotherapy have remained the mainstay of therapy [2]. Thus, in 
clinical practice we are still in need of targetable biomarkers to treat patients with SCLC 
in order to substantially improve prognosis in this patient category. In this Special Issue 
on “Targeted therapy for Small Cell Lung Cancer” we aim to open up the black box 
that SCLC used to be, trying to reveal targetable biomarkers, as well as biomarkers 
that can stratify patient groups for more effective treatments, in order to improve the 
prognosis for this devastating disease. At the genomic level, SCLC is characterized by a 
high mutational burden with close to, or even more than, ten somatic mutations per 
megabase and high chromosomal instability [3,4]. TP53 and RB1 are the most frequently 
mutated genes in SCLC, resulting in loss of function for these genes [5]. Despite this high 
mutational burden, very few targetable driver mutations are observed. Mutations in 
activated tyrosine kinases that can subsequently be targeted by specific inhibitors (TKIs) 
are a well-known phenomenon for adenocarcinoma of the lung, but are rare in SCLC 
[6,7]. In the treatment of SCLC, these TKIs have failed. The addition of immunotherapy 
to chemotherapy in the first line treatment of advanced stage SCLC, instigated by the 
high mutational burden, improved progression free survival by only two months [8]. 
Of special interest when treating with immunotherapy, biomarkers such as PDL1 and 
TMB did not prove as reliable biomarkers to predict the patient population that would 
benefit from treatment with immunotherapy [9]. Recently, four subsets of SCLC have 
been described: achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 
1 (NeuroD1), yes-associated protein 1 (YAP1) and POU domain class 2 homebox 3 
(POU2F3). These molecular subtypes appear to be associated with distinct expression 
profiles and have different therapeutical sensitivities [10]. Most cases of SCLC express 
INSM1, a marker of both ASCL1-high and NEUROD1-high neuroendocrine subtypes and 
super-enhanced landscapes in SCLC [11]. A small fraction of SCLC tumors are INSM1-low, 
ASCL1-low and NeuroD1-low. These tumors lack neuroendocrine markers and appear 
to fall into discrete YAP1-high and POU2F3-high subtypes [12].

THE SEARCH FOR NOVEL TARGETED TREATMENTS

Both Schultze et al. [13] and Lum et al. [14] give a general overview of the attempts that 
have been pursued in the past years to develop new targeted therapies for SCLC, although 
with slightly different angles of approach. After introducing the mutational profile that 
characterizes SCLC, Schulze et al. [13] describe why current diagnostic tools have not 
been successful. Subsequently they present a broad perspective on possible future 
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options for molecular-targeted therapy, especially focusing on potential biomarkers for 
treatment. The authors highlight several surface markers, apoptotic markers, genetic 
alterations and vascular targets that may act as promising targets and review the status 
of a number of clinical and preclinical studies. Some of the targeted treatments did 
not improve the outcome and have already been withdrawn. Several additional novel 
targets need further evaluation and prospective validation before entering the clinic. 
In their opinion, the data on aurora kinase inhibitors and PARP inhibitors present the 
most promising developments. Aurora kinases phosphorylate key components of the 
cell cycle, whereas PARP1 is an important enzyme in DNA damage repair pathways.

Lum et al. [14] review the genomic structure of SCLC and describe the further 
subclassification of SCLC into four distinct molecular subtypes: ASCL1, NeuroD1, YAP1 
and POU2F3, for which there may be distinct therapeutic targets. They also address 
an additional complicating factor in the treatment of SCLC, e.g., inter- and intratumor 
heterogeneity. Intertumor heterogeneity, also a reflection of the above-mentioned 
subtyping, demands for the efficient stratification of patients with respect to the available 
treatment strategies. Intratumor heterogeneity may result in not all tumor cells of a 
patient responding equally to the same treatment. In the absence of oncogenic driver 
gene mutations that can be targeted, many strategies focus on interfering with crucial 
pathways and cellular processes. In their extensive overview, Lum et al. group the current 
therapeutic strategies into five major target categories: development and regulatory 
pathways, DNA damage and repair (DDR) pathways, epigenetic processes, cell cycle, 
and the immunotherapy field. Evolving classification of SCLC molecular subtypes is being 
anticipated as a major development and may help to further stratify patients. In the 
future, efficient treatment of patients will also depend on the availability of biomarkers 
that efficiently select patients that respond to a specific treatment. In this respect, 
real future-changing perspectives will be expected in the field of liquid biopsies. Liquid 
biopsy analyses could potentially help to stratify patients, for longitudinal monitoring of 
disease, and for early detection of progression. As reviewed by Lum et al., for SCLC, the 
focus has been on circulating tumor cell counts and the analysis of circulating cell free 
DNA. The authors conclude that improved understanding of this devastating disease is 
underway to underpin the genomics, molecular profiling, resistance mechanisms, and 
novel therapies in SCLC. They see the further subclassification of SCLC as a major and 
important step in the development of personalized targeted therapies, but at the same 
time recognize the high mutation rate and the intratumor heterogeneity as threat that 
needs to be dealt with.

3
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TARGETING REPLICATION STRESS

A characteristic feature of SCLC is the high level of replication stress (RS), most likely 
correlated with the high mutation rate. A high level of RS can cause mitotic catastrophe 
and ultimately cell death [15]. To counteract this, the tumor cells need a very robust 
DNA damage response (DDR) system or a very active replication stress response (RSR) 
pathway. These might be considered as SCLC’s weak spots. After providing a short review 
on the principles of RS, Bian et al. [16] summarize the source of RS in SCLC and review 
the strategies to take advantage of this by either increasing the RS or blocking the DDR 
system in the tumor cells. Of several inhibitors that target the replication stress pathway, 
PARP1 and WEE1 appear to be the most promising, based both on preclinical and clinical 
studies. DNA repair targets encompass ATM, RAD51, but also several genes involved in 
cell cycle control such as PLK1 and aurora kinases. Although several of the inhibitors 
developed against these genes have shown some effect as monotherapies, they may be 
even more effective in combination with a second therapy. Drug-resistance is often due 
to the complexity of the DNA damage response network, so combinations of replication 
stress inducers with other therapeutics are explored. As an example, Bian et al. review 
how targeting PARP appears to increase the sensitivity towards immunotherapy by 
increasing PD-L1 expression.

TARGETING THE MESENCHYMAL-EPITHELIAL TRANSITION 
(MET) PATHWAY

Yet another angle to develop new therapies is discussed by Harby-Werbin et al. [17]. 
They review the role of the hepatocyte growth factor (HGF)/mesenchymal–epithelial 
transition (MET) pathway, the activation of which is, amongst others, associated 
with chemoresistance in SCLC. In metastasized SCLC, overexpression of nuclear 
topoisomerase1 correlated with an increased overexpression of MET. As a proof-of-
concept, patients with SCLC were treated with MET inhibitors. Although the outcome of 
these studies suggested a role for MET inhibition in SCLC, in clinical trials the successes 
have been disappointing. As MET is acting as an epitope, it could be recognized by 
cytotoxic CD8+ T cells, eliciting an activation toward tumor cells expressing MET. This 
is the rationale for combination therapy of a MET-inhibitor with immunotherapy. 
The authors indicate the importance of assessing the tumor tissue for at least MET-
expression and/or MET-mutations, HGF expression and immune infiltrate evaluation as 
potential biomarkers to select patients that will profit from a combined treatment of 
MET inhibitors and immunotherapy.
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FOCAL ADHESION KINASE INHIBITION

In an original article on the expression and activation of focal adhesion kinase (FAK) 
Aboubakar Nana et al. [18] evaluated the potential role of FAK as a prognostic marker. 
FAK is a tyrosine kinase found in focal adhesions, intracellular complexes that are formed 
following engagement of the extracellular matrix by integrins. FAK-dependent activation 
of several downstream pathways has been implicated in multiple cellular processes, 
including cell migration, growth factor signaling, cell cycle progression and cell survival. 
Consistent with its role in cell migration and angiogenesis, increased abundance or 
activation of FAK is found in a variety of cancers. As the prevalence of FAK expression 
in lung cancers was unknown, the authors analyzed 95 non-small cell lung carcinoma 
(NSCLC), 105 SCLC and 37 normal lung tissue specimens for FAK and phospho-FAK protein 
levels. FAK abundance was significantly higher in the more malignant SCLC than in NSCLC, 
which in turn had significantly higher expression levels than normal lung tissue. The 
phosphor-FAK fraction appeared to be significantly higher in SCLC as compared to NSCLC 
as well, both in the cytoplasmic and the nuclear compartment. However, neither the 
expression level of FAK nor that of phospho-FAK correlated with recurrence-free and 
overall survival in NSCLC and SCLC patients. The authors conclude that FAK-expression 
cannot act as a prognostic biomarker in SCLC but may be interesting in terms of targeted 
therapy. However, FAK could still be a biomarker to select patients that may respond to 
FAK inhibitors. This latter option is further explored in a review by Aboubakar Nana et 
al. [19], that starts out with an in-depth description of the role of FAK in multiple cellular 
processes and how its overexpression and activation is a recurrent factor in solid tumors. 
As silencing of FAK augments apoptosis in cancer cells, synergistic effects of combinations 
with other therapies like chemotherapy, immunotherapy or radiotherapy may improve 
patient outcomes. Of special interest, is the role of FAK in immunotherapy as FAK activity 
was elevated and correlated with high levels of fibrosis and poor CD8+ cytotoxic T cell 
infiltration. FAK inhibition substantially limited tumor progression, resulting in a delay 
in tumor progression, associated with markedly reduced tumor fibrosis and a decreased 
number of tumor-infiltrating immunosuppressive cells. This raises the question whether 
FAK inhibition added to immunotherapy is able to result in a better prognosis in SCLC. 
The reviews discussed above have all shown some promising preclinical results with 
respect to targeted therapy. However, in subsequent clinical studies these therapies 
often show disappointing results.

3
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DRUG DELIVERY SYSTEMS

A major hurdle is delivery of the drug to the tumor cells without causing detrimental 
damage to healthy tissues. Tumor-targeting drug conjugates are an emerging novel 
therapeutic approach in SCLC, and in their review Deneka et al. discuss the possibilities 
and ongoing studies regarding delivery systems to bring therapy into the vicinity of 
the tumor [20]. Antibody–drug conjugates (ADC), radioimmunoconjugates (RICs), small 
molecule–drug conjugates (SMDCs) and polymer–drug conjugates (PDCs) are the major 
delivery systems. Several benefits are clear: better prevention of off-target toxicity and 
trying to allow an effective dosage of the drug to the tumor with a tolerable toxicity. A 
challenge is to elude systemic toxicity to optimize the response on the tumor. All options 
need biomarkers to target for effective use of drug conjugates. Several questions are 
of importance to the clinician. Can we deliver these targeted treatments together with 
radiotherapy, or in combination with other drugs, for example immunotherapy? In the 
near future, radionuclides linked to tumor-targeting antibodies may play a prominent 
role in tumor imaging and optimizing the diagnostic path that patient will follow. 
Limitations are in the nature of their radioactive payloads.

CONCLUDING REMARKS

In reading the contributions to this special issue, one might conclude the glass is 
half empty, and that the main conclusion is that SCLC is a resilient tumor for which 
treatment options are still distant. Although a number of preclinical trials have shown 
exiting results, subsequent clinical trials have often yielded disappointing outcomes. 
On the other hand, one could also conclude that the glass is half full, as an enormous 
amount of effort has been dedicated to these studies, and that recent studies do show 
progress in finding better treatments for this disease. Some new targets have been 
identified, with the aurora kinases as good example, that could potentially lead to better 
treatments. It could well be that it is not a shortage of therapeutic targets that is the 
main problem, but instead the knowledge on how and when to use them. Three main 
directions that emerge from the contributions could potentially improve outcomes in 
patients with SCLC. Firstly, we need more tools to accurately stratify patients for specific 
treatments. The intratumor heterogeneity may be the main problem in the treatment 
of SCLC, as it results in no single treatment being effective for the majority of patients. 
The outcome of clinical studies may improve considerably if tools were available to 
carefully preselect patients that could potentially benefit from a specific treatment. The 
further classification of SCLC into four subgroups is a first step in this process [12]. MYC 
amplification has already been suggested to predict sensitivity towards aurora kinase 
inhibitors [21]. Secondly, the solution may be lying in combination therapy rather than 
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monotherapy. Targeting dual pathways can be more efficacious to stop proliferation 
of tumor cells. The included reviews give ample suggestions where a novel drug may 
actually have a synergistic effect on the response to one of the classic treatments. 
Thirdly, novel drug delivery systems should help to specifically target the tumor cells 
while preventing deleterious effects due to the interaction with healthy cells. Taken 
together in this Special Issue, several routes have been discussed that may lead to new 
promising treatments for SCLC. 3
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INTRODUCTION

Since the publication of Chapter 2 in 2021, additional studies on chemoimmunotherapy 
in first-line metastasized SCLC reported outcomes and new studies have been initiated 
[1 – 8] (Table 1). Some prospective single arm studies with platinum/etoposide and 
anti-PD-(L)1 in real-world settings reported comparable outcomes on progression free 
survival (PFS) and overall survival (OS) [6 – 8]. A study conducted in Spain included 
patients with performance status > 2 and patients with brain metastases [6]. All 
studies showed the benefit of immunotherapy, although in fragile patient groups with 
performance status > 2 and/or with brain metastases adverse events were more obvious, 
impacting survival. Despite a benefit of 1.8 months, the Netherlands did not consider 
immunotherapy for advanced SCLC to be eligible for insurance reimbursement, although 
survival rates after one and three years showed better results for the combination with 
chemoimmunotherapy than chemotherapy alone.

Table 1. First-line chemoimmunotherapy for SCLC

Study [ref] Checkpoint 
inhibitor

Patients mPFS (mo)
HR

mOS (mo)
HR

1y OS rate 3y OS rate

Impower133 [1] Atezolizumab 403 5.2
HR 0.77

12.3
HR 0.76

52% vs 38.2%

CASPIAN [2] Durvalumab 805 5.1
HR 0.80

12.9
HR 0.71

54% vs 40% 17.6% vs 5.8%

KEYNOTE 604 [3] Pembrolizumab 453 4.8
HR 0.70

10.8
HR 0.76

45% vs 40% 15.5% vs 5.9%

ASTRUM-005 [4] Serplulimab 585 5.7
HR 0.48

15.4
HR 0.63

61%

CAPSTONE-1 [5] Adebrelimab 462 5.8
HR 0.67

15.3
HR 0.72

63% vs 52%

Single arm prospective chemotherapy plus immunotherapy in metastasized SCLC

Imfirst [6] Atezolizumab 155 6.2 10.0

Tamiya [7] Atezolizumab 207 5.1 15.8

MAURIS [8] Atezolizumab 154 5.5 10.7 41.9%

SCLC: small cell lung carcinoma; mPFS: median progression free survival; HR: hazard ratio; mOS: 
median overall survival; 1y OS rate: 1 year overall survival rate; 3y OS rate: 3 year overall survival 
rate; mo: months.

COMBINATION OF TREATMENT MODALITIES

Now that immunotherapy is applied in the lower stages of the disease, it will be of vital 
importance to know if the addition of immunotherapy to chemoradiotherapy will lead 
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to better results in limited stage SCLC [9 – 14] (Table 2). In anticipation of the results of 
ADRIATIC, namely treatment with adjuvant durvalumab after chemoradiotherapy [9], 
other studies are still ongoing. The combination of chemoimmunotherapy with thoracic 
radiotherapy seems feasible based on some retrospective series and is now prospectively 
being explored in limited stage SCLC (Table 2). In practice, the expected toxicity radiation 
pneumonitis turns out to be manageable [15].

Table 2. Trials in limited stage SCLC with chemoradiotherapy and immunotherapy

Study [ref] Trial design Treatment Patients Endpoints

ADRIATIC [9] Phase 3, RCT, 
double-blind
Adjuvant ICI

1) Durvalumab + placebo
2) Durvalumab + 
tremelimumab
3) Placebo + placebo

724 PFS, OS in 
endpoints Adriatic

SURPASS [10] Phase 2, 3
RCT, double-blind
Adjuvant ICI

1) Sugemalimab
2) Placebo

346 PFS

ACHILES [11] Phase 2
Adjuvant ICI

1) Atezolizumab
2) Observation

212 2-y OS rate

NCT04189094 [12] Phase 2, open label
Concomitant ICI

1) Platinum / etoposide + 
sintilimab + TRT
2) Platinum / etoposide + 
TRT

140 PFS

NRG-LU005 [13] Phase 3, open label
Concomitant ICI

1) Platinum / etoposide + 
thoracic radiotherapy
2) Platinum / etoposide 
+ thoracic radiotherapy + 
atezolizumab + maintenance

545 OS

Park [14]
NCT03585998

Phase 2, single arm
Concomitant ICI

Platinum / etoposide + 
durvalumab + TRT

51 mPFS 14.4 mo
mOS NR
2-y PFS rate: 42%
2-y OS rate: 67.8%

SCLC: small cell lung cancer; RCT: randomized controlled trial; ICI: immune checkpoint inhibitor; 
TRT: thoracic radiotherapy; mPFS: median progression free survival; mOS: median overall survival; 
mo: months; 2-y PFS rate: 2 year progression free survival rate; 2-y OS rate: 2 year overall survival 
rate; NR: not rated.

As multimodality therapy has proved to lead to better results than applying monotherapy, 
the new strategy of adding radiotherapy to chemotherapy or chemoimmunotherapy in 
metastasized setting SCLC were explored [16 – 30] (Table 3). So far, only two studies 
mention the assessment of biomarkers [18, 26].
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Table 3. First-line metastasized SCLC adding thoracic radiotherapy to chemoimmunotherapy

Study [ref] Trial design Treatment Patients Endpoints

RAPTOR [16]
NCT04402788

Phase 2 – 3, RCT 1) Atezolizumab after response 
on chemotherapy and 
atezolizumab
2) Atezolizumab + (extra)
thoracic radiotherapy after 
response on chemotherapy 
and
atezolizumab

138 phase 2
186 phase 3

Phase 2: PFS
Phase 3: OS

TRIPLEX [17]
NCT05223647

Phase 3, RCT 1) Platinum / etoposide + 
durvalumab + TRT
2) Platinum / etoposide + 
durvalumab

302 Change in 
1-year OS

TREASURE [18]
NCT04462276

Phase 2
Maintenance after 
atezolizumab 
+ platinum + 
etoposide

1) Atezolizumab
2) Atezolizumab + radiotherapy

104 OS

SAKK15/19 [19]
NCT04472949

Phase 2 Induction phase: durvalumab + 
platinum / etoposide.
Arm 1. CR, PR or SD: 
maintenance phase: 
durvalumab + TRT
Arm 2. PD: follow up

46 PFS

Chen [20] Phase 2, single 
arm

After platinum / etoposide 
sequential TRT + adebrelimab

31 Median PFS 
7.5 mo

ORR 50% DCR 
87.5%

NCT04562337 [21] Phase 2 Platinum / etoposide + 
SHR1316 (adebrelimab) + TRT

67 OS

CASPIAN-RT [22]
NCT05161533

Phase 2
Maintenance 
after platinum 
/ etoposide + 
durvalumab

TRT (hypofractionated) + 
durvalumab

50 PFS

NCT05092412 [23] Phase 2 Platinum / etoposide + 
durvalumab + LDRT 5x3Gy

30 PFS

MATCH [24]
NCT04622228

Phase 2 Platinum / etoposide + 
atezolizumab + LDRT 5x3Gy

56 ORR

NCT04951115 [25] Phase 2 Platinum / etoposide + 
durvalumab + SBRT (6Gy on 
multiple intrathoracic sites)

42 Adverse 
events ≥ 
grade 3

Efficacy of 
radiation 
measured 
by change 
in disease 
response
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Study [ref] Trial design Treatment Patients Endpoints

Perez [26] Phase 1 and 2 Nivolumab + ipilimumab + TRT 
after chemotherapy

21 Median PFS 
4.5 mo

Median OS 
11.7 mo

NCT05403723 [27] Phase 1B Induction phase: Platinum / 
etoposide + durvalumab
Arm 1. CR, PR: maintenance.
Arm 2. SD, PD: SBRT 6x5Gy + 
maintenance

50 Adverse 
events

Peng [28] Chemotherapy + durvalumab 
or atezolizumab
Arm 1. TRT
Arm 2. No TRT

114 Arm 1, 
median PFS 
9.5 mo
Arm 2, 

median PFS 
7.2 mo
HR 0.59

Welsh [29] Phase 1
After platinum / 
etoposide

Concomitant pembrolizumab 
+ TRT

38 mPFS 6.1 mo
mOS 8.4 mo

NCT03923270 [30] Phase 1
After platinum / 
etoposide

1) Durvalumab + 
tremelimumab 75 mg + TRT
2) Durvalumab + Olaparib + 
TRT
3) Durvalumab + 
tremelimumab 300 mg + TRT
4) Durvalumab + TRT

25 Adverse 
events

Phase 1B: PFS

SCLC: small cell lung cancer; RCT: randomized controlled trial; TRT: thoracic radiotherapy; PFS: 
progression free survival; mPFS: median progression free survival; OS: overall survival; mOS: 
median overall survival; CR: complete response; PR: partial response; SD: stable disease; PD: 
progressive disease; mo: months; DCR: disease control rate; LDRT: low-dose radiotherapy; SBRT: 
stereotactic body radiotherapy.

BIOMARKERS

In search of biomarkers in SCLC predicting response to immunotherapy, in the 
Impower133 RNA-sequencing was used to analyze gene expression in long-term survivors 
treated with first-line carboplatin and etoposide with or without atezolizumab [31]. 
Long-term survivors were defined as surviving 18 months or more after randomization. 
Long-term survivors were more often treated with atezolizumab plus chemotherapy 
(33.5%) than placebo plus chemotherapy (20.4 %). PD-L1 expression was most frequently 
observed on tumor-infiltrating immune cells, with limited expression on tumor cells. 
The overlap of patients with high PD-L1 and a high tumor mutational burden (TMB) 
was limited. On the contrary, in a patient group treated with nivolumab or nivolumab 
plus ipilimumab, a high TMB was associated with a complete or partial response rather 
than stable disease or progressive disease, which is suggestive of TMB being a predictive 
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factor [32]. These findings suggest that TMB and PD-L1 status should not be used for 
patient treatment decisions, as neither biomarker is predictive of outcome. The current 
lack of identification of a biomarker for checkpoint inhibitors in SCLC, warrants additional 
studies to further evaluate potential biomarkers and associations with outcomes.

Biomarkers in blood samples are gaining more and more attention [33, 34]. Recently 
published papers on cell-free nucleosome profiling in plasma can improve our knowledge 
of the biology of tumors, but have also detected certain responses to therapy [35, 36]. 
In ADRIATIC, ACHILES and NRG-LU005, biosamples are collected to validate circulating 
tumor DNA (ctDNA) as an early endpoint of clinical outcome [9, 11, 13].

SCLC CLASSIFICATION INTO FOUR MOLECULAR SUBTYPES 
AND ITS THERAPEUTIC VULNERABILITY

The proposed classification of SCLC into four molecular subtypes: acheate-scute 
homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), yes-associated 
protein 1 (YAP1) and POUdomain class 2 homebox 3 (POU2F3) – SCLC-A, -N, -P, and -Y, 
respectively – makes sense – and is helpful - as each has its own therapeutic sensitivity 
and is therefore susceptible to certain medication [37](Table 4). The prognostic relevance 
of these subtype-specific proteins is an area of research in small biopsies and in surgical 
specimens [38, 39].

SCLC-A and SCLC-N tumors have been reported to be associated with elevated expression 
of neuroendocrine markers, such as chromogranin A and synaptophysin [40, 41], 
whereas SCLC-P and SCLC-Y tumors with a higher RE1 silencing transcription factor (REST) 
– a repressor of neuroendocrine genes – result in a less neuroendocrine phenotype [42, 
43]. Synaptophysin was often expressed in the ASCL1 and NEUROD1 subtypes and was 
associated with less tumor-associated CD8+ T-cells and a “desert” immunophenotype. 
In one study, immunohistochemical staining of defined ASCL1, NEUROD1, POU2F3, and 
YAP1 dominant molecular subtypes were found in 78.2%, 5.6%, 7%, and 2.8% of the 
tumors, respectively; 6.3% of the tumors were negative for all four subtype markers 
[38]. The low expression of ASCL1, NEUROD1 and POU2F3 resulted in the renaming of 
SCLC-Y to SCLC-I, the “inflamed” immunophenotype which had more CD8+ T-cells, and 
this subtype may well benefit from adding immunotherapy to chemotherapy [43 – 46].

Each subtype has targets that are most abundant and they can serve as biomarkers 
to enable targeted treatment (Table 4). Both SCLC-A and SCLC-N are characterized by 
marked expression of insulinoma-associated protein 1 (INSM1), Schlafen 11 (SLFN11) 
and MYC [41]. High MYC expression and amplification in SCLC-N predict a sensitivity to 
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aurora kinase (AURK) inhibitors and checkpoint kinase 1 (CHK1) inhibitors [47, 48]. In 
combination with chemotherapy, tumor progression is strongly suppressed and survival 
increases [49]. As SCLC is characterized by a high TMB and targeting the DNA damage 
response pathway genes is considered an effective method for treatment. In the phase 
2 single arm in relapsed SCLC, the ATM/ATR inhibitor berzosertib plus topotecan reached 
an ORR of 36% [50]. Randomization in DDRiver SCLC 250, berzosertib plus topotecan 
versus topotecan alone will reveal whether this leads to a better treatment option in 
second line SCLC [51]. Furthermore, in cell lines of SCLC-N, we see a high expression 
of somatostatin receptor 2 (SSTR2), acting as a target for somatostatin analogues [44]. 
Phase 1 studies are initiated to test SSTR in combination with first line treatment in 
ES-SCLC [2].

Table 4. Therapeutic vulnerability of four SCLC subtypes

SCLC-A SCLC-N SCLC-P SCLC-Y

DLL3
BCL2
EZH2
INSM1
LSD1
L-MYC
NFIB
RET
SOX2
Synaptophysin
Chromogranin

AURK
MYC
CHK1
INSM1
LSH1
NFIB
TrkB

AURK
MYC
IGF-1R
SLFN11
ATM
EMT

mTOR
RB1
SOX9
PLK
LAG3

DLL3
CREBBP
BCL2
HDAC inhibitor
LSD1 inhibitor

AURKA inhibitor
cMYC inhibitor
CHK1 inhibitor
Arginine deprivation

Arginine deprivation
PARP inhibitor
CHK1
IGF-1R inhibitor
Nucleoside analogues

ICI
mTOR inhibitor
PLK inhibitors
CDK4/6 inhibitor

Delta-like protein 3 (DLL3) is an inhibitory Notch receptor implicated in tumorigenesis. 
It is a cell surface marker driven by ASCL1, and is thus more highly expressed in SCLC-A 
tumors, and lowest in SCLC-P and SCLC-I [44]. Rovalpituzumab tesirine (Rova-T) is a DLL3-
specific antibody-drug conjugate (ADC) [53]. As MYC activates Notch, both ASCL1 and 
NEUROD1 subtypes could benefit from DLL3 inhibitors such as Rova-T, but, unfortunately, 
Rova-T failed in all settings treating SCLC: maintenance after first line chemotherapy, 
in second line versus topotecan and in third line and later, even in selected DLL3-high 
patient groups [54 – 56]. Furthermore, the combination of Rova-T and immunotherapy 
was not well tolerated despite antitumor activity in third-line and beyond [57].

The subtype SCLC-P seems more vulnerable to poly-(ADP)-ribose polymerase (PARP) 
inhibitors, although the expression of SLFN11 was highest in SCLC-A and only modest 
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in SCLC-P [58, 59, 44]. SLFN11 expression in ctDNA can be a prospective biomarker for 
treatment with PARP inhibitors (PARPi), but this needs to be further investigated [60]. In 
second line, temozolomide plus a variety of PARPi is explored. Only a few studies aim at 
selecting biomarkers, for example, SLFN11 positive patients are eligible for atezolizumab 
plus PARPi talazoparib in a maintenance setting [61]. The phase 2 study in relapsed 
SCLC SUKSES-B2 involves recruiting 28 patients with ATM deficiency, SLFN11 positive, 
or POU2F3 positive, for treatment with olaparib and bevacizumab [62]. In addition to 
PARPi, SLFN11 predicts sensitivity to chemotherapy and lurbinectedin. Lurbinectedin is 
still being investigated to verify whether earlier use would offer greater benefit [63]. The 
IMforte study will reveal if a potential synergy with immunotherapy exists and whether 
lurbinectedin is the appropriate maintenance partner with a checkpoint inhibitor 
[64]. Other combinations are explored, for example lurbinectedin in combination with 
berzosertib, which is also available in LCNEC [65].

Since SCLC-I acts as the inflamed subtype, it would be important to know whether this 
subtype performed better in studies with first line chemoimmunotherapy compared to 
chemotherapy alone. Retrospective staining of some of the largest sets of SCLC until 
now is currently available [66, 45, 67, 44] (Table 5).

Table 5. Retrospective staining of immunotherapy studies in SCLC

Study [ref] Number SCLC – A SCLC – N SCLC – P SCLC – Y

George [66] 110 36% 31% 16% 17%

Checkmate032 [45] 156 nivolumab
130 nivolumab + ipilimumab

32% (49)
31% (40)

30% (47)
36% (47)

14% (21)
11% (14)

25% (39)
22% (29)

CASPIAN [67] 104 37% 44% 12% 11%

Impower133 [44] 276 51% 23% 7% 18%

In Checkmate032, comprehensive bulk RNA sequencing was performed on 286 
pretreatment biopsy samples, including 156 samples after treatment with single-arm 
nivolumab and 130 treated with nivolumab plus ipilimumab [45]. Other biomarkers 
were explored resulting in increased survival when high CD8+ T cell infiltration (HR 0.51 
for nivolumab and HR 0.70 for nivolumab plus ipilimumab) and high MHC-I expression 
were found (HR 0.59 for nivolumab and HR 0.87 for nivolumab plus ipilimumab). In 
the CASPIAN study, among the four subtypes, the median OS in the chemotherapy 
plus durvalumab group was highest in the SCLC-Y or SCLC-I group with 17.6 months, 
suggesting a subgroup predicting better response to immunotherapy, although the 
sample size is small [67]. The distribution of subtypes in Impower133 varies somewhat 
[44, 68]. The benefit of atezolizumab, however, was observed in all subtypes.
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REFINING DELIVERY STRATEGIES?

ADCs, radioimmunoconjugates (RICs), small molecule–drug conjugates (SMDCs) and 
polymer–drug conjugates (PDCs) are the major delivery systems. Several benefits are 
clear: better prevention of off-target toxicity and the option to administer an effective 
dosage of the drug to the tumor with a tolerable toxicity. The challenge is to avoid 
systemic toxicity to optimize the response on the tumor. All the various options would 
benefit from biomarkers to aim for the more effective use of drug conjugates.

As we have seen in the development of Rova-T, next generation ADCs have to be 
designed to overcome certain limitations: enhanced antibody formats with new linkage 
technologies, improved stability profiles, and an optimized drug-antibody ratio aim to 
improve pharmacokinetics and expand the therapeutic window [69]. Moreover, ADC 
payloads can prime dendritic cells directly, suggesting that ADC and immunotherapy can 
enhance their efficacy [70]. Even immune-PET imaging can be of assistance to provide 
information relating to protein expression, for example DLL3 expression, in order to 
better select patients for DLL3-targeted therapies [71]. This study is open to all high 
grade neuroendocrine tumors.

Seizure-related homolog 6 (SEZ6) is a downstream target of ASCL1 and provides a clinical 
target for novel ADCs [72]. SEZ6 is predicted to be involved in neuronal maturity and 
plasticity and is mostly expressed in SCLC-P [73]. ADCs for SEZ6 are being developed, 
namely ABBV-706 and ABBV-011, or combined with PD-1 inhibitor budigalimab [74, 
75]. Both compounds will be available for other neuroendocrine tumors, and hopefully 
enlarge therapeutic arsenal in all NETs.

Other ADCs are the pegylated conjugate of SN38 (conjugate of irinotecan) combined 
with PARPi rucaparib [76], the ATR inhibitor elimusertib (BAY-1895344) plus standard 
chemotherapy in second line [77] and two ADCs against trophoblast cell surface antigen 
2 (Trop2) Sacituzumab govitecan [78] and SKB264 -ADC’s [79]. The latter is developed for 
NSCLC, but will be available for NECs in the near future. Sacituzumab govitecan reached 
an ORR of 14%, mPFS 3.7 months and mOS 7.5 months in SCLC.

EP0057 is a nanoparticle drug conjugate (NDC) camptothecin, a potent topoisomerase I 
inhibitor, which will be evaluated in combination with olaparib in phase 2 [81].
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HOW DO WE RAISE THE TAIL OF THE SURVIVAL CURVE?

Although the combination of PD-(L)1 inhibition with CTLA4 inhibition or anti-TIGIT 
(Tiragolumab) failed in SCLC [2, 82], alternatives are explored, including different types 
of immunotherapy [57, 82 – 100] (Table 6).

Table 6. New agents in immunotherapy in SCLC

Study [ref] Trial design Treatment Patients Endpoints

Studies with new immunotherapies in limited disease SCLC

NCT04308785 [83]
Anti-TIGIT

Phase 2, RCT, double-
blind
Adjuvant ICI + anti-TIGIT

1) Atezolizumab + 
tiragolumab
2) Atezolizumab + 
placebo

242 PFS in ITT 
population

AdvanTIG-204
NCT04952597 [84]
Anti-TIGIT

Phase 2, RCT
Concomitant 
chemoradiotherapy + 
anti-PD-1 + anti-TIGIT

1) Platinum / 
etoposide + 
ociperlimab + 
tislelizumab + TRT
2) Platinum / 
etoposide + 
tislelzumab + TRT
3) Platinum / 
etoposide + TRT

126 PFS

Studies with new immunotherapies in metastasized SCLC

SKYSCRAPER-02 [82]
NCT04256421

Phase 3, RCT, double-
blind, anti-PD-L1 + 
anti-TIGIT

1) Platinum / 
etoposide + 
tiragolumab + 
atezolizumab
2) Platinum / 
etoposide + placebo 
+ atezolizumab

490 OS 13.6 mo vs OS 
13.6 mo

Malhotra [57] Phase 1, 2
RCT, open label
Heavily pretreated SCLC

1) Nivolumab + 
Rova-T
2) Nivolumab + 
Rova-T + ipilimumab

42 ORR 30%
Not well tolerated

DeLLphi-300
NCT03319940 [85]

Phase 1, 2 open label in 
relapsed or refractory 
SCLC
BiTe targeting DLL3

AMG757 
Tarlatamab

107 mPFS 3.7 mo
mOS 13.2 mo
ORR 23.4%
mDOR 12.3 mo
DCR 51.4%

DeLLphi-301
NCT05060016 [86]

Phase 2 RCT open label 
in relapsed or refractory 
SCLC (3rd line)

AMG757 
Tarlatamab
1) low dose
2) high dose
3) dose expansion

222 ORR
Adverse events
Serum 
concentrations
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Study [ref] Trial design Treatment Patients Endpoints

DeLLphi-303 [87]
NCT05361395

Phase 1B, single arm in 
first line

AMG757 
(tarlatamab in 
different doses) 
+ carboplatin/
etoposide + 
atezolizumab

340 Dose finding

DeLLphi-304 [88]
NCT05740566

Phase 3, RCT open label 
in relapsed or refractory 
SCLC (2nd line)

1) tarlatamab
2) investigator 
choice: 
lurbinectedin 
or topotecan or 
amrubicin

700 OS

NCT04885998 [89] Phase 1 in relapsed or 
refractory SCLC

Tarlatamab 
+ AMG404 
(Zeluvalimab = anti-
PD-1)

23 Dose finding 
AMG404

NCT04750239 [90]
Halted because of 
high grade cytokine 
release syndrome

Phase 1
BiTe with tetravalent 
structure against GD2 
and CD3

Nivatrotamab

NCT04429087 [91] Phase 1
BiTe targeting DLL3

BI-764532 193

NCT05652686 [92] Phase 1
BiTe targeting DLL3 and 
CD47

PT217 58

NCT05461287 [93] Phase 1
BiTe targeting DLL3 and 
CD3

QLS31904 290

NCT05619744 [94] Phase 1
multispecific antibody 
against DLL3 and CD3/
CD137

RO7616789 168

NCT04471727 [95] Phase 1, 2
TriTAC

Phase 1: HPN328
Phase 2: HPN328 + 
atezolizumab

162

NCT05507593 [96] Phase 1 in relapsed or 
refractory SCLC

DLL3-CAR-NK cells 18 Dose finding, 
adverse events

NCT03392064 [97]

Suspended

Phase 1 single arm in 
relapsed or refractory 
SCLC.
CAR-T targeting DLL3

AMG119 6 Safety, tolerability, 
efficacy

NCT05680922 [98] Phase 1
CAR-T targeting DLL3

LB2102 41 Safety, dose 
finding

NCT05620342 [99] Phase 1
CAR-T targeting GD2 
antigen

iC9.GD2.CAR.
IL-15 T (IL-15, and 
iCaspase9 Safety 
Switch)

24
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Study [ref] Trial design Treatment Patients Endpoints

NCT05026593 [100] Phase 2, RCT, open label
Anti-LAG-3

1) Platinum / 
etoposide + 
sintilimab + IBI110
2) Platinum / 
etoposide + 
sintilimab

60 PFS
Adverse events

SCLC: small cell lung cancer; TIGIT: T-cell immunoglobulin and ITIM domain; RCT: randomized 
controlled trial; PFS: progression free survival; ITT: intention-to-treat; TRT: thoracic radiotherapy; 
mo: months; BiTE: Bispecific T-cell engager; DLL3: delta-like protein 3; mPFS: median progression 
free survival; mOS: median overall survival; ORR: overall response rate; mDOR: median duration 
of response; DCR: disease control rate; OS: overall survival; TriTAC: Tri-specific T Cell Activating 
Construct; CAR-T: Chimeric Antigen Receptor T-cells; NK: natural killer cells; GD2: disialoganglioside; 
LAG-3: lymphocyte activation gene 3.

T-cell immunoglobulin and ITIM domain (TIGIT) seemed promising as a target, since 
anti-TIGIT tiragolumab inhibits T-cells and NK cells. Unfortunately, in Skyscraper02, the 
median OS of 13.6 months in both arms ended the role of tiragolumab in metastasized 
SCLC [82]. In the rest of the world, the use of checkpoint inhibitors in SCLC is standard 
therapy in combination with chemotherapy in first line. Atezolizumab and durvalumab 
have current FDA approval, achieving a modest though important survival benefit 
without selection criteria.

Current ongoing trials are evaluating the combination of anti-PD1/anti-PDL1 and anti-
TIGIT in LD-SCLC. In this light, the NCT04308785 represents a phase-II study concentrated 
on the efficacy and safety of atezolizumab, whether or not associated with tiragolumab 
(anti-TIGIT), as a consolidation therapy in LD-SCLC patients who have not progressed 
during/after CRT [83], while the NCT04952597 phase-II trial examines the combination 
of ociperlimab plus tislelizumab plus concomitant CRT [84].

Future strategies involve the DLL3-targeted bispecific T-cell engager (BiTE) tarlatamab, 
which binds both DLL3 and CD3, leading to tumor lysis [101]. The phase-1 DeLLphi-300 
confirmed an ORR of 23.4% and DCR of 51% for tarlatamab in 107 patients with 
metastasized SCLC [85]. Median OS was 13.2 months, while 36.4% of patients showed 
a target lesion shrinkage greater than 30%. Of concern is the serious adverse event 
cytokine release syndrome occurring in cycle 1 and rarely occurring in subsequent cycles. 
Combination with anti-PD-L1 is thought to overcome resistance in T-cell cold tumors 
[102]. Tarlatamab, administered as a 10-mg dose every two weeks in patients with 
previously treated SCLC (DeLLphi-301) showed an ORR of 40% and a DCR of 59%. The 
median PFS was 4.9 months [86]. Currently, patients are included in DeLLphi-304, phase 

Table 6. Continued
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3: tarlatamab monotherapy in second line after prior platinum-based therapy [88]. And 
opening soon: DeLLphi-303: tarlatamab plus standard of care first line [87].

BI764532 is another bispecific T-cell engager against DLL3/CD3 currently being developed 
and recruiting patients for phase 1 [91].

HPN328 is a novel tri-specific recombinant protein construct (Tri-specific T Cell Activating 
Construct [TriTAC®]) DLL3-targeting T-cell engager tested in SCLC, but also in other 
neuroendocrine tumors expressing DLL3 [103]. The first results of 18 patients revealed 
a decrease in disease in 7 patients (39%). In 11 SCLC patients, 3 patients (27%) achieved a 
decrease greater than 30% [95]. No dose-limiting toxicity occurred, grade 1 – 2 cytokine 
release syndrome was reported in 4 patients (22%).

ADC, BiTes and CAR-T for other targets are also being developed, against B7-homolog3 
(B7-H3) and disialoganglioside (GD2) [104 - 106].

Another targetable immune checkpoint in SCLC-I includes lymphocyte activation gene-3 
(LAG3). LAG3 expression had a trend towards a better OS, and turned out to be related 
to immune-related processes, such as immune response, antigen processing and 
presentation, and T-cell co-stimulation [107]. Chimeric antigen receptor therapy (CAR-
T) uses the T-cells to recognize cancer cells, a novel application in SCLC.

Another strategy is to activate the Stimulator of Interferon Genes (STING) pathway, which 
facilitates an immune response via CD8+ cytotoxic T cell infiltration [108]. DNA damage 
response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) increase the protein and 
surface expression of PD-L1[108], thus enhancing the effect of immunotherapy. Both 
DDR inhibition and WEE1 inhibitors activate the STING pathway, and, in combination 
with chemotherapy or PD-L1 inhibition, cause remarkable tumor regression [109, 110].

Preclinical research of in-vitro profiling of plasticity in SCLC cells revealed upregulation 
of the major histocompatibility complex class 1 (MHC-1). Transient combined EZH2 
inhibition and STING agonism prime cells for immune rejection, promoting durable 
immunotherapy benefits [111 - 113]. Furthermore, targeted inhibition of lysine-specific 
demethylase 1 (LSD1) restores the major histocompatibility complex class 1 (MHC-1) 
and sensitizes SCLC cells to MHC-I restricted T-cell cytolysis [114, 115]. The combination 
of the LSD1 inhibitor with immunotherapy augments the anti-tumor immune response 
in refractory SCLC [115]. These findings represent a promising immunotherapeutic 
approach in SCLC.
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We are left with a few unanswered, though relevant, questions: how can we identify 
patients who will derive a long-term benefit from immunotherapy? What is the role of 
checkpoint inhibitors in limited stage SCLC? Do patients need ongoing, indefinite therapy 
to prevent a relapse? Can we target other biomarkers with medication to speed up the 
trend towards precision medicine and better outcomes for our patients?
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ABSTRACT

This manuscript addresses the role of O6-methylguanine-DNA methyltransferase (MGMT) 
as a biomarker in the oncogenesis of cancer and the opportunity of turning this gene 
into a druggable target in neuroendocrine tumors of the lung. Studies in brain tumors 
conclude that MGMT promoter methylation is considered a strong predictive factor 
for a favorable outcome for treatment with temozolomide, e.g. alkylating agent. We 
conducted a systematic review of MGMT in non-small cell lung cancer (NSCLC), small-
cell lung cancer (SCLC) and other pulmonary neuroendocrine tumors (NETs) to evaluate 
whether MGMT is a prognostic and/or predictive factor to select patients with lung 
cancer who can benefit from treatment with temozolomide. In NSCLC MGMT promoter 
methylation is not a prognostic and predictive factor, hence temozolomide has no place. 
In SCLC and NET patients with a MGMT promoter methylation benefit of temozolomide 
has to be confirmed. Temozolomide can be considered a ‘personalized’ treatment if the 
predictive role of MGMT is further confirmed.

Highlights
•	 MGMT promoter methylation predicts response to treatment with alkylating agents 

in patients with glioblastoma multiforme and possibly in small cell lung cancer and 
pulmonary neuroendocrine tumors.

•	 In small cell lung cancer and large cell neuroendocrine carcinoma there’s a high 
unmet need for new treatment options to improve the prognosis. Repurposing of 
drugs is an acceptable and innovative strategy in the advancement of treatment.

•	 Temozolomide can be considered a ‘personalized’ treatment in lung cancer if the 
predictive role of MGMT is further confirmed.
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MGMT: a druggable target in lung cancer?

INTRODUCTION

The treatment of advanced non-small cell lung cancer (NSCLC) has recently seen a 
paradigm shift with the discovery of several actionable somatic alterations in genes 
linked to hallmark pathways of cancer as EGFR, ALK, c-MET, ROS. These genomic 
alterations have led to the development of targeted oral small molecules specifically 
blocking the activated kinases of these pathways. These small molecules have since been 
registered for the treatment of a small subset of patients with non-squamous NSCLC 
with so-called druggable oncogenic mutations, for vastly improving their progression 
free survival (PFS) compared to standard chemotherapy.

Neuroendocrine tumors (NETs) of the lung are a morphologically and clinically distinct 
subgroup representing less than 20% of lung cancers and encompassing a spectrum 
from the more benign carcinoid (grade 1) and atypical carcinoid (grade 2) tumors, to the 
highly aggressive neuroendocrine carcinomas (NECs) grade 3 and 4: small cell lung cancer 
(SCLC) and large cell neuroendocrine (LCNEC) variants with a high metastatic potential 
and a poor prognosis [1]. Their common phenotypic characteristic is the expression of 
features as neuroendocrine granules and the secretion of paraneoplastic cytokines and 
hormones, which reflect a common origin from the embryonal neuroendocrine crest. 
NETs arise from cells throughout the endocrine system. Although the different types of 
pulmonary NETs originate from the Kulchitsky cells of the bronchial mucosa, different 
mutations cause different biology and they are therefore considered separate clinical 
entities [2]. Most NETs are sporadic, and risk factors are poorly understood. Smoking 
may be an important risk factor for their development, especially in atypical carcinoids 
and the NECs SCLC and LCNEC [3]. Pulmonary LCNEC is recognized as a variant of NSCLC 
in which further studies are needed to confirm whether a treatment with platinum 
etoposide, similar as in SCLC, is more appropriate than a combination of platinum with 
a third generation drug as in NSCLC [4,5].

At the molecular level, SCLC often harbors alterations in the MYC gene family 
members of transcription factors, amplifications of fibroblast growth factor 1 (FGFR1), 
silencing of the tumor suppressor Rb gene, mutation of the TP53 gene mutations or 
an aberrant expression of genes implicated in DNA damage repair, among which the 
O6-methylguanine methyltransferase (MGMT) gene, responsible for the repair of DNA 
damage [6]. This manuscript reviews the role of MGMT in the oncogenesis of cancer 
and the opportunity of turning this gene into a druggable target in tumors of the lung, 
more specifically for the alkylating agent temozolomide.

4
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The search for prospective and retrospective publications relative to lung cancer, MGMT 
and temozolomide was performed by consulting PubMed. Search terms used included 
“MGMT”, “MGMT promoter methylation”, “MGMT promoter hypermethylation”, 
“MGMT expression” in combination with MeSH key words as “temozolomide” and “lung 
cancer”; “NSCLC”; “SCLC”; “neuroendocrine tumor”; “NET” and “NEC”. PubMed was 
searched for relevant articles; phase I; II and III; prospective and retrospective between 
2002 and 2014. In addition; the retrieved articles were searched for cross references. 
We retrieved a total of 40 publications that are listed in Table 1.

WHAT IS THE ROLE OF MGMT IN ONCOGENESIS?

Cells deploy a wide variety of enzymes to accomplish the very challenging task of 
continuously monitoring the integrity of the genome and to remove inappropriate base 
or nucleotides created by chemical or physical attacks, and to replace them with those 
bases or nucleotides that existed prior to the attack. The simplest strategy for restoring 
the structure of chemically altered DNA involves an enzyme-catalyzed reversal of the 
chemical reaction that initially created the altered base. As such, a DNA-alkyltransferase 
can remove methyl and ethyl adducts from the O6 position of guanine, thereby restoring 
the structure of the normal base. The importance of this enzyme, MGMT, as a DNA 
alkyltransferase in the development of certain kinds of human tumors is suggested by 
observations that the MGMT gene is silenced by promoter methylation in as many of 
40% of gliomas and colorectal tumors, and in about 25% of NSCLC’s, lymphomas and 
head and neck cancers [7].

DNA-promoter methylation is a well-known epigenetic process and refers to binding 
of a methyl group to cytosine nucleotides in the DNA sequence. Aberrant promoter 
methylation of CpG islands in the promoter regions of tumor cells is one of the major 
mechanisms for silencing of tumor suppressor genes. The DNA repair protein encoded 
by the MGMT suppressor gene removes alkyl groups from the O6 position of guanine 
[8]. The epigenetic silencing of the MGMT gene via promoter methylation of specific 
CpG islands of its promoter, hence leads to loss of expression of MGMT enzyme [9].

In tissue, MGMT promoter methylation status can be assessed by polymerase chain 
reaction (PCR) and MGMT expression by immunohistochemistry (IHC). This can be 
adequately done on cytology or small biopsies [10]. Quality and validation of the tests 
are important for an accurate assessment [11,12]. However, MGMT quantification by 
IHC varies greatly between laboratories because of the difficulty of the method [13] 
. Expression of MGMT proteins varies, with lower MGMT levels in tumor tissue than 
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in normal tissue. There seems no clear correlation between the expression of MGMT 
protein in tumor compared to the MGMT promoter methylation.

WHAT IS THE PROGNOSTIC ROLE OF MGMT IN NSCLC?

MGMT promoter methylation status in NSCLC was assessed in a review of 18 studies 
[14]. The presence of MGMT promoter methylation was tested in 1160 tumor samples 
and in 970 control samples of either plasma, serum or bronchoalveolar lavage fluid. 
The odds ratio of MGMT promoter methylation was higher in tumor tissue than in 
control samples (OR = 4.43, 95% CI: 2.85–6.89), suggesting that MGMT gene promoter 
methylation is frequent in NSCLC. Profiles are different in adenocarcinoma and squamous 
cell carcinoma [15].

In a prospective series of patients with NSCLC, MGMT promoter methylation determined 
by PCR was observed in patients with NSCLC, but not in the mucosa of healthy controls 
[16]. The promoter methylation frequency ranged from 0 to 50%, with an overall index of 
18%. Even in sputum of cancer-free smokers, MGMT promoter methylation is detectable, 
suggestive of a correlation with the risk of lung cancer [13,17]. Similarly, a low protein 
expression of MGMT was found in bronchial epithelium of patients with lung cancer, 
compared to healthy controls, suggesting that there is an association between MGMT 
expression and lung cancer risk [18]. Further validation whether MGMT-expression 
is a marker for early detection of lung cancer is needed [19]. Histologically negative 
bronchial margins of resected lung tumors frequently exhibit promoter methylation 
changes. These may represent a field of preneoplastic changes for recurrence of NSCLC 
[20]. In comparing the promoter methylation patterns of malignant and non-malignant 
lung tissues from the same patients, many discordances occurred whereby the genes 
methylated in non-malignant tissues are not methylated in the matching tumor tissues. 
This suggests that promoter methylation is possibly a preneoplastic change.

The prognostic role of MGMT promoter methylation was tested in three surgical series. 
These studies reported that 15–51% of patients tested positive for MGMT promoter 
methylation. Brabender et al. reported the promoter methylation status of the MGMT 
gene in 34 of 90 (38%) resected NSCLC samples and 16 of 90 (18%) matching normal 
tissue [21]. MGMT promoter methylation in normal tissue was always accompanied 
by MGMT promoter methylation in matched tumor tissue. Patients without MGMT 
promoter methylation showed a significantly better survival than patients with the 
promoter methylation, suggesting that MGMT promoter methylation is a prognostic 
biomarker for a more aggressive behavior of NSCLC. This is in contrast with patients with 

4
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glioblastoma multiforme (GBM), in whom MGMT promoter methylation is considered 
a favorable prognostic variable [22].

In a prospective surgical series in patients with stages pI to pIIIA, MGMT promoter 
methylation was present in 8% of the cases and was not associated with improved 
overall survival (OS) or recurrence-free survival (RFS) [23]. In a retrospective analysis 
of resected NSCLC specimens, reduced or absent MGMT protein expression was found 
in 48 of 112 NSCLC’s (43%), and was significantly correlated with nodal metastasis and 
squamous or undifferentiated cell types and p53 overexpression, suggesting that loss 
of MGMT expression plays a role in disease progression [24].

Retrospective analysis of MGMT expression and survival of 108 patients with stage I and 
II NSCLC led to the conclusion that there was no correlation [25]. MGMT expression was 
reduced in 18.1% of poorly differentiated tumors and in 77.8% of large cell carcinoma 
cases. MGMT promoter methylation however, was associated with a poor prognosis. 
Other studies found no relationship between MGMT promoter methylation and survival 
in resected patients [26].

In conclusion, MGMT promoter hypermethylation in lung cancer is frequent, but the 
prognostic association is unclear and limited to the earlier stages of NSCLC.

WHAT IS THE PROGNOSTIC ROLE OF MGMT IN BRAIN 
METASTASES OF LUNG CANCER?

Brain metastases are a common complication of patients with lung cancer, occurring in 
approximately 25% of patients. Brain metastases have a major impact on quality of life 
with a poor median survival of around 4 months. As promoter methylation of the MGMT 
gene is frequently observed in GBM, a retrospective analysis assessed MGMT expression 
with IHC and promoter methylation with PCR in 86 biopsies of brain metastases of lung 
cancer [27, 28]. Paired specimens of lung were available for 20 patients. MGMT protein 
expression was seen in 71 of 86 (83%) brain metastases and 10 of 20 (50%) primary 
lung cancers (p = 0.004). There was a trend toward lower frequency of MGMT protein 
expression in SCLC compared to NSCLC (50% versus 85%, p = 0.063). No correlation was 
found between the MGMT protein expression or promoter methylation status in brain 
metastases and paired lung tumor tissue. All tumors with MGMT promoter methylation 
were negative for MGMT protein expression, and tumors with protein expression did not 
have the MGMT promoter methylation. Furthermore, no correlation was found between 
MGMT promoter methylation status or expression and response to prior chemotherapy. 
MGMT promoter methylation in brain metastases was inversely correlated with survival. 
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Patients with MGMT protein expression in brain metastases had significantly longer 
median survival than those without (16.5 versus 3.5 months, p < 0.001). MGMT protein 
expression in brain metastases was hence considered an independent prognostic factor.

MGMT promoter methylation assessment in brain metastases of patients with NSCLC 
treated by resection followed by whole brain radiotherapy (WBRT), showed that the 
relapse rate was higher in methylated tumors [29] . In this retrospective series, 55 
patients were included of which only 5 patients (9.1%) had a methylated MGMT gene. 
The median PFS in the brain was 4.0 months with and 11.5 months without promoter 
methylation. The median overall survival time (MST) was 6.2 months with promoter 
methylation and 20.9 months without promoter methylation. The promoter methylation 
status was not correlated to any patient characteristics. Due to an insufficient number 
of patients with MGMT promoter methylation, MGMT promoter methylation status was 
not prognostic for the outcome.

In conclusion, the findings in brain metastases of lung cancer corroborate the ones 
described earlier in NSCLC.

WHAT IS THE PROGNOSTIC ROLE OF MGMT IN NETS?

In retrospective series, MGMT is hypermethylated in 27% of lung NETs [30], and 40% 
of pancreatic NETs [31]. Loss of MGMT protein was associated with adverse outcomes 
in a surgical series, but not independently from stage and grade of the disease. No 
prospective data are available in lung NETs. The profile of MGMT promoter methylation 
and protein expression in NETs is different from that of NSCLC [15]. The overall pattern 
of promoter methylation in SCLC and carcinoids are comparable, carcinoids having lower 
frequencies of promoter methylation than SCLC.

WHAT IS THE RELATIONSHIP BETWEEN MGMT AND 
ALKYLATING AGENTS?

Alkylating agents leads to cell death by alkylation of the O6- position of guanine and 
subsequent disturbance of DNA replication [32]. Presence of a non-silenced MGMT 
gene is considered predictive of resistance to alkylating agents [33–36]. By promoter 
methylation, the MGMT gene is silenced, the cell becomes unable to repair its damaged 
DNA. Unrepaired DNA lesions trigger apoptosis and hence an increased sensitivity to 
DNA damaging agents, e.g. alkylating drugs. Low MGMT protein expression has been 
associated with response to alkylating drugs in GBM, which is an aggressive form of 
brain cancer with a median survival of less than a year [37].

4
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Temozolomide (TemodalTM)is a triazene derivative, adding an alkylating group on 
DNA [38]. It is a prodrug and has its activity after conversion into monomethyl 
triazenoimidazole carboxamide (MTIC). Oral absorption of the drug is rapid [32]. 
Temozolomide is well-tolerated and toxicities are mild [39]. Trombocytopenia is the most 
common adverse event, causing dose modification or treatment discontinuation. Grade 4 
toxic effects are rare. No consensus is achieved on the optimal dosage of temozolomide. 
Protracted schedules of temozolomide may lead to reduction of the cell’s capability 
for MGMT-mediated DNA repair and resistance by the prolonged depletion of MGMT 
activity [40]. A randomized phase III trial of adjuvant dose-dense temozolomide (75 
mg/m2 day 1–21 of a 28-day cycle) versus standard temozolomide (75 mg/m2 day 
1–5 of a 28-day cycle)in newly diagnosed GBM did not improve efficacy, regardless of 
MGMT promoter methylation [41]. Temozolomide crosses the blood-brain barrier and 
patients with brain metastases might benefit from this treatment [42]. The drug was 
extensively studied in brain tumors, more specifically in GBM [37, 43]. Based on these 
results, temozolomide is approved for use in patients with GBM and refractory high 
grade astrocytoma [44] . Several studies conclude that the benefit of temozolomide is 
largest in tumors that have a MGMT promoter methylation, and are thus unable to repair 
the chemotherapy-induced DNA damage [33, 45, 36]. The epigenetic silencing of the 
DNA-repair enzyme MGMT is hence considered a strong predictive factor for favorable 
outcome in patients with GBM treated with temozolomide [46].

Little is known about the resistance mechanisms to temozolomide. Resistance to 
temozolomide is likely predicted by the presence of a somatic MSH6 mutation 
independently of MGMT promotor promoter methylation [47,48]. Another mechanism 
of resistance is caused by alkylpurine-DNA-N-glycosylase (APNG), also known as DNA 
methylpurine-N-glycosylase (MPG)[49]. Evaluation of APNG protein levels demonstrated 
that high nuclear APNG expression was correlated with a poorer overall survival in 
patients with GBM. An important role in tumor resistance to alkylating agents is the 
potent MGMT-inactivating agent O6-benzylguanine (O6-BG). Preclinical data suggested 
that the combination of lomeguatrib (O6-(4-bromothenyl)guanine) and temozolomide 
can overcome the resistance mechanism and improve inhibition of tumor growth [45,50]. 
A new drug to overcome resistance may be NE0212, a temozolomide analog [51].

WHAT IS THE ACTIVITY OF TEMOZOLOMIDE IN NSCLC?

As temozolomide crosses the blood-brain barrier with therapeutic concentrations to the 
brain and in view of its activity in primary brain tumors, the drug was extensively tested 
in the prevention and treatment of brain metastasized lung cancer [52]. Temozolomide 
was tested in first line [53], as maintenance [54] and in pretreated patients [55–61]. As 
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temozolomide has a radiosensitizing effect [62], combinations of temozolomide with 
WBRT were conducted [63–71] (Table 1).

The EORTC LCG 08965 performed a phase II study with temozolomide in chemo-naïve 
patients with advanced NSCLC and compared 12 patients with and 13 patients without 
brain metastases [53]. Patients received 200 mg/m2 for 5 days of a 28-day cycle. First-line 
treatment with temozolomide did not demonstrate any activity in these stage IV NSCLC. 
Investigator bias can have resulted in a patient group with a relatively poor performance 
status, since a platinum-doublet was considered too challenging in these patients. 
Temozolomide maintenance after completion of first-line therapy for NSCLC also does 
not decrease the incidence of brain metastases in patients with locally advanced NSCLC 
[54]. Temozolomide has hence no place in the first line or maintenance treatment of 
patients with NSCLC with or without brain metastases.

Temozolomide has been studied in pretreated patients with advanced NSCLC (Table 
1) [55–60]. Its activity and survival times are comparable to other drugs in the second 
line treatment of advanced NSCLC. Temozolomide was well tolerated and may be a 
reasonable treatment option for patients with brain metastases of lung cancer.

Only one phase 2 study with temozolomide investigated whether MGMT promoter 
methylation was linked to the response to temozolomide [61]. Of 740 patients with a 
solid tumor, 86 showed MGMT promoter methylation, of which 13 of 242 for NSCLC (5%). 
The response rate (RR) for the patients with NSCLC was 0%. The efficacy of temozolomide 
in patients with NSCLC with confirmed methylated MGMT status is nihil.

As temozolomide has a radiosensitizing effect, the combination with WBRT may improve 
its therapeutic effect [62] . Studies were conducted in patients with brain metastases 
and the combination seems safe and feasible (Table 1). However, the benefit of adding 
temozolomide to WBRT in NSCLC is not confirmed. One trial showed no survival 
improvement, but statistically significant improved response rates with addition of 
temozolomide to WBRT [63]. Results are difficult to interpret in a patient series in 
which extra-cranial progression had a considerable impact on prognosis. The efficacy 
of concomitant temozolomide on survival remains hence unclear [64]. In these studies, 
no MGMT biomarker assessment was done [65–71].

Combinations of temozolomide and other cytotoxic agents have been tested in an 
attempt to improve efficacy [72–84] (Table 1). Vinorelbine has a broad-spectrum in 
vivo and in vitro action in solid tumors and may enhance penetration across the blood-
brain barrier [73]. A phase I study the combination of vinorelbine and temozolomide 

4
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Temozolomide in NSCLC

Author [reference] Design Patients N biomarker brain-
metastases

Dosage temozolomide Response Median TTP (mo) MST (mo) 1 year 
survival 
rate (%)

Toxicity

Dziadzuiszko [53] phase 2, single arm temozolomide first-line 25 no 12 (48%) 200 mg/m2 day 1 - 5 of a 28 
day cycle

no responses

Kouroussis [55] phase 2, single arm temozolomide pretreated 
patients

31 no 12 (39%) 75 mg/m2 day 1 - 21 of a 28 
day cycle

2 PR, 3 SD 2.4 3.3 22.5 1 grade 5 neutropenia

Giorgio [56] phase 2, temozolomide ≥ second-line 30 no 100% 150 mg/m2 day 1 - 5 of a 28 
day cycle

2 CR, 1 PR, 3 SD 19 mo in patients 
with CR, 11 months in 
patients with PR

no grade 3 / 4

Adonizio [57] phase 2, single arm temozolomide ≥ second-line 38 no 75 mg/m2/day for 6 weeks of 8 
to 10 weeks

1 CR, 2 PR, 12 SD, 
19 PD

no grade 4 / 5

Abrey [58] phase 2, single arm temozolomide ≥ second-line 22 NSCLC, 2 SCLC no 100% 150 mg/m2 day 1 - 5 of a 28 
day cycle

DCR 40% no grade 4 / 5

Siena [59] phase 2, single arm, two step 
temozolomide

pretreated 53 (34%) no 100% 150 mg/m2 day 1 - 7 and day 
15 - 21 of a 28 day cycle

2% CR, 4% PR, 21% 
SD, DCR was 29% 
with WBRT and 18% 
without WBRT

2.2 5.7 mild, mostly 
trombocytopenia

Christodoulou [60] phase 2, single arm temozolomide pretreated 12 NSCLC, 5 SCLC of 
28 pts

no 100% 150 mg/m2 day 1 - 5 of a 28 
day cycle

1 PR in NSCLC, 4 SD 
(17%)

no grade 3 / 4

Hochhauser [61] phase 2, single arm temozolomide pretreated 242 MGMT 
promoter 
methylation

150 mg/m2 day 1 - 7 and day 
15 - 21 of a 28 day cycle

4 SD (40%), 5 PD 
(50%), 1 NA, RR 10% 
in NSCLC

Antonadou [63] phase 2, randomized, WBRT +/- 
temozolomide

pretreated no 100% 75 mg/m2 day during 
radiotherapy, thereafter 200 
mg/m2 day 1 - 5 of a 28 day 
cycle, for 6 cycles

Minniti [64] temozolomide + second course of WBRT pretreated 18 (of 27) no 100% 75 mg/m2 day 1 - 10

Chua [65] phase 2, randomized, WBRT +/- 
temozolomide

pretreated 47 no 100% 75 mg/m2 day 1 - 28 of a 35 
day cycle

3.1 4.4 mild to moderate, 6% ≥ 
grade 3

Mikkelsen [66] phase 1 / 2 dose escalation temozolomide 
+ WBRT

pretreated 13 no 100% MTD 95 mg/m2 day during 
WBRT

3 PR (18%), 10 SD 
(59%)

2.4

Addeo [67] phase 2, temozolomide + WBRT pretreated 27 no 100% 75 mg/m2 day 1 - 10, followed 
by 75 mg/m2 day 1 - 21 of a 28 
day cycle

15% grade 3 neutropenia, 
13% grade 3 neutropenia, 
1 patient with grade 4 
trombocytopenia

Wang [68] retrospective, temozolomide + WBRT pretreated 32 no 100% 1 CR, 9 PR, 15 SD 5.5 8 no grade 3 / 4

Hassler [69] phase 2, temozolomide + WBRT, closed 
due to poor accrual

pretreated no 100%

Kouvaris [70] phase 2, temozolomide + WBRT pretreated 11 (of 33) no 100% 75 mg/m2 day during 
radiotherapy, thereafter 200 
mg/m2 day 1 - 5 of a 28 day 
cycle, for 6 cycles

RR 54.5%, RR in brain 
78.6%

12

Verger [71] phase 2, randomized, WBRT +/- 
temozolomide, closed due to poor 
accrual

pretreated no 100% 75 mg/m2 day during 
radiotherapy, thereafter 200 
mg/m2 day 1 - 5 of a 28 day 
cycle, for 2 cycles

Omuro [74] phase 1, single arm, temozolomide + 
vinorelbine

pretreated no

Iwamoto [75] phase 2, single arm, temozolomide + 
vinorelbin

pretreated 17 NSCLC and 3 
SCLC

no 100% 150 mg/m2 day 1 - 7 and day 
15 - 21 of a 28 day cycle

1 CR in NSCLC, 5 SD, 
29 PD

5 (in the 
patient with 
CR)

Tamaskar [77] phase 1, single arm, temozolomide + 
docetaxel

pretreated no

Caraglia [78] phase 2, single arm temozolomide + 
pegylated liposomal doxorubicin

pretreated 6 (31.6) no 100% 200 mg/m2 day 1 - 5 of a 28 
day cycle

7 PR (37%) in 19 
patients (all solid 
tumours)

no grade 4 / 5

Choong [79] phase 2, randomized, temozolomide vs 
irinotecan

second-line 46 no 4 PR, 17 SD 1.8 9.8 34 9% grade 3 / 4 leucopenia 
and diarrhea, 1 grade 5

Britten [80] phase 1, single arm, temozolomide + 
cisplatin

pretreated no

Christodoulou [81] phase 2, single arm, temozolomide + 
cisplatin

pretreated 32 (lung and breast) no 150 - 200 mg/m2 day 1 - 5 of a 
28 day cycle

10 PR (31%), 5 SD 
(16%)

grade 3 / 4 mostly 
hematological, 1 grade 5 
neutropenic fever

Table 1. Temozolomide in lung cancer
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Temozolomide in NSCLC

Author [reference] Design Patients N biomarker brain-
metastases

Dosage temozolomide Response Median TTP (mo) MST (mo) 1 year 
survival 
rate (%)

Toxicity

Dziadzuiszko [53] phase 2, single arm temozolomide first-line 25 no 12 (48%) 200 mg/m2 day 1 - 5 of a 28 
day cycle

no responses

Kouroussis [55] phase 2, single arm temozolomide pretreated 
patients

31 no 12 (39%) 75 mg/m2 day 1 - 21 of a 28 
day cycle

2 PR, 3 SD 2.4 3.3 22.5 1 grade 5 neutropenia

Giorgio [56] phase 2, temozolomide ≥ second-line 30 no 100% 150 mg/m2 day 1 - 5 of a 28 
day cycle

2 CR, 1 PR, 3 SD 19 mo in patients 
with CR, 11 months in 
patients with PR

no grade 3 / 4

Adonizio [57] phase 2, single arm temozolomide ≥ second-line 38 no 75 mg/m2/day for 6 weeks of 8 
to 10 weeks

1 CR, 2 PR, 12 SD, 
19 PD

no grade 4 / 5

Abrey [58] phase 2, single arm temozolomide ≥ second-line 22 NSCLC, 2 SCLC no 100% 150 mg/m2 day 1 - 5 of a 28 
day cycle

DCR 40% no grade 4 / 5

Siena [59] phase 2, single arm, two step 
temozolomide

pretreated 53 (34%) no 100% 150 mg/m2 day 1 - 7 and day 
15 - 21 of a 28 day cycle

2% CR, 4% PR, 21% 
SD, DCR was 29% 
with WBRT and 18% 
without WBRT

2.2 5.7 mild, mostly 
trombocytopenia

Christodoulou [60] phase 2, single arm temozolomide pretreated 12 NSCLC, 5 SCLC of 
28 pts

no 100% 150 mg/m2 day 1 - 5 of a 28 
day cycle

1 PR in NSCLC, 4 SD 
(17%)

no grade 3 / 4

Hochhauser [61] phase 2, single arm temozolomide pretreated 242 MGMT 
promoter 
methylation

150 mg/m2 day 1 - 7 and day 
15 - 21 of a 28 day cycle

4 SD (40%), 5 PD 
(50%), 1 NA, RR 10% 
in NSCLC

Antonadou [63] phase 2, randomized, WBRT +/- 
temozolomide

pretreated no 100% 75 mg/m2 day during 
radiotherapy, thereafter 200 
mg/m2 day 1 - 5 of a 28 day 
cycle, for 6 cycles

Minniti [64] temozolomide + second course of WBRT pretreated 18 (of 27) no 100% 75 mg/m2 day 1 - 10

Chua [65] phase 2, randomized, WBRT +/- 
temozolomide

pretreated 47 no 100% 75 mg/m2 day 1 - 28 of a 35 
day cycle

3.1 4.4 mild to moderate, 6% ≥ 
grade 3

Mikkelsen [66] phase 1 / 2 dose escalation temozolomide 
+ WBRT

pretreated 13 no 100% MTD 95 mg/m2 day during 
WBRT

3 PR (18%), 10 SD 
(59%)

2.4

Addeo [67] phase 2, temozolomide + WBRT pretreated 27 no 100% 75 mg/m2 day 1 - 10, followed 
by 75 mg/m2 day 1 - 21 of a 28 
day cycle

15% grade 3 neutropenia, 
13% grade 3 neutropenia, 
1 patient with grade 4 
trombocytopenia

Wang [68] retrospective, temozolomide + WBRT pretreated 32 no 100% 1 CR, 9 PR, 15 SD 5.5 8 no grade 3 / 4

Hassler [69] phase 2, temozolomide + WBRT, closed 
due to poor accrual

pretreated no 100%

Kouvaris [70] phase 2, temozolomide + WBRT pretreated 11 (of 33) no 100% 75 mg/m2 day during 
radiotherapy, thereafter 200 
mg/m2 day 1 - 5 of a 28 day 
cycle, for 6 cycles

RR 54.5%, RR in brain 
78.6%

12

Verger [71] phase 2, randomized, WBRT +/- 
temozolomide, closed due to poor 
accrual

pretreated no 100% 75 mg/m2 day during 
radiotherapy, thereafter 200 
mg/m2 day 1 - 5 of a 28 day 
cycle, for 2 cycles

Omuro [74] phase 1, single arm, temozolomide + 
vinorelbine

pretreated no

Iwamoto [75] phase 2, single arm, temozolomide + 
vinorelbin

pretreated 17 NSCLC and 3 
SCLC

no 100% 150 mg/m2 day 1 - 7 and day 
15 - 21 of a 28 day cycle

1 CR in NSCLC, 5 SD, 
29 PD

5 (in the 
patient with 
CR)

Tamaskar [77] phase 1, single arm, temozolomide + 
docetaxel

pretreated no

Caraglia [78] phase 2, single arm temozolomide + 
pegylated liposomal doxorubicin

pretreated 6 (31.6) no 100% 200 mg/m2 day 1 - 5 of a 28 
day cycle

7 PR (37%) in 19 
patients (all solid 
tumours)

no grade 4 / 5

Choong [79] phase 2, randomized, temozolomide vs 
irinotecan

second-line 46 no 4 PR, 17 SD 1.8 9.8 34 9% grade 3 / 4 leucopenia 
and diarrhea, 1 grade 5

Britten [80] phase 1, single arm, temozolomide + 
cisplatin

pretreated no

Christodoulou [81] phase 2, single arm, temozolomide + 
cisplatin

pretreated 32 (lung and breast) no 150 - 200 mg/m2 day 1 - 5 of a 
28 day cycle

10 PR (31%), 5 SD 
(16%)

grade 3 / 4 mostly 
hematological, 1 grade 5 
neutropenic fever

4
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Cortot [82] phase 2, temozolomide / cisplatin + 
WBRT

no grade 3 / 4 neutropenia 
(20%) and trombopenia 
(22%)

Sperduto [83] phase 3, randomized, WBRT + SRS or 
WBRT + SRS + temozolomide or WBRT + 
SRS + erlotinib

no 100%

Pesce [84] phase 2, randomized, WBRT + gefitinib or 
WBRT + temozolomide

pretreated no 100% 4.9 fatigue

Temozolomide in SCLC

Author [reference] Design Patients N (number) biomarker brainmetastases Dosage temozolomide Response Median TTP (mo) MST (mo) 1 year 
survival 
rate (%)

Toxicity

Pietanza [86] phase 2, single arm, temozolomide ≥ second-line MGMT 
promoter 
methylation

75 mg/m2 day 1 - 21 of a 28 
day cycle

RR 22% in the 
unselected group, RR 
38% in patients with 
brain metastases, RR 
19% in third line

Zauderer [87] phase 2, single arm, temozolomide pretreated 25 MGMT 
protein 
expression 
and MGMT 
promoter 
methylation

200 mg/m2 day 1 - 5 of a 28 
day cycle

PR in 12 pts (48%), 
no responses in the 
brain

grade 3 / 4 hematologic in 5 
patients (20%)

Temozolomide in NETs

Author [reference] Design Patients N biomarker Dosage temozolomide Response Median TTP (mo) MST (mo) 2 year 
survival 
rate (%)

Toxicity

Chong [94] retrospective, temozolomide-based pretreated 14 no RR 14% (2 pts), 57% 
DCR (8 pts)

10

Ekeblad [95] retrospective, single arm temozolomide pretreated 13 MGMT 
protein 
expression

200 mg/m2 day 1 - 5 of a 28 
day cycle

0 CR, 31% PR (4 pts), 
31% SD (4 pts), 38% 
PD (5 pts)

7 grade 3 / 4 hematologic 
toxicity in 4 of 35 pts

Crona [96] retrospective, single arm temozolomide pretreated 31 no 14% PR, 52% SD 5.3 23.2

Kulke [100] phase 2, prospective, single arm 
temozolomide + bevacizumab

pretreated no 150 mg/m2 day 1 - 7 and day 
15 - 21 of a 28 day cycle

92% SD 10% infection during 
lymphopenia

Koumarianou [101] phase 2, prospective, single arm 
temozolomide + bevacizumab + 
octreotide

pretreated no

Chan [102] phase 2, prospective, single arm 
temozolomide + bevacizumab

4 (12%) no

Kulke [103] phase 2, prospective, single arm 
temozolomide + thalidomide

pretreated 15 no 1 pt with PR 70%

Isacoff [104] retrospective, temozolomide + 
capecitabine

200 mg/m2 day 1 - 14 of a 28 
day cycle

Spada [105] retrospective, temozolomide + 
capecitabine

no 200 mg/m2 day 1 - 14 of a 28 
day cycle

Strosberg [106] retrospective, temozolomide + 
capecitabine

Ki-67 200 mg/m2 day 1 - 14 of a 28 
day cycle

D’Alpino Peixoto 
[107]

temozolomide + capecitabine 3 (10.9%) no 200 mg/m2 day 1 - 14 of a 28 
day cycle

Temozolomide in NSCLC

Table 1. Continued

NSCLC: non-small cell lung cancer; SCLC: small-cell lung cancer; NETs: neuroendocrine tumors; TTP: time to progression; MST: median survival 
time; MTD: maximum tolerated dose; WBRT: whole brain radiotherapy; SRS: stereotactic radiosurgery; RR: response rate; CR: complete response; 
PR: partial response; SD: stable disease; PD: progressive disease; DCR: disease control rate; NS: not stated
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Cortot [82] phase 2, temozolomide / cisplatin + 
WBRT

no grade 3 / 4 neutropenia 
(20%) and trombopenia 
(22%)

Sperduto [83] phase 3, randomized, WBRT + SRS or 
WBRT + SRS + temozolomide or WBRT + 
SRS + erlotinib

no 100%

Pesce [84] phase 2, randomized, WBRT + gefitinib or 
WBRT + temozolomide

pretreated no 100% 4.9 fatigue

Temozolomide in SCLC

Author [reference] Design Patients N (number) biomarker brainmetastases Dosage temozolomide Response Median TTP (mo) MST (mo) 1 year 
survival 
rate (%)

Toxicity

Pietanza [86] phase 2, single arm, temozolomide ≥ second-line MGMT 
promoter 
methylation

75 mg/m2 day 1 - 21 of a 28 
day cycle

RR 22% in the 
unselected group, RR 
38% in patients with 
brain metastases, RR 
19% in third line

Zauderer [87] phase 2, single arm, temozolomide pretreated 25 MGMT 
protein 
expression 
and MGMT 
promoter 
methylation

200 mg/m2 day 1 - 5 of a 28 
day cycle

PR in 12 pts (48%), 
no responses in the 
brain

grade 3 / 4 hematologic in 5 
patients (20%)

Temozolomide in NETs

Author [reference] Design Patients N biomarker Dosage temozolomide Response Median TTP (mo) MST (mo) 2 year 
survival 
rate (%)

Toxicity

Chong [94] retrospective, temozolomide-based pretreated 14 no RR 14% (2 pts), 57% 
DCR (8 pts)

10

Ekeblad [95] retrospective, single arm temozolomide pretreated 13 MGMT 
protein 
expression

200 mg/m2 day 1 - 5 of a 28 
day cycle

0 CR, 31% PR (4 pts), 
31% SD (4 pts), 38% 
PD (5 pts)

7 grade 3 / 4 hematologic 
toxicity in 4 of 35 pts

Crona [96] retrospective, single arm temozolomide pretreated 31 no 14% PR, 52% SD 5.3 23.2

Kulke [100] phase 2, prospective, single arm 
temozolomide + bevacizumab

pretreated no 150 mg/m2 day 1 - 7 and day 
15 - 21 of a 28 day cycle

92% SD 10% infection during 
lymphopenia

Koumarianou [101] phase 2, prospective, single arm 
temozolomide + bevacizumab + 
octreotide

pretreated no

Chan [102] phase 2, prospective, single arm 
temozolomide + bevacizumab

4 (12%) no

Kulke [103] phase 2, prospective, single arm 
temozolomide + thalidomide

pretreated 15 no 1 pt with PR 70%

Isacoff [104] retrospective, temozolomide + 
capecitabine

200 mg/m2 day 1 - 14 of a 28 
day cycle

Spada [105] retrospective, temozolomide + 
capecitabine

no 200 mg/m2 day 1 - 14 of a 28 
day cycle

Strosberg [106] retrospective, temozolomide + 
capecitabine

Ki-67 200 mg/m2 day 1 - 14 of a 28 
day cycle

D’Alpino Peixoto 
[107]

temozolomide + capecitabine 3 (10.9%) no 200 mg/m2 day 1 - 14 of a 28 
day cycle

Temozolomide in NSCLC
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was given to patients with brain metastases of solid tumors and this combination is 
safe and feasible [74]. However, the phase II trial of the combination vinorelbine and 
temozolomide did not improve response rates compared to previous studies with single-
agent temozolomide. In this group of patients to receive a treatment with palliative 
intent, the high observed incidence of toxicity was unacceptable [75]. Synergism of 
temozolomide was found with gemcitabine and paclitaxel, but not with platinum 
analogs and topoisomerase inhibitors [76]. Although the combination of docetaxel, 
doxorubicine, irinotecan or cisplatin with temozolomide was safe and feasible for 
patients with brain metastases, no objective responses were seen [77–81]. Association 
of cisplatin to temozolomide followed by WBRT also demonstrated a lack of efficacy and 
was considered too toxic with a grade 3 and 4 neutropenia and trombopenia occurring 
in 20% and 22% of patients, respectively [82]. The addition of erlotinib or gefitinib didn’t 
improve survival and had a possible deleterious effect [83,84].

The principal limitation of the studies with temozolomide in brain metastases is the 
inclusion of different solid tumor types. The activity of monotherapy temozolomide 
is not proven in patients with NSCLC. In combination with WBRT its activity has to be 
confirmed. With a small number of studies that used MGMT promoter methylation as 
a biomarker, no conclusions can be drawn whether to predict a response on treatment 
with temozolomide in NSCLC.

WHAT IS THE ACTIVITY OF TEMOZOLOMIDE IN SCLC AND 
NETS?

Anecdotal responses to temozolomide have been noted in SCLC [85]. Beneficial effects 
have been reported, especially in a subgroup associated with the presence of MGMT 
promoter methylation, although the comparison did not meet statistical significance 
and was analyzed retrospectively [86]. Patients with progressive SCLC after one or two 
prior chemotherapy regimens received temozolomide at 75 mg/m2 daily for 21 days of 
a 28-day cycle. The primary endpoint was RR. The RR of 22% is in an unselected group 
and even in third line the RR was 19%. In the group SCLC with brain metastases the RR 
was 38% (Table 1).

Twenty-five patients were enrolled in a single center trial of a 5- day dosing regimen 
of temozolomide 200 mg/m2 in a 28-day cycle [87]. The rationale for this shortened 
dosing schedule was to avoid prolonged myelosuppression. The primary endpoint, 
tolerability, was met with grade 3 and 4 toxicity in only 5 patients. Temozolomide was 
well-tolerated. Responses were seen in 12 patients (48%, 95% CI: 3–31%). No responses 
in the brain were seen with this regimen. Assessment of MGMT expression with IHC was 
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performed in 52% (13 of 25) of patients on archival tissue. One (8%) of the MGMT IHC 
was negative and achieved a partial response. Eight tissues were tested for the MGMT 
promoter methylation and of these, 7 had evidence of promoter methylation of whom 
1 had a partial response. The small sample size does not allow to draw solid conclusions 
about the predictive value of MGMT silencing. A study in relapsed or refractory SCLC is 
recruiting patients with MGMT promoter methylation to be treated with temozolomide 
200 mg/m2 for 5 days of a 28 day cycle until progression or intolerability [88].

Preclinical data show that veliparib, a potent oral inhibitor of poly(ADP-ribose) 
polymerase (PARP) enhances the activity of temozolomide [89]. An ongoing phase II 
trial is comparing the PARP-inhibitor veliparib with temozolomide or temozolomide 
alone in patients with relapsed SCLC [90].

Recent guidelines recommend temozolomide treatment in advanced unresectable 
progressive pulmonary atypical carcinoid tumors [91]. However, no agreement was 
achieved on its optimal dosing regimen and schedule [92]. Furthermore, the NET task 
force recommended that carcinoid tumors and pancreatic NETs should be evaluated 
separately or stratified by primary site in large randomized trials [93]. All publications 
were prospective or retrospective single arm studies [94–107]. In a retrospective series 
of 300 patients with pulmonary carcinoid (80 patients with AC), 14 patients were treated 
with a temozolomide-based therapy [94](Table 1). A RR of 14% (2 of 14 patients) was 
seen, with 57% disease control rate (DCR) (8 of 14 patients) and a median PFS of 10 
months. In another retrospective series of advanced NETs of which 13 pulmonary, 36 
patients were treated with monotherapy temozolomide 200 mg/m2 for 5 days of a 
28-day cycle [95]. In the pulmonary carcinoids no complete responses were noted. In 
4 patients a partial response (31%) was achieved, and stable disease in 4 (31%) and 
progressive disease in 5 (38%) patients. Toxicity was mild, there were no fatal side 
effects. However, dose reduction was necessary due to hematologic reasons in 4 of 35 
patients evaluable for toxicity. Survival data for the bronchial tumors was not separately 
mentioned, but the median time to progression for the whole treatment group was 
7 months (95% CI: 3–10). There was no significant difference in time to progression 
between patients with bronchial tumors and the other organ sites. The MGMT protein 
expression was assessed in 23 patients. There was no significant difference in the RR 
between tumors with low or high MGMT expression.

The efficacy of temozolomide was retrospectively analyzed in 31 patients with progressive 
metastatic pulmonary carcinoids (14 typical, 15 atypical, 2 not classified) [96]. Fourteen 
percent achieved a partial response and 52% a stable disease with a median PFS of 5.3 
months and a median OS of 23.2 months.

4
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Some mixed series of NETs contain only a few patients with pulmonary NETs [97]. 
The median OS and PFS showed a trend towards a better survival for the pancreatic 
NETs compared to the non-pancreatic NETs. The first report on second and third line 
temozolomide-based chemotherapy with NETs after progression, showed a RR of 33% 
and a DCR of 38% [98].

Temozolomide has been used in monotherapy or in combination with bevacizumab or 
capecitabine. The rationale for adding an angiogenesis inhibitor to the treatment is that 
NETs are characterized by abundant vasculature and high levels of vascular endothelial 
growth factor (VEGF) expression, and therefore possibly susceptible for targeted agents 
involving angiogenesis [99]. A phase II study of the combination temozolomide and 
bevacizumab showed an objective response in 24%ofthe patients with pancreatic NET’s, 
while 70% had stable disease [100]. No radiologic responses were seen in the patients 
with carcinoid, but 92% showed stable disease. Other prospective trials combining 
temozolomide and bevacizumab confirm the RR of 18% in pancreatic NETs, although the 
numbers of treated patients with lung NETs are too low to draw any valid conclusions, 
there is a trend towards better response in pancreatic NETs than lung NETs [101,102].

The antiangiogenetic drug thalidomide was evaluated in combination with temozolomide 
in a phase II study of patients with NETs [103]. Of 29 patients, 15 had a carcinoid. The 
group reached an overall objective radiologic response rate of 25% and a 2-year survival 
rate of 70%. Fourteen patients with carcinoid were evaluable for response. In only 1 
patient a radiologic partial response was seen.

The combination of capecitabine and temozolomide for pulmonary NETs has not 
prospectively been investigated. Retrospective data present a better outcome in patients 
with pancreatic NETs than in pulmonary NETs treated with capecitabine 1500 mg/m2 
on day 1–14 and temozolomide 200 mg/m2 on days 1–14 of a 28-day cycle [104–107] 
. There is a trend towards a better RR in patients with a proliferation marker Ki–67 > 
5%, with a more likely response to capecitabine plus temozolomide in pancreatic NETs 
[108]. With the introduction of everolimus and long-acting octreotide in the treatment 
of NETs, the role of temozolomide is possibly limited [109,110].

In conclusion, patients with SCLC benefit from temozolomide if MGMT promoter 
methylation is present, but this has to be confirmed. The presence of MGMT promoter 
methylation is significantly associated with response to temozolomide in NETs [111]. 
Pulmonary NETs showed MGMT expression, but no treatment responses were 
observed [112]. Second line treatment with temozolomide alone or in combination 
with capecitabine or bevacizumab results in objective responses or stabilization in NET. 
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Single agent temozolomide or in combination treatment is also associated with better 
results in digestive NETs than in pulmonary NETs [95].

SUMMARY AND DISCUSSION

Epigenetic alterations in cancer are a potential source of predictive therapeutic biomarkers 
for personalized cancer treatment. MGMT promoter methylation is the best known 
example for predicting response to treatment with alkylating agents in patients with GBM. 
Other epigenetic changes that play a fundamental role in cancer development may have 
an impact on clinical practice. MGMT messenger RNA (mRNA) is a potential prognostic and 
predictive factor for the response on temozolomide. Patients with fewer copies of mRNA 
in their GBM had a longer PFS and OS if treated with temozolomide [113].

We propose to treat patients with refractory or relapsed SCLC and pulmonary NET and 
MGMT promoter methylation with temozolomide in a prospective phase 2 biomarker 
enriched trial. If this trial shows the expected improved activity and toxicity, an ensuing 
randomized phase 2–3 might be considered with overall survival as primary endpoint. 
This trial might lead to a new standard of care in patients with refractory or relapsing 
SCLC, where topotecan is currently the only approved treatment. This medication is toxic, 
with a response rate of 6–17%. There’s an unmet need for new treatment options to 
improve prognosis without adding too much toxicity. In the absence of druggable driver 
mutations, it is ethical to include patients with relapsed or refractory SCLC in clinical 
trials. Repurposing of drugs used for other indications and tumor types is an acceptable 
and innovative strategy in the advancement of treatment of SCLC [114].

CONCLUSION

MGMT gene silencing by promoter methylation is a frequent process in lung cancer, 
but the prognostic association is unclear and maybe restricted to the earlier stages of 
NSCLC. Epigenetic silencing of the DNA-repair enzyme MGMT is a strong predictive factor 
for a favorable outcome in patients with GBM treated with temozolomide. However, 
in the first-line or maintenance treatment in NSCLC with or without brain metastases, 
temozolomide has no place. Patients with SCLC benefit from temozolomide if MGMT 
promoter methylation is present, but this has to be confirmed. The presence of MGMT 
promoter methylation is significantly associated with response to temozolomide in NETs. 
Pulmonary NETs showed MGMT expression, but no treatment responses were observed. 
Temozolomide can be considered a ‘personalized’ treatment if the predictive role of 
MGMT is further confirmed.

4
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ABSTRACT

Background
Novel targets in neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs) are 
needed to improve outcome. The presence of O6- Methylguanine-DNA methyltransferase 
(MGMT) promoter methylation in NETs and NECs may act as a predictive marker for 
response on treatment with temozolomide. As anaplastic lymphoma kinase (ALK) plays 
an important role in the nervous system we hypothesized that ALK rearrangement can 
act as a biomarker in patients with NETs and NECs.

Materials and Methods
We performed a retrospective analysis to establish the frequency of MGMT promoter 
methylation and ALK expression in tissue samples of patients with NETs and NECs. 
Results: 21% (14/67) of patients tested positive for MGMT promoter methylation. MGMT 
promoter methylation was present in 33% (3/9) patients with typical carcinoid, in 22% 
(2/9) patients with atypical carcinoid, in 22% (8/37) patients with small cell lung cancer 
and in 8% (1/12) patient with large cell neuroendocrine carcinoma. ALK- expression was 
present in 14% (10 of 70 patients). In all of these patients, no ALK-rearrangement nor 
ALK-mutation was revealed.

Conclusions
Routine testing of NET and NEC samples for an ALK rearrangement is not recommended 
as ALK-expression is not associated with an ALK-rearrangement. Routine testing of NET 
and NEC samples for MGMT will detect a promoter hypermethylation in a sizable minority 
of patients who are eligible for a targeted treatment with temozolomide.
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INTRODUCTION

Neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs) are a subgroup 
representing less than 20% of lung tumors, with pulmonary NETs considered an 
orphan disease with an incidence of about 2% of all lung tumors [1–3]. NETs and NECs 
encompassing a morphologically and clinically distinct spectrum from typical carcinoid 
(TC) (grade 1) and atypical carcinoid (AC) (grade 2) tumors, to the highly aggressive 
neuroendocrine carcinomas (NECs) grade 3 and 4, small cell lung cancer (SCLC) and 
large cell neuroendocrine (LCNEC) variants with a high metastatic potential and a poor 
prognosis [4]. Their common phenotypic characteristic is the expression of features as 
neuroendocrine granules and the secretion of paraneoplastic cytokines and hormones, 
which reflect a common origin from the embryonal neuroendocrine crest. NETs arise 
from cells throughout the endocrine system. Although the different types of pulmonary 
NETs originate from the Kulchitsky cells of the bronchial mucosa, different mutations 
cause different biology and they are therefore considered separate clinical entities [5].

In the treatment of patients with advanced non-small cell lung cancer (NSCLC), a 
paradigm shift occurred over the last years by the discovery of actionable driver 
mutations and translocations susceptible for targeted treatment. Despite extensive 
research, few innovations in the treatment of NETs and NECs have been proposed. New 
potential targets in NETs and NECs are needed to improve outcome.

In NETs, DNA-promoter methylation might be a mechanism that maintains the 
neuroendocrine biology [6]. DNA-promoter methylation is a well-known epigenetic 
process and refers to one of the major mechanisms for silencing tumor suppressor 
genes. The DNA repair protein encoded by the O6-Methylguanine-DNA methyltransferase 
(MGMT) suppressor gene removes alkyl groups from the O6 position of guanine [7]. 
The epigenetic silencing of the MGMT gene via promoter methylation of specific CpG 
islands of its promoter leads to loss of expression of MGMT enzyme [8]. MGMT promoter 
methylation status can be assessed by polymerase chain reaction (PCR) on either a 
cytology specimen from (needle) aspirations or a tissue specimen from biopsies [9]. 
Temozolomide has shown beneficial effects in patients with relapsed SCLC, especially in 
a subgroup associated with the presence of the MGMT promoter methylation [10]. The 
drug has shown promising activity in patients with glio(-blast-)oma and relapsed SCLC, 
with a response rate of 22% in all comers, of 19% in third-line and of 38% in patients 
with brain metastases [10]. It is hypothesized that the presence of MGMT promoter 
methylation in NETs and NECs may act as a predictive marker for response to treatment 
with temozolomide [11].

5
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The ALK fusion gene is mostly formed by a rearrangement occurring on the short arm 
of chromosome 2 and involves the genes encoding for ALK (2p23.2) and echinoderm 
microtubule-associated protein-like 4 (EML4) (2p21) [12]. Several other translocation 
partners have been described. Rearrangement of ALK occur in a variety of tumors, 
including NSCLC, anaplastic large cell lymphomas, inflammatory myofibroblastic tumors 
and neuroblastomas [13–15]. Little is known about ALK rearrangement in NETs and NECs 
[16]. As ALK plays an important role in the development of the brain and in specific 
neurons in the nervous system, we hypothesize that ALK expression or translocation 
is present in tumors of the neuroendocrine crest [17]. ALK rearrangement can act 
as biomarker for the treatment with ALK inhibitors in this selected patient group. 
Repurposing of drugs used for other indications and/or tumor types is an acceptable and 
innovative strategy in the advancement of treatment of these devastating carcinomas. 
We performed a retrospective analysis on tissue samples of patients with NETs and NECs 
to establish the frequency of MGMT promoter methylation and the frequency of ALK 
expression and rearrangement.

RESULTS

Patients and tumor classification
After approval by the local Scientific board of the local Biobank and of the Ethical 
Committee and having obtained the consent of the patients, we collected from the 
local biobank the archival samples of 74 treatment-naïve patients who were diagnosed 
as NETs and NECs between January 2014 and December 2016, data of the hospital 
electronic system were retrospectively collected. Their characteristics such as age stage, 
diagnosis, performance score and treatment were extracted from their medical records. 
In case of surgically removed NETs, the primary tumor was tested for ALK and MGMT 
promoter methylation. In case of metastasized SCLC or LCNEC most samples were from 
metastases, either lymph node samples or metastases in other organs (except brain 
and bone metastases). Pathological diagnoses of these 74 patients were verified from 
archival tissue and made according to the World Health Organization classification based 
on morphology [4]. Confirmation of the pathologic diagnosis was made by a dedicated 
pathologist (PP) and was performed on IHC with synaptophysin, chromogranin A, and 
Ki-67. Tumors were classified as NETs, typical carcinoid (grade 1) and atypical carcinoid 
(grade 2) tumors, to the NECs grade 3 and 4, SCLC and LCNEC variants with a high 
metastatic potential and a poor prognosis.

Most patients had metastatic SCLC. Patients characteristics and test results are described 
in Table 1. There was adequate tissue available for ALK testing in 70 patients and in 67 
patients for MGMT promoter methylation testing. Patients were treated according to the 
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guideline. Patients were not treated with an ALK-inhibitor in case of positive ALK-IHC, 
nor with temozolomide if presence of MGMT promoter methylation as both treatments 
were not available as reimbursed medication.

Table 1. Patient characteristics and results of ALK and MGMT testing

N = 74 ALK IHC positive ALK IHC negative MGMT positive MGMT negative

Evaluable cases 10 60 14 53

Age range (years) 39 - 88 46 – 88 39 - 88 45 - 88 39 - 88

Gender
 Male
 Female

40 (54%)
34 (46%)

4
6

36
28

7
7

26
27

Disease stage
 I
 II
 III
 IV

17
7
20
30

3
0
3
4

13
6
16
25

4
2
4
4

11
4
15
23

Tumor histology
 Typical carcinoid
 Atypical carcinoid
 SCLC
 LCNEC

10
9
41
14

2 (22%)
2 (25%)
6 (15%)
0 (0%)

7 (78%)
6 (75%)
33 (85%)
13 (100%)

3 (33%)
2 (22%)
8 (22%)
1 (8%)

6 (67%)
7 (78%)
29 (78%)
11 (92%)

ALK: anaplastic lymphoma kinase; IHC: immunohistochemistry; MGMT: O6-Methylguanine-DNA 
methyltransferase; NET: neuroendocrine tumor; NEC: neuroendocrine carcinoma; SCLC: small cell 
lung carcinoma; LCNEC: large cell neuroendocrine carcinoma.

Analysis of ALK IHC, FISH and ALK mutations
Ten of 70 (14%) specimens were ALK IHC positive (Table 1). The ten ALK IHC positive 
specimens consisted of two typical carcinoids, two atypical carcinoids, and six SCLC. 
None of the 13 LCNECs were ALK IHC positive. ALK IHC positive specimen were tested 
for ALK FISH (Figure 1). None of them showed rearrangements. In 5 tissues of high 
ALK expression the presence of ALK mutations was tested, but no ALK mutations were 
present.

5
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Figure 1: (A) ALK IHC staining (10X): moderate to strong staining in 70% of the tumor cells. (B) 
ALK FISH: ALK IHC positive SCLC sample without ALK rearrangement (only fused signals present)

Analysis of the MGMT promoter methylation testing
In 67 of 74 patients, tissue was sufficient for evaluation. In 21% (14/67) of patients tested 
positive for MGMT promoter methylation (Table 1). MGMT promoter methylation was 
present in 33% (3/9) patients with typical carcinoid, in 22% (2/9) patients with atypical 
carcinoid, in 22% (8/37) patients with SCLC and in 8% (1/12) patient with LCNEC.

DISCUSSION

This is one of the largest series with NET and NEC where the role of MGMT promoter 
methylation and ALK is studied.
In our series we found ALK expression in 14% of a cohort of 70 patients with NETs and 
NECs. No ALK- rearrangement was present. These findings are in accordance with the 
largest series of patients with SCLC published [18–20] (Table 2). To evaluate whether 
ALK expression in NET/NEC is generally associated with ALK mutations we selected five 
patient samples with a high ALK expression for ALK mutation analysis. We made the 
assumption that if ALK-mutations were absent in the high-expressors, patients with a 
low or negative ALK expression harbored no ALK mutations. None of the specimens with 
a high ALK expression ALK mutations were detected. Kondoh et al., examined specimens 
of 142 patients with SCLC, 41 patients with LCNEC and 11 patients with carcinoids [18]. 
In the SCLC cohort, ALK expression was detected in 16 of 142 (11.3%) and 4 of 12 
specimens were found to carry copy gain numbers. In the LCNEC and carcinoid cohort 
no rearrangements, no amplifications, no point mutations and no ALK expression was 
found. No significant association was found between ALK expression and overall survival. 
The authors conclude that ALK expression in SCLC was due to intrinsic expression of a 
normal ALK transcript.
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In another series aberrant ALK expression in 227 pulmonary NECs was observed in 
2 (2.9%) of 69 SCLC and 1 (0.9%) of 106 LCNEC [19]. In 52 carcinoid tumors no ALK 
expression was observed. In three ALK positive NECs no ALK rearrangement nor 
amplification was found, also no ALK mutation was detected. In a smaller series of 32 
LCNEC tumors, no ALK expression was seen. Nor were ALK fusions or ALK mutations 
detected [20]. This data is in agreement with our results demonstrating that ALK 
expression is not associated with the presence of an ALK rearrangement or ALK mutation.

A number of case-reports on ALK rearrangements in atypical carcinoid, SCLC and LCNEC 
have been reported (Table 2). Not all specimen were tested for ALK expression, and 
no ALK mutations were revealed. Two cases of SCLC were reported containing an ALK 
rearrangement in a series of 30 patients with SCLC [16, 21]. Both cases had a combined 
SCLC with an ALK expression and an adenocarcinoma. In the first case presented the 
adenocarcinoma component harbored an EGFR mutation, deletion in exon 19 [16]. It 
was stated by the authors that adenocarcinomas with an EGFR mutation can transform 
into SCLC in the process of acquiring resistance to EGFR tyrosine kinase inhibitors. As 
this patient didn’t receive any medication before diagnosis, the mechanism rather 
reflects coincidence than transformation as acquired resistance. In the second case 
report a patient with SCLC harboring a variant 2 of the EML4-ALK fusion gene [21]. This 
SCLC was repeatedly confirmed by histological biopsy, however stained negative for 
TTF1 and positive for ALK. The patient showed a partial response on chemotherapy. 
After progression, a biopsy confirmed SCLC with ALK expression. The patient didn’t 
receive treatment with an ALK inhibitor. In another case of combined SCLC and 
adenocarcinoma, an ALK gene alteration was found in both components [22]. In a case 
report of combined SCLC and atypical carcinoid no testing for ALK was conducted [23]. 
These patients received standard of care, none of these patients were treated with ALK 
inhibitors. We hypothesize that these findings in combined SCLC and adenocarcinoma 
or a combined SCLC and atypical carcinoid suggests that the origin of the lung tumor 
may be monoclonal. We did not include combined tumors in our series.

5
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Case reports of NETs or NECs that were treated with ALK-inhibitors showed different 
responses. One case of atypical carcinoid with an ALK-rearrangement showed partial 
response on alectinib after progression on temozolomide and capecitabine [24]. 
Another patient with an atypical carcinoid with ALK expression and ALK rearrangement 
progressed after chemotherapy and was successfully treated with crizotinib [25]. An 
atypical carcinoid with variant 3a/b ALK rearrangement did not respond to crizotinib 
[26]. Crizotinib as first generation ALK inhibitor maybe less powerful. A case report of a 
patient with LCNEC with ALK rearrangement responding to alectinib after progression 
on chemotherapy [27]. In a case of advanced LCNEC expressing ALK on IHC and an 
ALK rearrangement with FISH, the patient treated with crizotinib in first line [28]. The 
first evaluation six weeks later showed progressive disease. The conclusion is that ALK 
rearrangement may not be of practical importance in LCNEC and that neuroendocrine 
tumors with ALK rearrangement may be less responsive to ALK inhibitors. This stresses 
the importance to assess ALK fusion genes with FISH or NGS (RNA) in case of ALK 
expression [29].

In our series standard testing for ALK was done by FISH testing, as it was – at that 
time – the standard test considered ‘gold standard’. In later times we tested ALK IHC as 
the abnormal ALK protein product of fusion genes may be associated with elevations 
in ALK protein, detectable by IHC. A positive ALK expression is considered sufficient 
indication for treatment with an ALK inhibitor in NSCLC. Currently, superior second 
and third generation ALK inhibitors are available with a better systemic and intracranial 
efficacy than crizotinib, which was used in some of the patients in the case reports. As 
sporadic cases of TKI-addicted ALK altered lung cancers are in the NET/NEC population, 
selected patients fit enough for advanced line therapy, should be tested for the presence 
of ALK protein.

MGMT promoter methylation in NETs and NECs
Epigenetic alterations in cancer are a potential source of predictive therapeutic 
biomarkers for personalized cancer treatment. Whereas MGMT promoter methylation 
may have predictive value, MGMT expression by IHC does not [30].

A feasibility study was conducted in relapsed SCLC to evaluate the MGMT promoter 
methylation in tissue, cytology and sputum [9]. Of 56 patients with SCLC, 30 tissue 
biopsies, 17 fine-needle aspirates, 8 bronchial washings and 1 sputum were available. 
Methylation analysis was obtained in 54 samples (and failed in two bronchial washings). 
MGMT promoter methylation was detected in 35.2% without any significant difference 
between histological and cytological samples (37.9% vs. 32%) (Table 3). The assay used 
for MGMT analysis is an in house developed validated assay for glioblastoma samples. 

5
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The assay is highly suitable for glioblastoma samples as annual EQA schemes for central 
nervous system tumors demonstrate good results. Although the assay works well for 
small tissue fragments and cytology, the assay has not been validated on SCLC/NET/NEC 
samples. The degree of MGMT methylation is a continuous value and the ideal cut-off 
value for hypermethylation of SCLC/NET/NEC might be different than in central nervous 
system tumor. Another limitation is that when a partial loss of both chromosomes 10 
occurs, the MGMT assay can produce a false negative result because this loss is not 
taken in account.

No prospective data about the incidence of MGMT promoter methylation is available 
in lung NETs. In other retrospective series, MGMT is methylated in 0–27% of lung NETs 
[31, 32]. This outcome is comparable to our series.

To our knowledge, one report is available describing MGMT promoter methylation in 
LCNEC samples. This study revealed the presence of MGMT promoter methylation in 2 
of 6 patients [31]. Our retrospective series contains a larger patient group, but in only 
1 patient out of 12 (9%) MGMT promoter methylation was detected.

Table 3. Studies on MGMT promoter methylation in NETs and NECs

Samples 
histology (n)

Samples 
cytology (n)

MGMT promoter 
methylation (%)

Response on 
temozolomide

Miglio [9] SCLC 30 24 35.2 NA

Pietanza [10] SCLC 27 48 RR 38%

Zauderer [37] SCLC 8 87.5 1 PR (14%)

Walter [11] Carcinoid 5 80 NA

Pietanza [39] SCLC 32 31 Not significantly

Lei [31] Carcinoid and 
LCNEC

12 16.6 NA

Lu [38] SCLC 33 51.5 NA

MGMT: O6-Methylguanine-DNA methyltransferase; NET: neuroendocrine tumor; NEC: 
neuroendocrine carcinoma; SCLC: small cell lung carcinoma; LCNEC: large cell neuroendocrine 
carcinoma; NA: not analyzed; RR: response rate; PR: partial response.

MGMT promoter methylation is significantly associated with tumor response to 
temozolomide in glioblastoma multiforme and NETs [10]. Recent guidelines recommend 
temozolomide treatment in advanced unresectable progressive pulmonary atypical 
carcinoid tumors [33]. The optimal dosing regimen and schedule with temozolomide is 
still under debate [34]. Treatment with temozolomide is an option in relapsed advanced 
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SCLC [35], however, the only approved second-line treatment in relapsed SCLC is 
topotecan [36].

The efficacy of temozolomide was reported in several studies (Table 3). The sample size 
is too small to estimate a pooled response rate on temozolomide in the MGMT promoter 
methylation positive patients. Pietanza et al., studied 64 patients with progressive SCLC 
after one or two prior chemotherapy regimens who received temozolomide at 75 mg/
m2 daily for 21 days of a 28-day cycle [10]. The primary endpoint was response rate. The 
tumor response of 22% was observed in an unselected group, in third line the tumor 
response was 19%. In those with brain metastases the tumor response was 38%. In 48% 
(n = 27) of patients, a MGMT promoter methylation was detected. The response rate 
to temozolomide was 38% in the MGMT promoter methylated group versus 7% in the 
group without MGMT promoter methylation, suggesting that a tumor response due to 
temozolomide may be associated with the presence of MGMT promoter methylation. 
Twenty-five patients were enrolled in a single center trial of a 5-day dosing regimen of 
temozolomide 200 mg/m2 in a 28-day cycle [37]. The rationale for this shortened dosing 
schedule was to avoid prolonged myelosuppression. The primary endpoint, tolerability, 
was met with common toxicity criteria grade 3 and 4 toxicity in 5 out of 25 patients. 
Temozolomide was well-tolerated. Responses were seen in 12 patients (48%, 95% CI: 
3–31%). No responses in the brain were seen with this regimen. Eight tissues were 
tested for the MGMT promoter methylation and of these, 7 had evidence of promoter 
methylation of whom 1 had a partial response. The small sample size does not allow 
to draw solid conclusions about the predictive value of MGMT promoter methylation.

In another study, 17 out of 33 Chinese SCLC patients (51.5%) had MGMT promoter 
methylation [38]. A comparative study between temozolomide and veliparib versus 
temozolomide with placebo in patients with relapsed SCLC did not show improved 
progression free survival [39]. Analysis of MGMT promoter methylation as a biomarker 
was limited, as sufficient DNA was available in only 32 of 104 tumor samples. The MGMT 
promoter was methylated in 31% (7 of 32) of the samples tested and was not associated 
with tumor response or with improved progression free survival or overall survival.

Our series revealed MGMT promoter methylation in 22% of patients with SCLC. As 
SCLC is a recalcitrant illness, there is an unmet need for treatment options in relapsed 
or refractory disease. As guidelines recommend treatment with temozolomide, 
stratification by MGMT promoter methylation can select a patient group that benefits 
from temozolomide. We propose a prospective study in which a biomarker selected 
patient group with MGMT promoter methylation is treated with temozolomide.

5
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MATERIALS AND METHODS

Neuroendocrine protein expression
Confirmation with immunohistochemistry (IHC) was performed with neuroendocrine 
markers such as synaptophysin, chromogranin A. Ki-67 expression was used as 
proliferation marker. IHC was performed with synaptophysin (clone DAK-SYNAP, RTU, 
Agilent), chromogranin A (Clone LK2H10, 1/500, Menarini), and Ki-67 (Clone MIB-1, 
RTU, Agilent) on an Autostainer Link 48 instrument (Agilent) using the Envision Flex 
detection kit (Agilent).

ALK Immunohistochemistry
Subsequently, these samples were analyzed for ALK expression. FFPE sections (5-µm 
thickness) were stained using ALK 5A4 (Leica) with EnVison Flex+, mouse high pH 
detection reagents on an Autostainer Lin 48 instrument (Dako, Glostrup, Denmark). The 
sections were subsequently incubated in high pH buffer (20 min, 97°C; PT-Link, Dako), 
peroxidase blocking buffer (5min), primary antibody (1:50, 30 min), mouse-enhanced 
polymer-based linker (30 min), mouse secondary antibody (20 min), diaminobenzidene 
(5 min) and haematoxylin (5 min) as previously described [40]. ALK expression was 
assessed independently by one pathologist (PP) and one scientist (KZ). IHC ALK positive 
samples were evaluated with Fluorescence in-situ hybridization (FISH). High ALK 
expressors were analyzed with next generation sequencing to detect ALK mutations.

ALK Fluorescence in-situ hybridization
FISH was performed on 5-µm formalin-fixed, paraffin-embedded (FFPE) tissue sections 
using the Vysis ALK dual-color, break-apart rearrangement probe in combination with the 
Vysis pre-and post-treatment kit IV (Abbott Molecular, Des Plaines, IL, USA) according 
to the manufacturer’s instructions. Results were analyzed using a fluorescent BX41 
microscope (Olympus, Center Valley, PA, USA) and evaluated according to the Vysis LSI 
ALK Probe manufacturer’s enumeration guidelines.

Fluorescence in-situ hybridization (FISH) with Vysis/Abbott LSI ALK probe was performed 
in IHC positive cases. ALK FISH was considered positive if at least 15% op tumor cells 
showed rearrangement (50 nuclei were evaluated).

ALK mutation analysis
ALK mutation analysis was performed using an in house developed and validated Next 
Generation Sequencing panel detecting single nucleotide variations and small indels in 
genomic DNA of amongst other exon 22, 23 and 25 of the ALK gene with a sensitivity 
of 3%. From each sample 10 unstained slides of 5 µM thickness were prepared. Upon 
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macro dissection of the tumor region gDNA extraction was performed using the QIAamp 
DNA Mini Kit (Qiagen) on a Qiacube instrument. Upon HaloPlex enrichment (Agilent) of 
the target DNA sequencing analysis was executed on a MiSeq platform using the MiSeq 
Reagent kit V2 (300 cycles) (Illumina). Analysis of the data was performed using the JSI 
SeqNExt v4.1.2 software.

Methylation specific PCR of the promoter region of MGMT
MGMT promoter methylation was analyzed with PCR. Upon macro dissection, DNA 
isolation of FFPE section was performed using the QIAamp DNA blood mini kit (Qiagen). 
Bisulfite-mediated conversion of the extracted gDNA was performed using the EpiTect 
Bisulfite kit (Qiagen) according to the manufacturer’s instructions. TaqMan qPCR 
assay was performed on this converted gDNA to amplify MGMT and ACTB with the 
following primers and probes: MGMT-FWD 5′-GCGTTTCGACGTTCGTAGGT-3′, MGMTREV 
5′-GCACTCTTCCGAAAACGAAACG-3′, MGMT-PROBE 5′-FAM-CGCAAACGATACGCACCGCGA, 
ACTB-FWR 5′-TGGTGATGGAGGAGGT TTAGTAAGT, ACTB-REV 5′-AACCAATAAAACCT 
ACTCCTCCCTTAA-3′, ACT-PROBE 5′-VIC-ACCAC CACCCAACACACAATAACAAACACATA-3′. 
These primer and probe sequences were obtained from Parella et al., and Esteller et 
al., [41, 42]. Amplification was performed using the LightCycler 480 probes master mix 
(ROCHE) on a Cobas 4800 platform with an hybridization temperature of 60°C. In each 
run, a non-template control, a WT control and a positive control (2.5% U87D cell line in 
background of tonsil FFPE tissue) was included. The MGMT assay has been validated on 
glioblastoma samples with a detection limit of 1%. The assay is suited for both tissue and 
cytology samples and required a ratio of neoplastic cells of minimally 10%. The assay is 
ISO15189 accredited and annual participation to EQA scheme (GENQA CNS schemes) 
consistently demonstrated good results.

Samples were deemed informative if the Cp value of the ACTB gene was <31 and the 
samples were scored positive when for MGMT a Cp value of <36 was obtained. These 
Cp values were established and verified by respectively comparing the results with the 
assay described by Esteller et al., [42] and with other Belgian and Dutch diagnostic, 
accredited laboratories performing MGMT analysis in routine practice.

CONCLUSIONS

A subset of NETs and NECs stains positive for ALK-IHC. As protein expression of ALK is 
especially found in neuronal tissue like thalamus, hypothalamus, midbrain and dorsal 
root ganglia, the question is whether altered ALK present in neuroendocrine tumors 
of the lung, can act as a target for treatment with ALK inhibitors. Although 14% of 
patients expressed ALK, rearrangement was absent. Since mutations in ALK tyrosine 

5
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kinase domain have also be described to cause ALK expression, also ALK mutation 
analysis was performed. However, no ALK mutations were found. We suggest that ALK 
expression reflects the origin of the tumor, the neuroendocrine crest. In absence of an 
ALK rearrangement there’s no indication for treatment with an ALK inhibitor.

A sizable fraction of patients NEC and NET present with a MGMT promoter 
hypermethylation, which is considered a driver alteration for targeted treatment with 
temozolomide. Prospective data are needed, preferably in a randomized design. We 
hence recommend testing refractory or relapsing patients with NEC and NET for the 
presence of this alteration on archival tissue, in order to ascertain their eligibility for 
such a treatment.
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ABSTRACT

Immunotherapy for metastasized non-small-cell lung cancer (NSCLC) can show long-
lasting clinical responses. Selection of patients based on programmed death-ligand 1 
(PD-L1) expression shows limited predictive value for durable clinical benefit (DCB). We 
investigated whether early treatment effects as measured by a change in circulating 
tumor DNA (ctDNA) level is a proxy of early tumor response to immunotherapy according 
to response evaluation criteria in solid tumors v1.1 criteria, progression free survival 
(PFS), DCB, and overall survival (OS). To this aim, blood tubes were collected from 
advanced-stage lung adenocarcinoma patients (n = 100) receiving immune checkpoint 
inhibitors (ICI) at baseline (t0) and prior to first treatment evaluation (4–6 weeks; t1). 
Nontargetable (driver) mutations detected in the pretreatment tumor biopsy were used 
to quantify tumor-specific ctDNA levels using droplet digital PCR. We found that changes 
in ctDNA levels were strongly associated with tumor response. A > 30% decrease in 
ctDNA at t1 correlated with a longer PFS and OS. In total, 80% of patients with a DCB 
of ≥ 26 weeks displayed a > 30% decrease in ctDNA levels. For patients with a PD-L1 
tumor proportion score of ≥ 1%, decreasing ctDNA levels were associated with a higher 
frequency a DCB (80%) and a prolonged median PFS (85 weeks) and OS (101 weeks) 
compared with patients with no decrease in ctDNA (34%; 11 and 39 weeks, respectively). 
This study shows that monitoring of ctDNA dynamics is an easy-to-use and promising 
tool for assessing PFS, DCB, and OS for ICI-treated NSCLC patients.
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INTRODUCTION

Treatment with immune checkpoint inhibitors (ICI) for advanced non-small-cell lung 
cancer (NSCLC) patients without targetable genetic alterations demonstrated long-lasting 
therapy response and overall survival (OS) in selected patients [1–5]. Programmed 
death-ligand 1 (PD-L1) protein expression in the pretreatment tumor tissue determines 
eligibility for immunotherapy targeting PD-1 or PD-L1 inhibitors with or without 
chemotherapy. First-line treatment with pembrolizumab is currently standard of care 
for patients with advanced NSCLC. However, even in patients with tumors having a high 
PD-L1 expression (≥ 50% of tumor cells), a durable clinical benefit (DCB) of treatment 
is achieved in less than half of the cases [3,6,7]. Nivolumab monotherapy as treatment 
beyond first line resulted in 4-year OS of 14% (95% confidence interval [CI]: 11–17%) 
for all patients (n = 664), 19% (95% CI: 15–24%) for those with at least 1% PD-L1 
expression, and 11% (95% CI: 7–16%) for those with less than 1% PD-L1 expression [4]. 
Although eligibility criteria for immunotherapy are defined, there is an urgent demand 
for improved predictive and prognostic biomarkers that define which patients benefit 
from treatment. The ability to identify non responders at an early stage of ICI treatment 
could avoid severe toxicities associated unnecessary continuation of ICI treatment and 
reduce the financial burden on the healthcare system.

Solely relying on tumor PD-L1 expression has proven clear limitations to accurately 
predict tumor response assessment by response evaluation criteria in solid tumors 
(RECIST) v1.1 criteria [8]. Furthermore, early on-treatment radiologic assessment of 
tumor response cannot always predict durability of response because patients with initial 
pseudoprogression or stable disease (SD) may have durable responses comparable to 
patients who do have a radiological tumor response [4]. Therefore, a biomarker that 
better predicts or can monitor treatment effects for individual patients, alone or in 
combination with PD-L1, is increasingly demanded [9]. Recent studies showed that 
monitoring the circulating tumor-derived DNA (ctDNA) fraction in the circulating cell-
free DNA (ccfDNA) in plasma samples, as a surrogate for biological tumor response, 
correlates with individual early tumor responses and clinical outcome to treatment in 
several cancer types [10,11], including NSCLC patients treated with ICI using expensive 
and complex nextgeneration sequencing (NGS) methodologies on serial plasma ccfDNA 
[12–16].

Droplet digital PCR (ddPCR) analysis of plasma ctDNA is routinely used for clinical 
applications to detect targetable mutations in epidermal growth factor receptor (EGFR) 
[17–19], KIT [20], and BRAF [21,22], with an analytical sensitivity of 0.1–0.01% and 
specificity > 99% [19,20,22,23]. Here, we focused on a sensitive ddPCR test to monitor 
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changes in ctDNA in plasma from advanced lung adenocarcinoma patients receiving 
single-agent ICI. For this study, the target ctDNA was selected from the Pathology 
archives that reported on clinically relevant mutations determined by NGS analysis 
of the primary tumor in routine clinical practice. Patients with tumors harboring a 
nontargetable somatic mutation such as pathogenic mutations in kirsten rat sarcoma viral 
oncogene homolog (K-ras), and who were therefore treated with single-agent ICI, were 
prospectively included. In addition to patients with K-ras mutations, patients with non-
K-ras mutated tumors (e.g., BRAF and phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha (PIK3CA) mutations) were included to rule out K-ras mutation-
specific observations. To date, only three other studies with relatively small cohorts 
of advanced NSCLC patients treated with ICI selected tumor-informed nontargetable 
somatic mutations for monitoring ctDNA levels using a single-gene assay [24–26]. Here, 
we investigated changes in ctDNA levels as a proxy of early tumor response to ICI for 
progression free survival (PFS), DCB, and OS in cohort of 100 patients with advanced 
lung adenocarcinoma using this approach.

MATERIAL AND METHODS

Patient selection
Patients were recruited between October 2015 and November 2019. In total, 100 
patients with advanced adenocarcinoma receiving ICI treatment were eligible for this 
study. Mutation analysis via NGS of the pretreatment formalin-fixed paraffin-embedded 
(FFPE) tissue biopsies was performed in the routine diagnostic setting. These results 
were available for this study. Follow-up data for all patients were obtained up to the 
database lock (October 9, 2020). Eligibility criteria were ≥ 18 years of age, Eastern 
Cooperative Oncology Group performance-status score (ECOG PS) ≤ 1, advanced-stage 
adenocarcinoma and measurable disease assessed by means of computed tomography 
(CT) according to RECIST v1.1 [27]. This study is a larger cohort based on CA209-759 
study (NTR 6158) and was approved by the Medical Ethical Committee (METc, 2010/109) 
of the University Medical Center Groningen (UMCG). The study methodologies were 
conformed to the standards set by the Declaration of Helsinki. All patients provided 
written informed consent.

Radiological evaluation
Positron emission tomography/CT imaging was assessed at baseline in all patients. Tumor 
evaluation with CT was performed every 6 weeks in the first year of ICI treatment, 
thereafter every 12 weeks until disease progression. RECIST v1.1 criteria were used to 
assess tumor response. CtDNA dynamics were used to predict radiological response 
and DCB. Progressive disease (PD) is defined as an increase in tumor volume of > 20% 
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or appearance of new lesions. Partial response (PR) is defined as a decrease in tumor 
volume of > 30%; complete response (CR) as response showing that all lesions (both 
target and nontarget) are less than 10mm in the long axis (except lymph nodes which 
have to be smaller than 10mm in short axis). SD is attributed if neither the criteria for 
PD, PR or CR are met.

Plasma collection and ccfDNA extraction
Blood samples were available in either vacutainer EDTA tubes (vacutainer #367525, 
Becton Dickinson, Franklin Lakes, NJ, USA; until December 2017) or cell-free DNA blood 
Streck collection tubes (BCTs; Streck, Omaha, NE, USA), since January 2018. Processing of 
cell-free plasma and ccfDNA extraction was according to standard operating procedure 
as reported previously [28,29]. In short, EDTA blood samples were processed within 
4 h and Streck samples within 24 h. Subsequent processing consisted of a slow (for 
EDTA: 820 g, 10 min, 4 °C; for Streck: 1600 g, 10 min, 20 °C) and subsequent fast (16 
000 g, 10 min, 4 °C) centrifugation step. Plasma was stored as 1 mL aliquots at 80 °C 
until ccfDNA extraction. CcfDNA was extracted from ~ 2 mL plasma using the QIAamp 
Circulating Nucleic Acid kit (Qiagen, Hilden, Germany) according to the manufacturer’s 
recommendations and as reported previously [28]. CcfDNA was eluted in 52 µL of AVE 
buffer and its concentration was measured by QubitTM dsDNA HS assay kit on a QubitTM 
2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

To determine the most appropriate timepoint after start ICI therapy to measure changes 
in ctDNA levels, a subset of 27 patients was first selected from whom plasma was stored 
of several timepoints between baseline and disease progression, as well as four patients 
who displayed rapid disease progression (within 6 weeks; Table S1). For this subset, 164 
plasma samples were collected with on average 6 (2–12) samples per patient. After the 
appropriate timepoint of follow up was established, all 100 patients were analyzed at 
baseline (t0) and at 4- to 6-week follow-up (t1).

Tumor specimen handling and tissue NGS
As routine workup of suspected lung cancer, tumor tissue was obtained by a 
bronchoscopy, transthoracic biopsy or an endoscopic ultrasound procedure 
(endobronchial ultrasound/endoscopic ultrasound). Tissue samples were processed and 
diagnosed following routine pathology procedures. Following Dutch guidelines, FFPE-
pretreatment tissue samples of all adenocarcinomas from patients with metastasized 
NSCLC were subjected to sequence analysis by targeted NGS for mutations in relevant 
predictive markers including EGFR, BRAF, K-ras, PIK3CA, erb-b2 receptor tyrosine kinase 
2 and MET [30] in the NEN-EN-ISO15189-accredited laboratory for molecular pathology 
at the UMCG as reported previously [20,31]. Molecular results are reported in the Dutch 
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nationwide pathology registry (PALGA). For this study, lung adenocarcinoma patients 
were selected with a somatic mutation for which no targetable drugs were available 
and therefore were treated with ICI (see Table 1 for overview of mutations). Out of 22 
patients with non-K-ras mutations, 11 patients with a targetable mutation (e.g., BRAF 
V600E, EGFR L858R, or EGFR T790M) were included following progression on tyrosine 
kinase inhibitors (TKIs) or as a last resort treatment. PDL1 expression was detected with 
the Ventana PD-L1 (SP263) Assay (RTU, conformité Européene-in vitro diagnostic) on 
a Ventana Benchmark Ultra immunostainer on pretreatment tissue biopsies. Staining 
was scored by an experienced pulmonary pathologist (WT) according to international 
classification criteria and reported as tumor proportion score (TPS) for 87 patients [32].

Quantitative ctDNA analysis
For each patient, a tumor-specific ddPCR assay using nontargetable (driver) mutations 
present in the pretreatment biopsy was selected in order to detect and quantify 
the tumor-specific mutations in ccfDNA (Table S2). DdPCR analysis was performed 
as reported previously [20,23,28]. In short, ccfDNA (median 5.4 ng, 1.3–61 ng) was 
emulsified into 10.000– 20.000 droplets by the QX200TM droplet generator (Bio-Rad 
Laboratories, Pleasanton, CA, USA) and amplified with ddPCRTM supermix (Bio-Rad) and 
the primers and probes (Table S2) into a final volume of 20 µL. Mutant (FAM-labelled) or 
wild-type (HEX-labelled) fluorescent quantitative signals were detected by the QX200TM 
platform (Bio-Rad). DdPCR results were analyzed with QuantaSoftTM analytical software 
(Bio-Rad). Droplet counts were used to calculate the number of mutant copies per mL 
of plasma. The variant allelic frequency was determined by QuantaSoftTM Analysis Pro. 
Samples were regarded as positive if ≥ 3 mutant droplets were detected and negative 
if < 3 mutant droplets with at least 330 total positive (wild-type and mutant) droplets 
were detected (ensuring an analytical sensitivity < 1%). Because previous assessments 
of the precision of the ddPCR tests that are used in this study revealed a 30% technical 
variance [23], we set the minimum threshold at 30% and we only consider changes in 
mutant ctDNA levels greater than 30% as a true increase or decrease. In addition, we 
evaluated more stringent thresholds of 40% and 50% that were previously reported to 
be informative [12,33,34]. To confirm the changes in ctDNA levels detected with ddPCR, 
a fully automated real-time PCR IdyllaTM ctKRAS Mutation Assay (Biocartis, Mechelen, 
Belgium) was performed as reported previously [35,36]. All analyses included mutation-
positive, wild-type, and no template controls. All standard precautions were taken to 
avoid contamination of amplification products using separate laboratories for pre- and 
post-PCR handling. Clinical and laboratory test outcomes were independently added 
into the database.
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Statistical analysis
Descriptive statistics were used for patient and tumor characteristics. PFS and OS were 
defined as the period between the date of start of ICI to the date of PD or date of death, 
respectively. Data were censored at the date of last follow-up in absence of an event. 
Kaplan– Meier survival data were stratified for mutant ctDNA data and compared with 
the log-rank test. To compare ctDNA dynamics with PD-L1 TPS, Kaplan–Meier curves 
were stratified according to the PD-L1 TPS. Radiological reports and liquid biopsy test 
results were assessed independently. Correlation between the K-ras G12/13 screening 
ddPCR assay and IdyllaTM ctKRAS Mutation Assay results was determined using Pearson’s 
correlation coefficient and agreement was performed using Cohen’s κ. Differences in 
the rate of DCB were assessed with a Mann–Whitney U test. GRAPHPAD PRISM 8.4.2 
(GraphPad Software, San Diego, CA, USA) or SPSS version 25 software (IBM SPSS 
Statistics, Armonk, NY, USA) were used for all statistical analysis, wherein a P-value < 
0.05 was considered significant.

RESULTS

Patient characteristics
Next-generation sequencing analysis of the pretreatment FFPE tissue biopsies identified 
78 tumor samples with mutations in K-ras (78%) and 22 with a non-K-ras mutation (22%). 
All clinical and pathological characteristics are summarized in Table 1. Most patients 
(n = 69) were treated with nivolumab 3 mg/kg body weight intravenously every 2 weeks 
or pembrolizumab 200 mg (n = 28 patients) every 3 weeks intravenously (Table 1). In 
addition, two patients were treated with atezolizumab 1200 mg every 2 weeks and one 
patient with durvalumab 20 mg/kg every 2 weeks. The median number of weeks from 
start ICI until tumor response was 6 weeks (2–55 weeks). Follow-up CT imaging was 
not performed in eight patients (8%) as clinical PD already occurred prior to the first 
radiological evaluation. Sixty-six patients (66%) had an early tumor response, defined 
by a tumor response according to RECIST v1.1 within 6 weeks after start ICI treatment. 
A late tumor response, defined by tumor response according to RECIST v1.1 after 12 
weeks, was observed in 18 (18%). A DCB is defined by a clinical response with at least SD 
lasting ≥ 6 months as reported previously [8], which was achieved in 39 patients (39%).
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Table 1: Clinical and pathological characteristics

Patients 100

Median age 66 (29-85)

Male
Female

53
47

ECOG PS
 0
 1
 2
 3

42
49
7
2

Smoking status
 Current
 Former
 Never

39
58
3

Immunotherapy
 Atezolizumab
 Durvalumab
 Nivolumab
 Pembrolizumab

2
1
69
28

Previous lines of (chemo)therapies
 0
 1
 2
 3

25
57
12
6

K-ras mutations
 c.35G>C p.(G12A)
 c.34G>T p.(G12C)
 c.35G>A p.(G12D)
 c.34G>C p.(G12R)
 c.35G>T p.(G12V)
 c.37G>T p.(G13C)
 c.38G>A p.(G13D)
 c.183A>C p.(Q61H)
 c.181C>A p.(Q61K)
 c.182A>T p.(Q61L)

78
4
37
9
1
18
1
3
3
1
1

Non-K-ras mutations
 BRAF c.1397G>C p.(G466A)
 BRAF c.1397G>T p.(G466V)
 BRAF c.1406G>C p.(G469A)
 BRAF c.1406G>T p.(G469V)
 BRAF c.1799_1801del p.(V600_K601delinsE)
 BRAF c.1799T>A p.(V600E)
 EGFR c.2310_2311insGGC p.(D770_N771insG)
 EGFR c.2155G>A p.(G719S)
 EGFR c.2316_2321dup p.(H773_V774dup)
 EGFR c.2573T>G p.(L858R)
 PIK3CA c.1624G>A p.(E542K)
 PIK3CA c.1633G>A p.(E545K)

22
1
2
3
1
1
5
1
1
1
1
3
2
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Patients 100

PD-L1 TPS
 <1%
 1-49%
 ≥50%
 N/A

34
17
35
14

ECOG PS: Eastern Cooperative Oncology Group performance status score; PD-L1 TPS: programmed 
death-ligand 1 tumor proportion score; N/A: not available.

Optimal timepoint to measure changes in ctDNA levels associated with durable 
tumor response
Twenty-seven patients with a K-ras or BRAF (nonV600E) mutation in the primary 
tumor from whom plasma was available at several timepoints during ICI treatment, 
predominantly at 1, 2, 4, and 6 weeks after initiation, were selected (Table S1) to 
determine the optimal timepoint to measure changes in ctDNA levels associated with 
therapy response effects. CcfDNA was analyzed to quantify mutant ctDNA copies. 
Tumor response patterns could be divided into five typical patterns for CR, PR, SD, PD, 
and ctDNA negative patients (see examples in Fig. S1A–E). The ctDNA patterns of all 
responding patients (n = 11) revealed an initial spike in ctDNA levels prior to a decrease 
in ctDNA levels (Fig. S2A). One exceptional case is discussed separately (Fig. S3). In 
samples at 4–6 weeks, most of the responders (70–89%) showed a > 30% decrease, 
while in most of the nonresponders (55– 75%) ctDNA levels at 4–6 weeks increased (Fig. 
S2B). Spider plot analysis supported the predictive value of ctDNA analysis 4–6 weeks 
after start therapy (t1). Patients with increased, stable or nondetectable (considered 
as negative) levels of ctDNA demonstrated early disease progression, of whom 14/16 
(88%) have deceased. The majority of patients with decreasing ctDNA demonstrated a 
response, of whom 10/11 (91%) were alive after at least 80 weeks (Fig. 1).
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Figure 1. Spider plot analysis of radiological response according to the RECIST v1.1 criteria and 
changes in mutant ctDNA levels
CtDNA levels were determined by the difference in mutant copies per mL of plasma at baseline 
(t0) and 4–6 weeks after start of ICI treatment (t1). Dashed lines indicate a 20% increase and 30% 
decrease in tumor volume compared with baseline. The cross symbol indicates the patient’s death 
at that point in time. One exceptional case is described in Fig. S3. CtDNA increasing, 30% more 
mutant copies at t1 compared with t0; ctDNA decreasing, 30% less mutant copies at t1 compared 
with t0; ctDNA-negative, driver mutation in tissue not detected in plasma; ctDNA stable, observed 
change in mutant copies at t1 compared with t0 was ≤ 30%.

Validation of KRAS ddPCR analysis with Idylla ctKRAS
To confirm the levels of KRAS-mutated ctDNA detected in cell-free plasma using ddPCR 
analysis, 89 samples with sufficient plasma were also analyzed with the IdyllaTM ctKRAS 
Mutation Assay as an independent plasma-based test. Based on the number of mutant 
copies per mL plasma, ddPCR and Idylla revealed similar results (r2 = 0.94, black line; 
r2 = 0.64 omitting six cases with very high levels, blue line; Fig. S4). When comparing 
changes in KRAS mutant ctDNA levels between t0 and t1, 13 of the 15 patients showed 
a similar association with clinical response represented by an almost perfect agreement 
when comparing ddPCR with Idylla (κ = 0.84). These data confirmed that quantitative 
ctDNA analysis using ddPCR reliably predicted changes in mutant ctDNA levels.

Changes in ctDNA levels as an early marker of durable clinical benefit
To validate the potential value of monitoring ctDNA levels, ddPCR analysis was performed 
on ccfDNA from 100 lung adenocarcinoma patients treated with mono-immunotherapy. 
When ctDNA was detected at t0, a significant difference in the number of mutant 
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copies per mL of plasma was observed between patients with no clinical response and 
patients who had a DCB (Fig. S5A). Patients with high mutant ctDNA levels at t0 showed 
a poorer PFS (P < 0.001) and OS (P < 0.0001) compared with low mutant copy levels 
(Fig. S5B,C). No ctDNA was detected at t0 in 31 patients (31%). CtDNA-negative patients 
were represented both in 21 of the 63 non responders (33%) and 10 of 37 of durable 
responders (27%) (Fig. S5A, red dots).

Patients with a decrease in ctDNA levels at t1 had the best median PFS and OS (Fig. 2A,B). 
Patients with both stable ctDNA (change at t1 compared with t0 ≤ 30%) or increased 
(> 30%) ctDNA levels showed similar poor responses. Therefore, patients with a ctDNA 
increase or ctDNA stable levels were grouped as no ctDNA decrease in subsequent 
analyses. Although 70% of patients without detectable ctDNA (16/23) showed early 
disease progression (within 6 months), they did perform better than patients with 
increasing or stable levels of ctDNA, but worse than those with a decrease in ctDNA was 
observed at t1 (Fig. 2B). Therefore, patients without detectable ctDNA were regarded 
as a separate group.

Analysis excluding ctDNA-negative patients revealed that patients with decreasing 
mutant ctDNA levels had a significantly improved PFS (hazard ratio [HR]: 0.41 [0.19–
0.52]; P < 0.0001) compared with patients who did not (no decrease in mutant ctDNA), 
resulting in a longer median PFS (43 vs 6 weeks; Fig. 2C) and OS (125 vs 29 weeks; 
HR: 0.32 [0.16–0.46]; P < 0.0001; Fig. 2D). Using a higher threshold of 50% for ctDNA 
response (Fig. S6) revealed comparable results as observed for 30% with only a slightly 
improved HRs for PFS and OS.

To exclude that the observed association between ctDNA levels and treatment response 
was due to the specific activity of K-ras mutations, the PFS and OS comparing presence 
(n = 78) or absence (n = 22) of K-ras mutations in the pretreatment tumor tissue were 
evaluated. This analysis revealed no significant difference in PFS and OS (Fig. S7).

6

2024060-Birgitta Hiddinga.indd   1392024060-Birgitta Hiddinga.indd   139 29-03-2024   10:0429-03-2024   10:04



140 

Chapter 6

Figure 2. Tumor response related to changes in mutant ctDNA levels
Kaplan–Meier plot displaying the (A) PFS and (B) OS of patients with decreasing (blue), negative 
(black), stable (green), or increasing (red) ctDNA levels. (C) PFS and (D) OS of patients with 
decreasing ctDNA levels (blue), or no decrease in ctDNA (red). Log-rank test, P-values of < 0.05 
are considered significant. CtDNA decreasing, 30% less mutant copies at t1 compared with t0; 
ctDNA-negative, driver mutation in tissue not detected in plasma; ctDNA stable, observed change 
in mutant copies at t1 compared with t0 was ≤ 30%; ctDNA increasing, 30% more mutant copies 
at t1 compared with t0; no decrease in ctDNA, encompasses patients with ctDNA increase and 
ctDNA stable.

PD-L1 expression in pretreatment tissue biopsies and ctDNA dynamics
PD-L1 expression data were available for 87 patients. Thirty-five patients (40%) were 
PD-L1 negative (TPS < 1%) and 52 (60%) had a PD-L1 TPS ≥ 1% (of whom 35 with TPS 
≥ 50%; Table 1). In this cohort, patients with a PD-L1 TPS of ≥ 1% had a longer PFS (25 
vs 6 weeks; HR: 0.46 [0.22–0.61]; P < 0.001) and OS (83 vs 32 weeks; HR: 0.57 [0.32– 
0.92]; P < 0.05) than PD-L1 negative patients (Fig. S8). In patients with a PD-L1 TPS of 
≥ 1%, decreased ctDNA levels further improved both PFS (85 vs 11 weeks; HR: 0.42 
[0.22–0.78]; P < 0.01) and OS (101 vs 39 weeks; HR: 0.37 [0.19–0.72]; P < 0.01; Fig. 3A, B; 
Fig. S9A,B). Interestingly, in a subset of PD-L1- negative patients (TPS of < 1%), decreased 
ctDNA levels were also associated with prolonged PFS and OS (Fig. 3C,D; Fig. S9C,D). 
The effect of a ctDNA decrease on PFS was stronger for patients with PD-L1 expressing 
tumors compared with patients with PDL1-negative tumors (HR: 0.40 [0.14–0.80], P < 
0.05; data not shown).
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DISCUSSION

When a tumor-derived molecular aberration is detected in plasma, this can potentially 
be used to monitor early tumor response to ICI. In the current study, we demonstrate 
the value of measuring ctDNA levels using ddPCR at baseline (t0) and follow-up (4–6 
weeks, t1) as a minimally invasive monitoring tool for response to ICI monotherapy. 
The group of patients who displayed a decrease in mutant copies had a longer PFS, 
OS, and DCB compared with those without decrease in ctDNA levels. Furthermore, 
patients who displayed a reduction in mutant tumor DNA in circulation and had a PD-L1 
expressing tumor demonstrated an even better PFS, OS, and DCB. The data indicate that 
the combination of PD-L1 expression and reduction in ctDNA is a stronger monitoring 
tool for response to ICI than PD-L1 expression or change in ctDNA alone.

Detection of tumor-derived DNA in liquid biopsy has enabled assessment of mutation 
profiles in plasma of cancer patients at different stages of disease in a minimally invasive 
manner [37]. Recent studies advocate NGS of pretreatment plasma samples as the most 
appropriate approach to identify mutants for disease monitoring of virtually all patients. 
Subsequently, a selection of these mutations can be monitored in plasma over time. In 
current clinical practice however, high cost of plasma-derived ccfDNA NGS for all patients 
is cost-prohibitive. In contrast, it is currently common practice to perform molecular 
profiling on a tumor tissue biopsy with broader NGS mutation panels. Mutation profiling 
of tumor biopsies not only resulted in the identification of clinical-relevant druggable 
targets, but also in tumor-specific variants that may be detected in circulation. In the 
current study, the tumor-informed ddPCR analysis of ctDNA has demonstrated promise 
as a cost-effective monitoring tool.

We studied dynamics of mutant ctDNA levels prior to radiological evaluation in plasma 
using mutations that were detected in the pretreatment tissue biopsies as part of routine 
molecular diagnostics. In the first 2 weeks of treatment, a spike in ctDNA levels was 
observed in 61% of all patients with measurable ctDNA at baseline (14/23), and in 70% of 
patients who eventually demonstrated treatment response (Fig. S2). This transient spike 
in ctDNA was reported previously for KRAS and EGFR in NSCLC, probably reflecting tumor 
DNA release by death of tumor cells upon initiation of systemic treatment [11,12,38]. 
The strong increase in ctDNA within 2 weeks after start of therapy that was observed in 
15 patients was not predictive for DCB (data not shown). Our analysis demonstrated that 
at least a 30% decrease in ctDNA levels at 4–6 weeks after initiation of treatment (t1) 
correlated with a longer PFS and OS in response to ICI treatment, as well as an increased 
rate of DCB (Table S3). A decrease in mutant ctDNA levels was associated with a superior 
median PFS (43 weeks, HR: 0.41 [0.19–0.52]) and OS (125 weeks, HR: 0.32 [0.16– 0.46]) 
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compared with that of combined patient group with increasing or stable ctDNA levels 
(PFS 6 weeks; OS 29 weeks). These results are comparable to three other studies with 
small cohorts of advanced NSCLC patient (respectively 14 [24], 34 [25], and 15 cases [26]) 
with non-targetable mutations detected in tumor biopsy treated with ICI. Despite that 
KRAS-mutated tumors were associated with high PD-L1 expression and consequently 
with increased tumor responses toward PD- (L)1 inhibition [2,39–41], no discrepancies 
between tumor harboring K-ras or other mutations were observed in our cohort.

In the current study, the median PFS of patients with a PD-L1 TPS ≥ 1% is just 25 weeks. 
Further dividing PD-L1 TPS in 1–49% and ≥ 50%, which is generally applied in current 
literature, did not reveal significant differences regarding PFS (P = 0.22) and OS (P = 0.15; 
data not shown). Combining independent biomarkers has previously shown to augment 
the predictive potential for DCB, as previously shown for plasma NGS with CD8+ cell 
levels [14]. When combining PD-L1 immunohistochemistry in pretreatment tumor 
biopsies with changes in ctDNA levels, these changes did not correlate with PD-L1 TPS, 
indicating that both markers are independent biomarkers (Fig. S10). In fact, combining 
changes in ctDNA with PD-L1 TPS ≥ 1% showed an eightfold longer PFS and more than 
twofold longer OS in patients with a decrease in ctDNA levels compared with patients 
who did not show a > 30% decrease (Fig. 3). A subset of patients with a PD-L1 TPS of < 
1% with decreasing ctDNA levels seems to benefit from monotherapy as well (Table S4). 
Responders to immunotherapy in our study were observed both with high and low PD-L1 
tumors. The value of ctDNA decrease for monitoring treatment effect was independent 
of PD-L1 expression. Reck et al. [3] also reported an improved response upon decrease 
in ctDNA at t1 in a patient cohort with PD-L1 expression for first-line ICI treatment using 
a cutoff of TPS ≥ 50%. In line with this observation, evaluation of patients with PD-L1 
TPS ≥ 50% and a decrease in ctDNA revealed even lower HRs (0.32 for PFS and 0.29 for 
OS; data not shown). However, in the current study 75% of patients was not treatment 
naïve. Patients who received previous lines of treatment generally show poorer response 
and survival times to ICI [4]. Despite the low number of patients in this study, this 
underscores the strong monitoring potential of change in ctDNA in combination with or 
without PD-L1 expression and warrants further prospective evaluation. The sensitivity 
of this combination monitoring tool might further be augmented by addition of other 
potentially predictive biomarkers such as the immunoscore, immune infiltration, cytokine 
signatures (e.g., interferon gamma, transforming growth factor beta), and somatic copy 
number alterations [42–44].
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Figure 3. Tumor response related to change in mutant ctDNA levels and PD-L1 TPS status
Kaplan-Meier plot displaying the (A, C) progression-free survival (PFS) and (B, D) overall survival 
(OS) of patients with a PD-L1 TPS of ≥1% (A-B) and <1% (C-D) with decreasing (blue), or increasing 
or stable (red) ctDNA levels. The grey lines represent the entire PD-L1 cohort in the respective 
subgroups (not used in comparison of the different subgroups). Supplementary Figure 9 shows the 
analysis of patients with decreasing, stable, increasing and non-detectable ctDNA levels separately. 
Log-rank test, P-values of <0.05 are considered significant. CtDNA decreasing, 30% less mutant 
copies at t1 compared to t0; No decrease in ctDNA, encompasses patients with ctDNA increase, 
ctDNA negative and ctDNA stable; HR, hazard ratio; CI, confidence interval.

In patients with known driver mutations, these mutations are not retrieved in 
approximately 30% of matched cell-free plasma in various malignancies [45]. In line 
with these observations, in 31% of the included patients with metastasized disease 
the mutation detected in the pretreatment tumor biopsy was not detected in the 
corresponding ccfDNA sample at t0. No ctDNA was detected in 23% of the patients at 
both timepoints. Although the majority of patients without detectable ctDNA did not 
display a tumor response to treatment, their tumors seemed to have a more indolent 
course than those who did have specific ctDNA. This group of patients did have early PD 
in general, but OS was markedly better than for the ctDNA group showing stable levels 
or an increase at t1. The cause of absence of ctDNA in these plasma remains uncertain 
and proposed mechanisms include nonshedding tumors, increased clearance, shorter 
half-life, lack of sufficient analytical sensitivity, and stage of disease [37, 45].

6
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To monitor tumor response in ccfDNA using mutation-specific ddPCR analysis, 
sequencing of pretreatment tumor tissue is required to select a tumor-specific target. 
In 50% of advanced-stage NSCLC targetable (~ 20%) or nontargetable K-ras (~ 30%) driver 
mutations are detected with current commonly-used diagnostic NGS approaches [31, 
45]. However, mutations detected in the tumor may not always be present in plasma. 
Broadening routine clinical tissue NGS panels, for example, with the frequently mutated 
TP53 and STK11 genes, will increase the number of patients who can be effectively 
monitored for tumor response using plasma ccfDNA with single gene approaches such 
as ddPCR. In this study, five patients with tumors containing multiple mutations at least 
one of these mutations could not be detected in the plasma. Selection of a mutation 
for monitoring purposes in plasma might lead to inconsistent results (Table S5). As 
such, several studies in lung cancer advocate the use of NGS analysis with a broad panel 
of markers on baseline plasma samples instead of a single selected marker. Targeting 
multiple mutations simultaneously also elevates the sensitivity of detecting ctDNA 
[12, 46]. Indeed, the number of ctDNA negative patients when using NGS approaches 
is substantially lower (4–8%) than was observed with our single variant assay [14, 
47]. Studies that used an NGS approach to monitor ctDNA in response to ICI therapy 
demonstrate a correlation between ctDNA dynamics and response similar to our findings 
[12, 13, 48]. Recently, three studies comprising larger cohorts of various malignancies 
including NSCLC treated with ICI reported on the association between serial ctDNA NGS 
testing and PFS, OS, clinical response, and clinical benefit [14–16]. However, in current 
clinical practice, NGS approaches on ccfDNA are not yet cost-effective for monitoring 
the course of treatment longitudinally. Single-target ddPCR analysis therefore provides 
a cost-effective alternative when the ctDNA target is detectable in the circulation. 
Longitudinal monitoring of a single tumor-derived variant beyond the currently proposed 
interval might assist in early detection of disease progression and its clinical applicability, 
probably in combination with multiple available biomarkers, should be investigated in 
future (prospective) studies. Besides, as ccfDNA is shed into circulation from various 
tissues, DNA fragments from hematopoietic and germline origin are prone to affect 
analytical results with NGS, as well as inconsistent preanalytical handling and sample 
processing [23,49– 51]. Although the majority of clonal hematopoietic variants occur in 
non-targetable genes, these variants are also identified in targetable genes such as KRAS, 
BRAF, and PIK3CA as well [16]. Deep sequencing of plasma may therefore identify more 
mutations, but these might not all be derived from the tumor. To this extent, parallel 
sequencing of a patient-matched bloodborne reference material, for example, white 
blood cells, is of importance [50], further increasing the costs for routine clinical practice. 
Therefore, monitoring ctDNA with a ddPCR assay is as sensitive as NGS to monitor 
therapy response but in a cost-effective manner. However, ddPCR is only informative 
when tumor-derived DNA is present in circulation.
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CONCLUSION

Altogether, decreasing mutant copies estimated with ddPCR were associated with longer 
PFS and OS compared with patients displaying increased or stable ctDNA levels. CtDNA 
dynamics in combination with PD-L1 status is a promising cost-effective approach to 
monitor DCB, PFS, and OS in patients treated with ICI. Measuring a single tumor-derived 
molecular aberration, when retrieved in the circulation, improves the early recognition 
of DCB and can assist in treatment decision making.
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Supplementary Table 1. Overview of subgroup of 27 patients to determine the most appropriate 
timepoint after start ICI to measure clinically relevant changes in ctDNA

Patient ID Tumor mutation RECIST v1.1 
response

Timepoints available plasma samples
(weeks after start of treatment)

B-001 KRAS c.38G>A p.(G13D) PD 0, 3*

B-002 BRAF c.1406G>C p.(G469A) PR 0, 2, 4, 6, 12, 24, 36, 48, 60, 72, 84, 96

B-003 KRAS c.34G>T p.(G12C) PR 0, 1, 2, 13, 24, 34, 48, 61, 72, 84, 96, 108

B-004 KRAS c.35G>C p.(G12A) SD 0, 1, 2, 4, 6, 12

B-005 KRAS c.35G>A p.(G12D) PR 0, 1, 5, 9, 13, 36

B-006 KRAS c.34G>T p.(G12C) PR 0, 1, 2, 4, 6, 24, 36, 48, 60

B-007 KRAS c.183A>C p.(Q61H) PD 0, 1, 2, 4

B-008 KRAS c.34G>T p.(G12C) PD 0, 2, 4*

B-009 KRAS c.35G>A p.(G12D) PD 0, 1, 2, 4, 6

B-010 KRAS c.35G>C p.(G12A) PD 0, 2, 4, 6

B-011 BRAF c.1406G>C p.(G469A) SD 0, 1, 2, 4, 6, 12

B-012 KRAS c.34G>T p.(G12C) PD 0, 1, 4, 6

B-013 KRAS c.35G>A p.(G12D) PR 0, 1, 2, 4, 6, 12

B-014 KRAS c.35G>A p.(G12D) PR 0, 1, 2, 4, 6, 12

B-015 KRAS c.35G>T p.(G12V) SD 0, 1, 2, 4, 6, 12, 24, 36, 60

B-016 KRAS c.34G>T p.(G12C) SD 0, 1, 2, 4, 6, 12, 24, 36, 48, 74

B-017 KRAS c.34G>T p.(G12C) PD 0, 1, 6, 70

B-018 KRAS c.34G>T p.(G12C) SD 0, 1, 2, 4, 6, 12

B-019 KRAS c.35G>T p.(G12V) PD 0, 1, 2, 4, 6

B-020 KRAS c.34G>T p.(G12C) PD 0, 1*

B-021 KRAS c.34G>T p.(G12C) CR 0, 1, 2, 4, 6, 12, 23, 37, 46, 58

B-022 KRAS c.34G>T p.(G12C) PD 0, 1, 2, 4, 13

B-023 KRAS c.35G>T p.(G12V) PD 0, 5*

B-024 KRAS c.34G>T p.(G12C) PR 0, 1, 2, 4

B-025 KRAS c.34G>T p.(G12C) CR 0, 1, 2, 4, 6, 8, 12, 24, 36

B-026 KRAS c.35G>T p.(G12V) PR 0, 1, 2, 7, 24

B-027 KRAS c.35G>T p.(G12V) PD 0, 1, 2, 4, 6

*Patients with rapid disease progression (within 6 weeks). RECIST, Response Evaluation Criteria 
in Solid Tumors; PD: progressive disease (non-response); SD: stable disease (non-response); PR: 
partial response; CR: complete response.
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Supplementary Table 2. Assays used for ddPCR analysis

Bio-Rad assay name Bio-Rad assay ID Targeted nucleotide sequence

BRAF p.G466A dHsaMDS389209582 NM_004333: BRAF c.1397G>A

BRAF p.G466V dHsaMDS2510966 NM_004333: BRAF c.1397G>T

BRAF p.G469A dHsaMDV2516932 NM_004333: BRAF c.1406G>C

BRAF p.G469V dHsaMDS747800353 NM_004333: BRAF c.1406G>T

BRAF p.V600E dHsaMDV2010027 NM_004333: BRAF c.1799T>A

BRAF p.V600_K601>E dHsaMDS890722866 NM_004333: BRAF c.1799_1801delTGA

EGFR p.D770_N771insG dHsaMDS625148063 NM_005228: EGFR D770_N771insG

EGFR p.G719S dHsaMDV2010041 NM_005228: EGFR c.2155G>A

EGFR p.V774_C775insHV 
c.2315_2316insCCACGT*

dHsaMDS712821910 NM_005228: EGFR 
c.2315_2316insCCACGT

EGFR p.L858R c.2573T>G dHsaMDV2010021 NM_005228: EGFR c.2573T>G

EGFR p.T790M dHsaMDV2010019 NM_005228: EGFR c.2369C>T

ddPCR KRAS G12/G13 Screening Kit 1863506 †

ddPCR KRAS Q61 Screening Kit 12001626 ‡

PIK3CA p.E542K dHsaMDV2010073 NM_006218: PIK3CA c.1624G>A

PIK3CA p.E545K dHsaMDV2010075 NM_006218: PIK3CA c.1633G>A

Assay IDs are displayed as provided by Bio-Rad Laboratories Inc. *Annotation of the EGFR p.V774_
C775insHV assay according human genome variation society (HGVS) is EGFR p.(H773_V774dup). 
†The ddPCR KRAS G12/G13 Screening Kit was used to screen cases with a KRAS c.35G>C p.(G12A), 
c.34G>T p.(G12C), c.35G>A p.(G12D), c.34G>C p.(G12R), c.34G>A p.(G12S), c.35G>T p.(G12V) or 
c.38G>A p.(G13D) mutation. ‡The ddPCR KRAS Q61 Screening Kit was used to screen cases with a 
KRAS c.181C>A p.(Q61K), c.182A>T p.(Q61L), c.182A>G p.(Q61R), c.183A>T p.(Q61H) or c.183A>C 
p.(Q61H) mutation.

Supplementary Table 3. CtDNA dynamics and clinical response

PD SD PR CR NCR
(<6 months)

DCB
(≥6 months)

ctDNA decrease 10 (27%) 5 (14%) 16 (43%) 6 (16%) 14 (38%) 23 (62%)*

No decrease in ctDNA 30 (75%) 4 (10%) 6 (15%) 0 (0%) 35 (88%) 5 (12%)

ctDNA negative 12 (52%) 8 (35%) 2 (9%) 1 (4%) 16 (70%) 7 (30%)

62% of the patients with decreased mutant copies display a DCB, as opposed to 12% of the patients 
with increasing or stable ctDNA levels (*P=0.0001, Mann-Whitney U test comparing PFS of patients 
with ctDNA decrease with no decrease in ctDNA. Although many patients without detectable 
mutant ctDNA levels both at t0 and t1 (n=23) demonstrated early disease progression, 30% 
achieved a DCB. PD: progressive disease; SD: stable disease; PR: partial response; CR: complete 
response; NCR: no clinical response; DCB: durable clinical benefit.
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Supplementary Table 4. CtDNA dynamics and PD-L1 TPS score

PD SD PR CR NCR
(<6 mo)

DCB
(≥6 mo)

TPS ≥1% ctDNA decrease 2 (10%) 1 (5%) 12 (60%) 5 (25%) 4 (20%) 16 (80%)*

No decrease in ctDNA 13 (59%) 3 (14%) 6 (27%) 0 (0%) 17 (77%) 5 (23%)

ctDNA negative 3 (30%) 4 (40%) 2 (20%) 1 (10%) 4 (40%) 6 (60%)

TPS <1% ctDNA decrease 6 (46%) 4 (31%) 2 (23%) 0 (0%) 8 (62%) 5 (38%)†

No decrease in ctDNA 15 (100%) 0 (0%) 0 (0%) 0 (0%) 15 (100%) 0 (0%)

ctDNA negative 5 (63%) 3 (37%) 0 (0%) 0 (0%) 5 (63%) 3 (38%)

Of the patients with decreasing mutant copies, 80% achieved a DCB, while 77% of patients 
displaying stable or ctDNA increase did not respond to treatment (*P<0.001, Mann-Whitney U 
test comparing PFS of patients with ctDNA decrease with no decrease in ctDNA). No significant 
difference in response rate was observed for patients with a PD-L1 TPS <1% (†P=0.31, Mann-
Whitney U test comparing PFS of patients with ctDNA decrease with no decrease in ctDNA). TPS: 
PD-L1 Tumor Proportion Score; PD: progressive disease; SD: stable disease; PR: partial response; 
CR: complete response; NCR: no clinical response; DCB: durable clinical benefit; mo: months.

Supplementary Table 5. Patients with multiple targetable mutations

Tissue Plasma mutant copies/mL Radiology

Patient Mutation VAF (%) t0 t1 ctDNA change RECIST v1.1

B-026 KRAS c.35G>T p.(G12V) 39 49.3 0.0 Decrease PR

PIK3CA c.1624G>A p.(E542K) 12 0.0 0.0 Negative

B-032 EGFR c.2573T>G p.(L858R) 58 407 178 Decrease PR

EGFR c.2369C>T p.(T790M) 3 0.0 0.0 Negative

B-065 KRAS c.34G>T p.(G12C) 11 727 632 Stable PD

BRAF c.1397G>T p.(G466V) 10 0.0 0.0 Negative

B-072 PIK3CA c.1633G>A p.(E545K) 8 0.0 0.0 Negative SD

PIK3CA c.1624G>A p.(E542K) 8 0.0 0.0 Negative

B-098 BRAF c.1397G>T p.(G466V) 51 55.4 0.0 Decrease PR

BRAF c.1799T>A p.(V600E) 5 0.0 0.0 Negative

VAF: variant allelic frequency; mutant copies/mL: mutant copies per mL of plasma; RECIST: 
Response Evaluation Criteria in Solid Tumors; PD: progressive disease; SD: stable disease; PR: 
partial response.
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Supplementary Figure 1. Patterns of response combining mutant ctDNA levels and tumor volume 
using CT scanning
Display of the radiological response compared to baseline (t0, red) and changes in ctDNA levels 
(green) during treatment. Red dots and green circles represent timepoints that respectively CT-
scanning was performed or plasma sample was drawn. Dashed lines indicate a 20% increase and 
30% decrease in tumor volume compared to baseline. The bar on top shows which treatment 
the patients received over time, either immune checkpoint inhibitors (ICI, blue), chemotherapy 
(chemo, orange), targeted therapy (targeted, yellow) or no treatment (gray). Representative 
patterns are shown for patients displaying a (A) complete response (CR), (B) partial response 
(PR), (C) stable disease (SD), and (D) progressive disease (PD). (E) Most ctDNA negative patients 
showed progressive disease in an early stage, however did survive for a long time.
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Supplementary Figure 2. Determination of most appropriate timepoints to optimally detect chang-
es in ctDNA levels related to treatment response
Representation of the percentage change in ctDNA levels over time compared to baseline for responders (A, 
blue) and non-responders (B, red) according to the RECIST v1.1 criteria (see Supplementary Table 1). Dashed 
lines indicate a 20% increase and 30% decrease in tumor volume compared to baseline. Appropriate timepoints 
to detect changes in ctDNA prior to the first radiological evaluation are between 4-6 weeks, as most responders 
have decreased ctDNA levels (A) and most non-responders have increase ctDNA levels (B). Patient B-003 (A, 
orange) defined as a responder is discordant but lacks plasma samples between 2-12 weeks after treatment 
for proper interpretation (see Supplementary Figure 3). Data of four patients were not included as mutant 
ctDNA were not detected (negative cases), one responder and three non-responders.
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Supplementary Figure 3. Evaluation of case B-003
Change in mutant copies compared to baseline (t0) is presented over time. Dashed lines indicate a 
20% increase and 30% decrease in tumor volume compared to baseline. The bar on top indicates 
the patient received immune checkpoint inhibitors (ICI, blue) the entire follow-up time, except 
from 2-10 weeks after initiation when treatment was stopped due to toxicity (gray). In this patient, 
an initial spike in ctDNA was observed in the first two weeks of treatment. No blood sample was 
collected between 2-12 weeks after start of treatment. At 24 weeks, the patient has complete 
clearance of ctDNA and showed a consistent response to treatment.

Supplementary Figure 4. Correlation of the mutant copies per mL of plasma as determined with 
ddPCR and Idylla™ ctKRAS Mutation Assay
Red-colored results were not included in the correlation due to failure of either mutation detection 
assay. Correlation was determined for all samples (black line, r2=0.94) and excluding outliers (blue 
line, r2=0.64).
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Supplementary Figure 5. Mutant ctDNA levels at baseline
(A) Number of mutant copies per mL of plasma measured prior to start of treatment for patients 
with no clinical response (<6 months) and durable clinical benefit (≥6 months). Red-colored results 
were ctDNA negative and these were excluded from the statistical analysis. These included both 
non-responders (21/63, 33%) and durable responders (10/37, 27. Kaplan-Meier plots displaying 
the (B) PFS and (C) OS by separating ctDNA levels at baseline in ctDNA low (below or equal to 
median levels, n=35), ctDNA high (above median, n=34) and ctDNA negative (n=31). Patients with 
low and high mutant ctDNA levels at baseline separated significantly with respect to PFS (P<0.001) 
and OS (P<0.0001). CI, confidence interval; PFS, progression-free survival; OS, overall survival.
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Supplementary Figure 6. PFS and OS at different cut-offs to determine ctDNA decrease
Progression-free survival (A-C) and overall survival (D-F) were analyzed at a 30% (A,D) 40% (B,E) 
and 50% (C,F) cut-off to determine ctDNA decrease. Increasing the cut-off resulted in slightly lower 
hazard ratios (HRs), however reduces the number of patients demonstrating a ctDNA decrease. 
The empirically determined technical cut-off of 30% results in highly significant hazard ratios 
(P<0.0001) and identifies the most patients with a durable response to ICI treatment.
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Supplementary Figure 7. PFS and OS is irrespective of KRAS mutations
Kaplan-Meier plot displaying the (A) PFS and (B) OS of patients harboring mutations in KRAS 
(blue), or in any other gene detected with ddPCR (red) ctDNA levels. CI: confidence interval; PFS: 
progression free survival; OS: overall survival.

Supplementary Figure 8. Clinical response related to PD-L1 expression
Kaplan-Meier plots displaying the (A) PFS and (B) OS of patients with a tumor PD-L1 expression of 
<1% (red) or ≥1% (blue). CI: confidence interval; PFS: progression free survival; OS: overall survival.
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Supplementary Figure 9. Elaborate analysis of radiological response related to PD-L1 expression
Extended representation of clinical response related to change in ctDNA levels in patients with 
a tumor PD-L1 TPS ≥1% (A-B) and TPS<1% (C-D). Kaplan-Meier plot displaying the (A, C) PFS and 
(B, D) OS of patients with decreasing (blue), negative (black), stable (green), or increasing (red) 
ctDNA levels. CI: confidence interval; PFS: progression free survival; OS: overall survival; TPS: 
Tumor Proportion Score.

Supplementary Figure 10. No correlation between change in ctDNA levels and PD-L1 TPS. 
Pearson’s correlation coefficient, r2=0.01 is not considered significant.
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ABSTRACT

Background
K-ras mutated non-small cell lung cancer (NSCLC) is associated with a poor prognosis 
to standard therapies. Despite advances of immune checkpoint inhibitors (ICIs), not all 
patients show durable responses. In this study, we aim to identify associations between 
ICI-response and the gut microbiome in patients with K-ras mutated NSCLC.

Methods
We performed shotgun metagenomic sequencing of stool samples collected before ICI 
initiation from 33 patients with K-ras mutated NSCLC. Microbiome composition within 
(α-diversity) and between samples (β-diversity) was calculated using Shannon diversity 
index and principal component analysis on Aitchison distances, respectively. A Bayesian 
logistic-normal regression model (Pibble) was implemented to identify associations 
between gut microbial features and disease control rate (DCR), progression free survival 
at 12 months (PFS12) and immune related adverse events (irAEs), adjusting for ICI-
regimen, metastatic disease stage, age, gender and BMI.

Results
Responders were enriched with several saccharolytic species, including Agathobaculum 
butyriciproducens, Fusicatenibacter saccharivorans, Bifidobacterium longum and 
Eubacterium ramulus. Non-responders harbored higher abundances of several 
Bacteroides and Blautia species. Patients unaffected by irAEs demonstrated higher 
abundances of biotin and butyrate synthesis pathways. Development of irAEs was 
associated with higher Alistipes finegoldii, Bifidobacterium longum and Bacteroides 
uniformis abundance. No differences were observed between responders and non-
responders in Shannon diversity index (P=0.69) and overall microbial composition 
(P=0.82).

Conclusions
We show gut microbial species and pathways that are differentially abundant between 
responders and non-responders to ICI in the setting of K-ras mutated NSCLC. We find 
overlap with microbial signatures of response to ICI in other tumor types, potentially 
reflecting tumor-independent microbial mechanisms.
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Box 1. Glossary

α-diversity: Quantifies the number of microbial species within each sample. To test 
for differences in α-diversity, we computed the Shannon diversity index.
Shannon diversity: A measure of α-diversity which penalizes rare species.
β-diversity: Quantifies the similarity/dissimilarity between two different samples. 
To test for differences in β-diversity, we performed a Principal Component Analysis 
(PCA) on clr-transformed relative abundances.
Aitchison distance: The euclidean distance between samples calculated on species 
relative abundances after center log-ratio transformation (clr). This distance is 
considered the gold standard for high throughput sequencing data.
Principal Component Analysis (PCA): A dimensionality reduction technique that is 
used to reduce the size of a large dataset into a smaller one that keeps most of the 
information. The result of this analysis is typically visualized in an ordination plot.
Bayesian logistic-normal regression model: Statistical models that allow associating 
compositional and overdispersed high throughput sequencing data (such as 
microbiome data) with covariates. In the Pibble model, regression coefficients are 
ranked to determine which microbial features changes the most between cases 
and controls with statistical significance achieved through Bayesian inference. 
Importantly, the rankings produced from relative abundances are identical to the 
rankings produced by absolute abundances.
Permutational multivariate analysis of variance (PERMANOVA): Non-parametric 
multivariate statistical permutation test. Distance-based method to test which 
variables could significantly explain interindividual variation in the gut microbiome 
composition. The test statistics directly use the distance matrix to partition 
β-diversity into different sources of variation.
Microbial species: Groups of microorganisms that share common genetic and 
phenotypic characteristics. A species is a group of similar organisms (strains) within 
a genus. Microbial species can play important roles in various biochemical pathways 
and metabolic processes, such as the breakdown of fiber through fermentation, 
which can produce energy and metabolic byproducts, short-chain fatty acids.
Microbial pathways: Refer to specific biochemical processes and metabolic 
pathways that are carried out by microorganisms. Predicted metabolic functions 
of gut microbiota are based on their annotated genome and can be captured by 
whole shutgun metagenomics sequencing.

7
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INTRODUCTION

Lung cancer is the leading cause of cancer mortality worldwide. Immune checkpoint 
inhibition (ICI) has demonstrated significant benefit for patients with advanced non-
small cell lung cancer (NSCLC). Recently, pembrolizumab has moved forward as standard 
of care first line treatment, in NSCLC patients having a PD-L1 tumor proportion score 
(TPS) > 50% [1]. Nivolumab is standard of care for second and further line treatment 
of immunotherapy-naïve patients [2]. The Kirsten rat sarcoma viral oncogene homolog 
(K-ras) mutation is the most frequent genetic alteration found in NSCLC. K-ras mutations 
are associated with considerable heterogeneity in clinical characteristics and a poor 
prognosis to standard NSCLC therapies [3]. Immunotherapy seems to be an effective 
choice in patients with K-ras mutation, in any line of treatment and with better outcomes 
than chemotherapy [4]. However, responses in most patients are still poor and for up 
to 80% this treatment will have no favorable effect in terms of long-term survival [5].

The gut microbiome has been recognized as a hallmark of cancer [6]. Mechanisms 
through which the gut microbiome affects cancer development and progression include 
eliciting (innate) tumor promoting inflammation as well as escaping (adaptive) immune 
destruction [6, 7]. Moreover, the gut microbiome has been linked to ICI response, 
including the development of immune-related adverse events (irAEs), suggesting 
that characterization of the gut microbiome may enable a more personalized line of 
treatment [8, 9, 10]. While most of the evidence comes from melanoma patients, it 
is not yet clear whether the gut microbiome can serve as a target in patients treated 
with ICI for different tumor entities such as K-ras mutated NSCLC [11, 12]. In a French 
cohort of 338 patients with NSCLC, of which about 40% K-ras mutated NSCLC, baseline 
Akkermansia muciniphila abundance was associated with increased response rates and 
overall survival [13].

In this study we investigate the role of the gut microbiome in a cohort of patients treated 
with anti-PD-1 immunotherapy for advanced K-ras mutated NSCLC, presenting a specific 
tumor entity that has not yet been studied in this setting.

MATERIALS AND METHODS

Participant selection
From 1st of October 2017 to 1st of December 2019 we enrolled 40 patients with stage IIIB 
to IVB K-ras mutated NSCLC (TNM classification of lung cancer, 8th edition) for treatment 
with ICI as first line treatment (14 patients pembrolizumab, PD-L1 TPS >50%) or after 
failing first line platinum containing doublet chemotherapy (26 patients nivolumab, 
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independent of PD-L1 score). Patients were treated with nivolumab 3 mg/kg every 2 
weeks or pembrolizumab 200 mg flat dose every 3 weeks until progression or intolerable 
toxicity.

All patients were selected from a cohort of NSCLC patients harboring a K-ras mutation, 
as reported previously [14]. Key eligibility criteria are depicted in Supplementary table 
1. Baseline characteristics, tumor stage and previous treatment are presented in Table 
1. Antibiotic and proton pump inhibitor (PPI) use within 3 months of commencing ICI 
were documented.

Of 40 recruited participants two were excluded due to presence of a second primary 
tumor and not harboring a K-ras mutation, respectively. Five participants did not collect 
a fecal sample, leading to 33 patients eligible for analysis.

Sample collection, DNA extraction and sequencing
Patients received oral and written instructions about the stool sample collection. Stool 
samples were collected at baseline. The protocol for fecal sample collection and profiling 
of gut microbiota was previously published [15]. Microbial DNA was isolated with the 
QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany), according to the manufacturer’s 
instructions. Metagenomic sequencing was performed at Novogene, China using the 
Illumina HiSeq 2000 platform. We obtained a total of 7.9 (sd=1.2) Gb with an average 
of 26.3 (sd=4.0) mil. reads/sample prior to quality control and pre-processing.

Sample processing
Reads aligning to the human genome (GRCh37/Hg19) were removed using KneadData 
integrated Bowtie2 tool (V.2.3.4.1), functional profiles were calculated using HUMAnN3 
(V.0.10.0) and the taxonomic composition was evaluated using MetaPhlAn3. Microbes 
and microbial functions that were present in less than 10% of samples and microbes 
with a relative abundance lower than 0.01% were not included in subsequent analyses. 
Samples with a sequencing depth below 10 million reads were removed. Arcsine square-
root transformations for taxonomic abundances and logarithmic transformation for 
pathways were used as normalization methods.

Radiological evaluation and definition of clinical endpoints
Radiological evaluation with CT-scan according to Response Evaluation Criteria in Solid 
Tumors (RECIST) v1.1 [16] was performed at baseline and every 6 weeks in the first year 
of ICI treatment, and thereafter every 12 weeks until disease progression.

7
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Clinical endpoints were disease control rate (DCR), progression-free survival at 12 
months (PFS12) and development of immune-related adverse events (irAEs).

DCR was defined on the basis of the first two radiological evaluations (at week 6 and 
week 12) using RECIST v1.1 criteria [16], classifying patients as responders (complete 
response, partial response, or stable disease) or non-responders (progressive disease). 
Stable disease was only classified as a response when confirmed at 6 months.

PFS was defined as the time from the first dose of an ICI to the first event; i.e., disease 
progression or death from any cause, with PFS12 indicating a complete/partial response 
or disease stability up to at least 12 months following initiation of ICI treatment.

IrAEs during or after ICI treatment were documented using the Common Terminology 
Criteria for Adverse Events (CTCAE) v5 (Table 1) [17]. Side effects of clearly non-immune 
etiology were excluded.

Statistical analysis
The statistical tests and terminology are described in Box 1. χ2 Tests for categorical 
variables and Mann-Whitney U test (MWU) for continuous data were performed to 
calculate differences between responders and non-responders (Supplementary Table 
2). To test for differences in α-diversity, we computed Shannon diversity index using 
estimate richness (..., measures=”Shannon”) from the phyloseq package [18]. To test for 
differences in β-diversity, we performed a Principal Component Analysis (PCA) on clr-
transformed relative abundances using transform(..., transform=”clr”) and ordinate(..., 
method=”RDA”) from the microbiome and phyloseq package, respectively [18]. To 
determine which endpoints and variables could significantly explain interindividual 
variation in the gut microbiome in this cohort, we performed Permutational Multivariate 
Analysis of Variance (PERMANOVA) on an Aitchison distance matrix produced from 
species-level clr-transformed relative abundances using the function adonis from 
the vegan R package (v2.5-7) [19]. The P and R2 values were determined by 9999 
permutations using all variables in the model.

To identify associations between treatment outcomes and species abundance and 
metabolic pathways, we implemented a Bayesian logistic-normal linear regression model 
called Pibble from the R package fido [20, 21], which allows for associating covariates to 
compositional and over dispersed high throughput sequencing data (Box 1).

We were particularly interested in the covariates determining whether a likely 
association existed between the gut microbiome and response to ICI, either DCR (yes/
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no) or PFS12 (yes/no), ≥ grade 2 irAEs (yes/no), ICI regimen (Nivolumab/Pembrolizumab), 
and metastatic disease stage (1A, 1B, 1C), also adjusting for age, gender and BMI. 
Prior to fitting the model, we mean-centered the continuous covariates age and BMI. 
Furthermore, we used weighted sum/deviation coding (as opposed to treatment coding) 
which effectively mean-centers categorical covariates, to weight cases and controls 
by the number of observations [22]. Then, from the fitted model, we calculated the 
difference in the marginal means for cases vs. controls for each covariate of interest, and 
then ranked those to determine which microbial features changed the most between 
cases and controls. We report results at 75% and 90% credible intervals. This means we 
concluded that a microbial species or pathway is differentially abundant between cases 
and controls if 75% or 90% of its posterior distribution do not contain zero (i.e. 75% and 
90% Bayesian Confidence Level, BCL).

RESULTS

Patient characteristics
Clinical and pathological characteristics are summarized in Table 1. The median PFS was 
1 month (min=0 months, max=51 months, censoring date August 4, 2022), DCR was 24% 
(8 patients) and PFS12 was 18% (6 patients). Concomitant PPI was 58% and antibiotic 
use was low (9%). The K-ras G12C mutation was most frequently found (49%). In 11 
patients (33%) irAEs occurred, of which 10 were ≥ CTCAE-grade 2. In responders, grade 
and number of organs affected by irAEs was higher than in non-responders, although 
not statistically significant (Supplementary table 2).

Table 1. Cohort characteristics

 (n=33)

Patient characteristics

Age (years) at stage IV diagnosis, mean (SD) 64.24 (7.83)

Gender, n (%)
 Female
 Male

18 (55)
15 (45)

BMI (kg/m2), mean (SD) 24.93 (4.53)

Performance status, n (%)
 PS 0
 PS 1
 PS 2

6 (18)
23 (70)
4 (12)

Metastatic stage, n (%)
 0 (Stage 3b)
 1a
 1b
 1c

1 (3)
10 (30)
12 (36)
10 (30)
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Table 1.  Continued.

 (n=33)

Treated brain metastases, n (%) 3 (9)

Liver metastases, n (%) 3 (9)

Smoking, n (%)
 Current smoker
 Former smoker

4 (12)
29 (88)

Treatment characteristics

ICI used, n (%)
 Nivolumab (second or further line)
 Pembrolizumab (first line)

21 (64)
12 (36)

Antibiotic use at baseline, n (%) 3 (9)

PPI use at baseline, n (%) 19 (58)

Outcomes following ICI

DCR, n (%) 8 (24)

PFS (months), median (range) 1.0 (0-51)

PFS12, n (%) 6 (18)

irAEs, n (%) 11 (33)

Maximum grade irAEs, n (%)
 0
 1
 2
 3
 4

22 (67)
1 (3)
3 (9)
4 (12)
3 (9)

Cohort characteristics are presented as mean and standard deviation (SD) for continuous variables 
and as counts and percentages for categorical variables. Abbreviations: BMI: body mass index; 
DCR: Disease control rate; ICI: immune checkpoint inhibitor; irAEs: immune-related adverse events; 
NSCLC: Non-small cell lung cancer; PFS: Progression free survival; PFS12: Progression free survival 
at 12 months; PPI: proton pump inhibitors.
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Overall gut microbiome composition and diversity
We tested whether the gut microbiome of responders and non-responders exhibited 
differences in α-diversity and β-diversity and we found no difference between responders 
and non-responders in the Shannon diversity index neither for microbial species nor 
pathways in the PFS12 group (Figure 1). Similarly, there was no difference between 
responders and non-responders when using DCR as response measure (both P=0.69; 
Supplementary figures 1-2).

Figure 1: α-and β-diversity between responders and non-responders. Upper panels show α-diver-
sity at the species- (left) and pathway-level (right). 
α-diversity is computed as the Shannon diversity index (y-axis) for responders (R; blue) and non-
responders (NR; red), respectively. Lower panels show species-and pathway-level compositional 
similarity (β-diversity) between responder and non-responder samples. β-diversity was computed 
using Aitchison distances. Each eclipse includes 95% of each group’s samples.

We did not find significant differences in microbial species or pathway composition 
between responders and non-responders for either PFS12 nor DCR (Supplementary table 
3). Thereafter, we tested whether patients who developed irAEs exhibited differences in 
α-and β-diversity compared to those who were resistant to irAEs. Similarly to response to 
ICI, we found no differences between these two patient groups in terms of the Shannon 
diversity index for species, pathways, nor for microbial species or pathway composition 
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(Supplementary figures 1-2, Supplementary table 3). In the PERMANOVAs, we also 
included and tested whether ICI regimen, metastatic disease stage, gender, age and BMI 
explained variation in gut microbiome composition. For species composition, we found 
that metastatic disease stage, and gender were the variables explaining most variation 
in both the DCR and PFS12 model. For microbial pathway composition we found that 
response (DCR and PFS12), ICI regimen, metastatic disease stage, and age explained the 
largest percent variation (between 4 and 6%). However, none of the variables reached 
statistical significance (Supplementary table 3).

Differential abundance analysis

Responders show enrichment of short chain fatty acids (SCFA)-producers
Responders were enriched in several saccharolytic species involved in the synthesis 
of short chain fatty acids (SCFA), including Agathobaculum butyriciproducens, 
Clostridium leptum, Bifidobacterium longum, Eubacterium ramulus and Fusicatenibacter 
saccharivorans (Figure 2A). Furthermore, responders showed higher relative abundances 
of Akkermansia muciniphila and SCFA-producers Alistipes putredinis and Alistipes 
finegoldii compared to non-responders, although these associations showed a wider 
credible interval (Figure 2). At pathway level, responders showed a higher abundance 
of pathways involved in synthesis of biotin (BIOTIN-BIOSYNTHESIS-PWY) and butyrate 
(PWY-5676; PWY-5022) (Figure 2B).

Responders show higher abundance of immunogenic pathways
In contrast to the aforementioned health-associated microbial features, we also observed 
that responders had higher abundances of pathways involved in lipopolysaccharide (LPS) 
and heme synthesis (NAGLIPASYN; PWY-5136; FAO-PWY; HEMESYN2-PWY, Figure 2B). 
These pathways are generally regarded as pro-inflammatory.

Higher abundance of Bacteroides species in non-responders
Non-responders were enriched in several species belonging to the Bacteroides 
(Bacteroides (B.) sp CAF 44; B. clarus; B.wexlerae; B. uniformis; B. plebeius; B. ovatus) 
and Blautia genus (Ruminococcus gnavus; Blautia sp. CAG 257) in both the DCR and the 
PFS12 model. Non-response was also associated with a higher abundance of Escherichia 
coli and several amino acid synthesis pathways (Figure 2).

Biotin and SCFA synthesis pathways enriched in patients unaffected by irAEs
Patients who did not develop irAEs showed higher abundances of Anaerotruncus 
colihominis and Hungatella hathewayi (that were associated with non-response) and 
Anaerostipes hadrus (Supplementary figure 3). These patients further showed an 
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enrichment of pathways involved in the synthesis of biotin and SCFA or precursors 
of SCFA (BIOTIN-BIOSYNTHESIS-PWY; PWY-5676; PWY-5022) and fatty acid synthesis 
(FASYN-INITIAL-PWY; FASYN-ELONG-PWY); Supplementary figure 4).

On the other hand, patients who developed irAEs exhibited higher abundances of 
Alistipes finegoldii and Bifidobacterium longum (that were enriched in responders) 
and Bacteroides uniformis (enriched in non-responders; Supplementary figure 
3). Development of irAEs was associated with microbial synthesis of several amino 
acids (lysine, arginine, proline, isoleucine, asparagine; Supplementary figure 4) partially 
overlapping with pathways seen enriched in non-responders (Figure 2B).

Comparison of different ICI-regimen and metastatic disease stages
Finally, we compared gut microbial abundances in different treatment settings, 
including metastatic disease stage and treatment line or agent. We observed higher 
abundances of Bacteroides sp. CAG 144 and Escherichia coli in those treated with first-
line pembrolizumab compared to those treated with second- and further line nivolumab 
(Supplementary Figure 3). Patients with an earlier metastatic disease stage (M1a) 
harbored higher abundances of Bifidobacterium and Eubacterium spp., biotin synthesis 
(BIOTIN-BIOSYNTHESIS-PWY) and starch degradation (PWY-2723) pathways, whereas 
the higher metastatic disease stage M1c was associated with higher abundances of 
a pathway involved in LPS synthesis (NAGLIPASYN-PWY; Supplementary Figures 5-6).

DISCUSSION

In this study we profiled the gut microbiome composition and function in a homogeneous 
cohort of patients treated with anti-PD-1 immunotherapy for advanced K-ras mutated 
NSCLC. We identified distinct gut microbial features of response and non-response 
to treatment, while correcting for important clinical confounders such as ICI-type, 
metastatic disease stage and the development of irAEs. In line with earlier studies, 
response-associated microbiome features were not reflected at the whole microbiome 
level by common β-diversity metrices [23].

7
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Figure 2: Differential abundance analysis
Differentially abundant microbial species (A) and pathways (B) between responders (R; red) and 
non-responders (NR; blue) at 75% Bayesian confidence level. Dots indicate microbial features 
that were differentially abundant at 90% Bayesian confidence level. Color strength indicates the 
effect size.

Overlap in microbial signatures of response with other tumor types and 
geographies
We found that responders are enriched in SCFA producing species compared to non-
responders. SCFA producing species have previously been associated with healthy 
host phenotypes [11, 15, 24, 25]. SCFA-producers such as Bifidobacteria [23, 10], 
Faecalibacterium prausnitzii [9, 26] have been consistently associated with ICI-response 
across several tumor types including melanoma and renal cell carcinoma [8, 27], 
geographies [23, 28], and treatment regimen [13, 29].

Similarly, Akkermansia muciniphila has been repeatedly associated with increased overall 
survival and response rates to ICI in cohorts from different countries, such as in advanced 
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NSCLC patients from France [8, 13] and Poland [30], and melanoma patients from the 
Netherlands [31], the UK and Spain [23]. In our cohort we found increased Akkermansia 
muciniphila in responders, but not statistically significant, probably due to the small 
sample size. We also identified two Alistipes species to be enriched in responders, in 
line with the findings in melanoma and NSCLC patients [8, 26, 32].

At the level of predicted metabolic pathways, we observed an enrichment of biotin 
synthesis in responders as well as in patients unaffected by irAEs. Microbial pathways for 
the synthesis of biotin, as well as other B-vitamins, have been reported to be enriched 
in those protected from ICI-induced colitis [33].

Non-responders showed higher abundances of the species belonging to the Blautia 
genus and the Bacteroides genus. These species have been previously shown to be 
associated with chronic diseases such as IBD, diabetes mellitus and cardiovascular 
diseases and long-term diets rich in animal protein and saturated fat [15, 24, 25]. Our 
observation aligns with the findings of a recent cross-cancer meta-analysis at which 
Bacteroides were relatively underrepresented in ICI-responders across different tumor 
types including NSCLC, melanoma, hepatic and renal cell carcinoma [8]. Bacteroides 
clarus in particular, has been consistently associated with non-response to ICI [23].

Differences to NSCLC cohorts from other geographies
Overall, there has been heterogeneity in the microbial species associated with 
response across different cohorts [23], owing to regional differences such as diets, 
including concomitant medication use, and to methodological confounders such as 
limited sample sizes, metastatic disease stage or ICI-type not considered. In contrast 
to our findings, a study from China found higher abundances of Bacteroidea such as 
Bacteroides massiliensis in NSCLC patients who showed a partial response after anti-
PD-1 therapy [32]. Interestingly, previous studies have shown biphasic effects for the 
Bacteroides genus: while the Bacteroides genus has been associated with negative 
efficacy of anti-PD-1 blockade, in line with our study [9], some Bacteroides species (B. 
fragilis, B. thetaiotaomicron) have been shown to increase efficacy when anti-CTLA-4 
blockade was used [29]. In another study from China, NSCLC patients treated with 
nivolumab showed an enrichment of Alistipes, Bifidobacterium and Prevotella, whereas 
Ruminococcaceae was associated with non-response [34]. Two studies from Japan in 
ICI-treated NSCLC patients found yet another set of species associated with response, 
mainly Ruminococcaceae and Agathobacter [35] and Lactobacillus, Clostridium and 
Syntrophococcus [36], whereas non-responders were enriched in Bilophila, Sutterella 
and Parabacteroides. Another reason for the observed differences could be that, while 
the patients in our cohort all harbored a K-ras mutation, previous studies conducted 
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in NSCLC did not look at these patients separately. Larger studies across different 
geographies are needed to further elucidate the role of the gut microbiome in NSCLC.

Higher abundance of inflammatory pathways in responders
While previous studies suggest a health-associated gut microbiome profile in responders 
to ICI [37], including higher abundances of SCFA-producers, we also observed an 
enrichment of microbial functions that are generally considered “pro-inflammatory” 
or immunogenic. The precise mechanisms between the gut microbiome and 
immunotherapy still have to be elucidated [38]. Our findings suggest that different 
microbial mechanisms are at play that could help promote an anti-cancer immune 
response during ICI treatment, challenging the concept of predominantly healthy 
microbiome signatures associated with response. Given the role of SCFA producing 
species in the fermentation of fiber, our results support a potential benefit of fiber-rich 
diets and unsaturated fatty acids to improve outcomes of ICI therapy [39, 40].

STRENGTHS AND LIMITATIONS

To our knowledge this is the first study associating outcomes to ICI with the gut microbiome 
composition that is conducted exclusively in NSCLC patients harboring a KRAS mutation, 
a tumor entity that has been hard-to-target by standard NSCLC therapies in the past. A 
limitation of the study lies in its sample size and studying only a single time point (pre-
treatment). Future multinational studies across different tumor entities with longitudinal 
profiling of the gut microbiome are needed to confirm the role of the identified species 
as potential biomarkers or treatment targets to improve response to ICI.

CONCLUSIONS

In a homogeneous cohort of patients with a K-ras mutated NSCLC, we identified 
microbial species and pathways associated with response to ICI, and the development 
of irAEs. We find overlap in gut microbial species and functions associated with ICI-
response in other tumor types such as melanoma, that may reflect tumor-independent 
microbial mechanisms. Specifically, we identified an enrichment in species involved in 
the fermentation of fiber and production of SCFA in responders, supporting a potential 
benefit of fiber-rich diets to synergize with ICI. Non-responders harbored a higher 
abundance of species belonging to the Bacteroides genus. The findings support the 
notion that the gut microbiome could be an interesting target to improve outcomes in 
NSCLC patients treated with ICI.
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Supplementary Table 1. Key eligibility criteria

Inclusion criteria Exclusion criteria

NSCLC stage IIIB to IVB
K-ras mutation
Age >18 years
Life expectancy >3 months
PD-L1 TPS > 50% (if first line ICI)
ECOG performance score 0-1
At least 1 measurable lesion by RECIST v1.1
Adequate bone marrow reserve and organ 
function
Completion of any prior palliative radiotherapy at 
least 2 weeks prior to ICI start

Active brain or leptomeningeal metastases
Previous anti-PD(L)-1 immunotherapy
Previous treatment for ALK rearrangement, EGFR 
or BRAF mutation
Active, known or suspected autoimmune disease, 
except for T1DM
Hypothyroidism only requiring hormone 
replacement
Skin disorders including vitiligo, psoriasis, or 
alopecia, not requiring systemic treatment.

Abbreviations: Immune checkpoint inhibition, ICI; Eastern Cooperative Oncology Group, ECOG; 
Response Evaluation Criteria in Solid Tumors, RECIST; Type 1 diabetes mellitus, T1DM.

Supplementary Table 2. Descriptive statistics

Total
(n=33)

Responders
(n=8)

Non-responders 
(n=25)

P-value

Patient characteristics

Age (years) at stage IV diagnosis, mean (SD) 64.24 (7.83) 63.38 (8.23) 64.52 (7.86) 0.899

Gender, n (%)
 Female
 Male

18 (55)
15 (45)

7 (88)
1 (13)

11 (44)
14 (56)

0.081

BMI (kg/m2), mean (SD) 24.93 (4.53) 24.45 (4.56) 25.08 (4.61) 0.867

Performance status, n (%)
 PS 0
 PS 1
 PS2

6 (18)
23 (70)
4 (12)

3 (38)
4 (15)
1 (13)

3 (12)
19 (76)
3 (12)

1.000

Metastatic stage, n (%)
 0 (Stage 3b)
 1a
 1b
 1c

1 (3)
10 (30)
12 (36)
10 (30)

1 (13)
2 (25)
4 (50)
1 (13)

0 (0)
8 (32)
8 (32)
9 (36)

0.182

Treated brain metastases, n (%) 3 (9) 0 (0) 3 (12) 0.748

Liver metastases, n (%) 3 (9) 0 (0) 3 (12) 0.748

K-ras mutation, n (%)
 G12A
 G12C
 G12D
 G12S
 G12V
 G13C
 G13D
 Q22K

3 (9)
16 (49)
3 (9)
1 (3)
5 (15)
1 (3)
2 (6)
2 (6)

0 (0)
4 (50)
1 (13)
0 (0)
2 (25)
0 (0)
1 (13)
0 (0)

3 (12)
12 (48)
2 (8)
1 (4)
3 (12)
1 (4)
1 (4)
2 (8)

0.805
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Total
(n=33)

Responders
(n=8)

Non-responders 
(n=25)

P-value

Smoking, n (%)
 Current smoker
 Former smoker

4 (12)
29 (88)

1 (13)
7 (88)

3 (12)
22 (88)

1.000

Treatment characteristics

ICI used, n (%)
 Nivolumab (second or further line)
 Pembrolizumab (first line)

21 (64)
12 (36)

3 (38)
5 (63)

18 (72)
7 (28)

0.179

Number of treatment lines prior to study, n (%) 0.068

 0
 1
 2

12 (36)
18 (55)
3 (9)

5 (63)
3 (38)
0 (0)

7 (28)
15 (60)
3 (12)

Antibiotic use at baseline, n (%) 3 (9) 3 (12) 0.748

PPI use at baseline, n (%) 19 (58) 4 (50) 15 (60) 0.931

irAEs, n (%) 11 (33) 5 (63) 6 (24) 0.114

Colitis, n (%) 3 (9) 1 (13) 2 (8) 1.0

Maximum grade irAEs, n (%)
 0
 1
 2
 3
 4

22 (67)
1 (3)
3 (9)
4 (12)
3 (9)

3 (38)
0 (0)
2 (25)
1 (13)
2 (25)

19 (76)
1 (4)
1 (4)
3 (12)
1 (4)

0.042

Number of organs affected by irAEs, n (%)
 0
 1
 2
 3

22 (67)
6 (18)
4 (12)
1 (3)

3 (38)
1 (13)
3 (38)
1 (13)

19 (76)
5 (20)
1 (4)
0 (0)

0.016

Baseline characteristics are presented as mean and standard deviation (SD) for continuous 
variables and as counts and percentages for categorical variables. Statistics are provided for the 
total cohort as well as the subset of responders and non-responders defined by DCR. χ2 tests for 
categorical variables and Mann-Whitney U test (MWU) for continuous data were performed to 
calculate differences between responders and non-responders. P-values written in bold indicate 
nominally significant differences between responders and non-responders (P < .05). There were 
no statistically significant differences between responders and non-responders after multiple 
hypothesis testing correction (FDR > 0.5). Abbreviations: BMI: body mass index; DCR: Disease 
control rate; FDR: False Discovery Rate; ICI: immune checkpoint inhibitor; irAEs: immune-related 
adverse events; PFS: Progression-free survival; PFS12: Progression-free survival at 12 months; 
PPI: proton pump inhibitors.
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Supplementary figure 1. Alpha and beta diversity at the species level
Upper panels show α-diversity (left) and β-diversity (right) for responders (R; blue) and non-
responders (NR; red) defined by disease control rate (DCR). α-diversity is computed as the Shannon 
diversity index (y-axis). Species-level compositional similarity (β-diversity) was computed using 
Aitchison distances. Each eclipse includes 95% of each group’s samples. Lower panels show 
α-diversity (left) and β-diversity (right) for patients who developed immune-related adverse events 
during treatment (irAEs; blue) and those who did no (No irAEs; red).
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Supplementary figure 2. Alpha and beta diversity at the pathway-level
Upper panels show α-diversity (left) and β-diversity (right) for responders (R; blue) and non-
responders (NR; red) defined by disease control rate (DCR). α-diversity is computed as the Shannon 
diversity index (y-axis). Compositional similarity (β-diversity) at the pathway-level was computed 
using Aitchison distances. Each eclipse includes 95% of each group’s samples. Lower panels show 
α-diversity (left) and β-diversity (right) for patients who developed immune-related adverse events 
during treatment (irAEs; blue) and those who did no (No irAEs; red).
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Supplementary figure 3. Species-level comparison of irAEs and different ICI-regimen
Left panel shows differentially abundant microbial species between patients developing irAEs (red) 
vs. no irAEs (blue) at 75% BCL. Right panel shows differentially abundant species between patients 
receiving second and further line Nivolumab (red) vs. patients receiving first line Pembrolizumab 
treatment (blue). Dots indicate microbial features that were differentially abundant at 90% BCL. 
Color strength indicates the effect size.
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Supplementary Figure 4. Pathway-level comparison of irAEs and different ICI-regimen
Left panel shows differentially abundant microbial pathways between patients developing 
irAEs (red) vs. no irAEs (blue) at 75% BCL. Right panel shows differentially abundant pathways 
between patients receiving second and further line Nivolumab (red) vs. patients receiving first 
line Pembrolizumab treatment (blue). Dots indicate microbial features that were differentially 
abundant at 90% BCL. Color strength indicates the effect size.

7
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Supplementary Figure 5. Species-level comparison of different metastatic disease stages
Differentially abundant microbial species between patients with early disease stages (red) 
compared to later disease stages (blue) at 75% BCL. Dots indicate microbial features that were 
differentially abundant at 90% BCL. Color strength indicates the effect size.
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Supplementary Figure 6. Pathway-level comparison of different metastatic disease stages
Differentially abundant microbial pathways between patients with early disease stages (red) 
compared to later disease stages (blue) at 75% BCL. Dots indicate microbial features that were 
differentially abundant at 90% BCL. Color strength indicates the effect size.
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INTRODUCTION

Molecular profiling techniques such as targeted next generation sequencing (NGS) 
have become increasingly important in routine cancer diagnostics. Genomic alterations 
that are characteristic in certain malignancies are sometimes also detected in other 
cancers. Detection of rare variants may challenge the initial diagnosis or uncover a co-
existing malignancy [1,2]. We report on a non-small-cell lung cancer (NSCLC) case with 
an oncogenic mutation in PIK3CA and unusual mutations in both MET and IDH2, the 
last of which was shown to originate from tumor-infiltrating chronic myelomonocytic 
leukemia (CMML).

CASE PRESENTATION

An 80-year-old male presented with a mass in the right upper lobe with accompanying 
brain and bone lesions, suspicious of a stage IVB (cT4N0M1c) primary tumor of the 
lung. A histological needle biopsy of the pulmonary mass showed a solid and trabecular 
growing (non-small-cell) carcinoma in a minority of Alcian blue-positive intracytoplasmic 
vacuoles. Immunohistochemistry showed a diffuse strong nuclear staining for thyroid 
transcription factor 1 (TTF1), diffuse strong cytoplasmic staining for napsin-A and lack 
of staining for p40, leading to a conclusion of poorly differentiated adenocarcinoma. 
NGS revealed the presence of an oncogenic mutation in PIK3CA (NM_006218): 
c.3140A>G p.(His1047Arg) with 34% variant allele frequency (VAF). Additionally, two 
unexpected mutations were detected: an unknown frameshift mutation in MET exon 14 
(NM_000245): c.2913_2914delinsT p.(Asp972Metfs*13) with 48% VAF and a mutation 
in IDH2 (NM_002168): c.419G>A p.(Arg140Gln) with an almost fourfold lower VAF 
(13%). NanoString-targeted transcript analysis demonstrated MET exon 14 skipping 
transcripts. This mutational profile was intriguing, because of the unknown mutation 
in MET resulting in exon 14 skipping and the IDH2 mutation which is only rarely found 
in NSCLC and almost exclusively limited to hematological malignancies [3]. The patient 
provided written informed consent for publication.

Review of the patient’s health record revealed a history of CMML with an IDH2 
p.(Arg140Gln) mutation. The CMML had been regularly followed-up every 8–12 weeks 
prior to the diagnosis of NSCLC. Complete blood counts and white blood cell differentials 
had repeatedly demonstrated stable disease without indication of transformation to 
acute myeloid leukemia. Flow cytometry-based analysis on peripheral blood performed 
after the lung cancer diagnosis demonstrated 1% myeloblasts and 8% CD64 strong 
positive/CD300e-negative monoblasts/promonocytes. Considering the patient’s age 
and lack of anemia, thrombocytopenia or transformation to acute myeloid leukemia, 
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there was no indication for treatment. Re-analysis by NGS of the bone marrow tissue 
previously used to diagnose CMML confirmed the presence of IDH2 p.(Arg140Gln) and 
demonstrated wild-type PIK3CA and MET. Together, this suggested that IDH2 mutation-
positive leukemic cells were present in the lung adenocarcinoma biopsy.

Re-analysis of the histology did not clearly identify the presence of leukemia; however, 
leukemic cells in CMML can be virtually indistinguishable from normal monocytes by 
histology alone. Microscopic analysis showed a modest presence of inflammatory-like 
cells, with an interstitial distribution pattern in the stroma and in association with the 
tumor cells, closely resembling reactive inflammation as often seen in the context of 
NSCLC. Immunohistochemical staining revealed that these cells were consistently CD163-
positive, most probably reflecting CMML cells (Figure 1). There were no sheets of CMML 
cells and there were no blastic plasmacytoid dendritic cells or plasmacytoid dendritic 
cell aggregates – which can sometimes be present in peripheral tissues involved with 
CMML – recognizable by histology and flow cytometry.

To demonstrate the presence of the IDH2 mutation in the inflammatory-like component, 
macrodissection and mutation-specific digital droplet polymerase chain reaction (ddPCR; 
BioRad, Lunteren, the Netherlands) analysis of adenocarcinoma and adenocarcinoma-
free stromal tissue was performed. Both the PIK3CA and IDH2 mutations were detected 
in the dissected area containing both the TTF1-positive adenocarcinoma and CD163-
positive inflammatory-like cells with allelic frequency of 44% and 8%, respectively. The 
MET mutation was not analyzed due to the challenging design of the ddPCR probe and 
primers. In contrast, only the IDH2 p.(Arg140Gln) mutation with an allelic frequency of 
39% was detected in the tumor-free component. These observations indicate that only 
the CD163-positive inflammatory-like cells carried the IDH2 mutation.

The case was discussed by the Molecular Tumor Board (MTB) at the University Medical 
Center Groningen [4]. There was no indication to treat the CMML due to lack of clinical 
manifestations such as anemia or thrombopenia, nor suspicion of transformation 
to acute myeloid leukemia. Targeted MET inhibition was recommended for treating 
the NSCLC based on the detected MET exon 14 skipping. The MTB acknowledged the 
unknown effect of the PIK3CA mutation on MET inhibition but did not recommend dual 
inhibition, as the treatment efficacy of PI3K inhibitors in NSCLC is unknown. Crizotinib in 
compassionate use (250 mg twice daily) was initiated and resulted in a 39% radiological 
volume reduction (7.6–4.6 cm) of the primary tumor within 12 weeks (Figure 2). Despite 
clinical and radiological improvement, the patient developed an occlusion of the superior 
mesenteric artery with intestinal ischemia and succumbed to subsequent abdominal 
sepsis. The patient’s family did not consent to post-mortem examination and the cause 
of the obstruction therefore remained unknown.

8
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Figure 1. Histological images demonstrating the concurring presence of myelomonocytic leukemia 
cells and adenocarcinoma cells.
Histological images of the lung biopsy obtained by endobronchial ultrasound-guided fine needle aspiration, 
with corresponding TTF1 and CD163 immunohistochemistry. A–B, H&E stains of predissection (A) and post-
dissection (B) tissue slides, with adenocarcinoma-containing, TTF1-positive and chronic myelomonocytic 
leukemia (CMML)-containing, CD163-positive areas marked in blue and tumor-free, TTF1-negative and CD163-
positive areas marked in red. Part of the etching in the glass slide to mark the area for dissection is visible in B. 
C–D, Adenocarcinoma-containing, TTF1-positive (C) and CMML-containing, CD163-positive (D) area, in which 
both PIK3CA p.(H1047R) and IDH2 p.(R140Q) were detected with mutation-specific ddPCR. E–F, Tumor-free, 
TTF1-negative (E) and CD163-positive (F) area, testing positive for IDH2 p.(R140Q) but negative for PIK3CA 
p.(H1047R) with mutation-specific ddPCR. G–H, Area containing both adenocarcinoma (large cells, upper 
right) and suspected CMML cells (small cells, lower left), stained with H&E (G) and CD163 (H). CD163, cluster 
of differentiation 163; ddPCR, digital-droplet polymerase chain reaction; H&E, hematoxylin and eosin; IDH2, 
isocitrate dehydrogenase [NADP(+)] 2; PIK3CA, phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit 
alpha; TTF1, thyroid transcription factor 1.
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Figure 2. Patient clinical history and radiological imaging.
A, Timeline of the patient’s clinical history, with respective NGS results marked for separate 
bone marrow and lung biopsies. B, Computed tomography imaging of primary lesion (maximum 
diameter 7.6 cm) in the right upper lobe of the lung prior to initiating treatment with crizotinib. 
C, Computed tomography imaging after three months of treatment with crizotinib showing a 
partial response, with a volume reduction of 39% (maximum diameter 4.6 cm). IDH2, isocitrate 
dehydrogenase [NADP(+)] 2; MET, MET proto-oncogene, receptor tyrosine kinase; NGS, next-
generation sequencing; PIK3CA, phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit 
alpha.

DISCUSSION

The two unexpected mutations found in this patient’s biopsy each highlight unique 
diagnostic challenges derived from genomic profiling. The IDH2 p.(Arg140Gln) mutation 
most probably originated from tumor-infiltrating CMML. Although uncovering a second 
primary malignancy based on genomic profiling is not uncommon [1,2], detection of two 
different types of cancer in a single biopsy is rare. Here the histological and molecular 
work-up of the case identified CMML-infiltrating lung adenocarcinoma.

In addition, we identified a novel uncharacterized MET exon 14 frameshift mutation 
p.(Asp972Metfs*13) which was shown to induce MET exon 14 skipping. Mutations in 
MET that involve the splice site acceptor or donor site of exon 14 result in the exclusion 
of exon 14 in the MET transcript with subsequent loss of the ability to down-regulate 
the signaling activity [5]. Evidence from CRISPR-Cas9-altered cell lines indicates that 
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frameshift mutations can also induce splicing events that result in exclusion of the 
affected exon from the transcript [6]. Although the exact mechanism remains elusive, 
expression of a MET exon 14 skipping RNA transcript was verified. The observed 39% 
volume reduction of the primary tumor after 12 weeks of targeted MET inhibition 
treatment demonstrated that this novel MET frameshift variant is indeed actionable.

This case illustrates that seemingly unexpected oncogenic mutations can be derived from 
a tumor infiltrating second malignancy that may be unrecognizable by histomorphology 
alone. This patient’s NSCLC biopsy harbored an unexpected IDH2 mutation which was 
shown to originate from tumor-infiltrating chronic myelomonocytic leukemia. We 
conclude that the presence of a second malignancy should be considered when an 
unexpected genetic variant is detected in the molecular analysis of solid malignancies.
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ABSTRACT

Background
The number of solitary pulmonary nodules to be evaluated is expected to increase and 
therefore we need to improve diagnostic and therapeutic tools to approach these nodules. 
To prevent patients from futile invasive procedures and receiving treatment without 
histological confirmation of cancer, we evaluated the value of virtual bronchoscopy 
navigation to obtain a diagnosis of the solitary pulmonary nodule in a real-world clinical 
setting.

Methods
In the NAVIGATOR single center, prospective, observational cohort study patients 
underwent a virtual bronchoscopy navigation procedure with or without guide sheet 
tunnelling to assess a solitary pulmonary nodule. Nodules were considered not accessible 
if a diagnosis could not be obtained by either by CT-guided transthoracic biopsy or 
conventional bronchoscopy.

Results
Between February 2021 and January 2022 35 patients underwent the virtual 
bronchoscopy navigation procedure. The overall diagnostic yield was 77% and was 
dependent on size of the nodule and chosen path, with highest yield in lesions with an 
airway path. Adverse events were few and manageable.

Conclusion
Virtual bronchoscopy navigation with or without sheet tunnelling is a new technique with 
a good diagnostic yield, also in patients in whom previously performed procedures failed 
to establish a diagnosis and/or alternative procedures are considered not feasible based 
on expected yield and/or safety. Preventing futile or more invasive procedures like surgery 
or transthoracic punctures with a higher complication rate is beneficial for patients, and 
allowed treatment adaptation in two-third of the analyzed patient population.

HIGHLIGHTS
•	 Solitary pulmonary nodules to be evaluated is expected to increase over time.
•	 Virtual bronchoscopy navigation with or without sheet tunnelling has a diagnostic 

yield of 77%.
•	 Preventing unnecessary invasive procedures or receiving treatment without 

histological confirmation of cancer.
•	 Allows for treatment adaptation in two-third of the analyzed patient population.
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INTRODUCTION

The number of solitary pulmonary nodules (SPNs) to be evaluated is expected to 
increase due to the introduction of lung cancer screening programs and the increasing 
amount of cardiac CT scans. Simultaneously it is necessary to improve diagnostic and 
therapeutic tools to approach the SPNs [1]. CT guided transthoracic procedures are 
the current gold standard for obtaining diagnostic biopsies of SPNs in the periphery 
of the lung [2]. Despite its accuracy in lesions of >20 mm, this technique is associated 
with a significant risk of complications [3,4]. Pneumothorax is reported in up to 26 % 
of cases, with need for chest tube insertion and hospitalization in up to 5.6 % of cases, 
and bleeding is reported in up to 18 % of cases [3–5]. The diagnostic yield of a CT guided 
transthoracic biopsy in selected peripheral lesions is around 75 % [6]. Alternative for a CT 
guided biopsy is Video- or Robotic-Assisted Thoracic Surgery with or without hookwire 
localization for wedge resection of SPNs located within 30 mm of the pleural surface 
[7]. Although a high diagnostic yield is reported, disadvantages are the invasiveness of 
the procedure and risk of conversion to a thoracotomy. Furthermore, this technique 
is not suited in case of a more centrally located SPN, as lobectomy is usually required.

Historically, lesions in the periphery of the lung are considered not accessible by 
conventional bronchoscopy [8]. To advance the range and diagnostic yield, and to improve 
safety of bronchoscopic procedures, several approaches have been developed using 
techniques like ultrathin bronchoscopy and radial endobronchial ultrasound (rEBUS) to 
confirm access to the SPN [9]. Guidance to the SPN was achieved with electromagnetic 
navigation bronchoscopy (EBN) and for verification of the correct position rEBUS, C-arm 
fluoroscopy or cone beam CT scanning were added [10–13]. Dependent on localization 
and size of the lesion, generally ENB reported a diagnostic yield of above 70 % and low 
complication rate with 2 % pneumothorax [10–13]. Additionally, in a substantial number 
of patients, clinicians still decide to irradiate a nodule or resect a lung lobe without 
histologic confirmation of an SPN in advance [14].

One of the newer techniques for obtaining diagnostic biopsies of SPNs uses virtual 
bronchoscopy navigation (VBN) to calculate the access to an SPN via a trans parenchymal 
route [15]. Here, the overall sensitivity to obtain a histopathologic diagnosis has been 
found to be around 77 % (72–82 %). The complication rate was low, with pneumothorax 
in 2 % of the cases and bleeding in 0.8 %, without additional safety issues in severe 
emphysema patients [11,16–19]. With this technique, in contrast to the CT guided 
transthoracic approach, also very small lesions (up to 7 mm diameter), and lesions that 
cannot be reached via the transthoracic route – located in the inner two thirds of the lung 
- can be approached. However, detailed clinical data, like the relation of the diagnostic 
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yield to the specific location of the pulmonary nodule, and data about the accessibility of 
nodules in a real-world clinical population are needed [1,20]. Because of the increasing 
number of nodules to be assessed, and to prevent patients from receiving treatment 
without histological confirmation of cancer [21], the aim of this study was to evaluate 
the performance of VBN to obtain a diagnosis of SPNs in a real-world clinical setting.

METHODS

We performed a single center, prospective, observational cohort study of patients 
undergoing the novel standard of care VBN procedure to assess an SPN – “The 
NAVIGATOR” – study. The protocol was approved by the Medical Ethical Committee of 
the University Medical Center Groningen (UMCG) and registered centrally (UMCG METC 
202100352, ClinicalTrials.gov identifier NCT05383105).

Patients with a suspicious pulmonary nodule were recruited in the Multidisciplinary 
Board of Thoracic Oncology of the UMCG and in the regional multidisciplinary boards. In 
these meetings potential procedures to obtain a sample of the SPN and technical aspects 
of these procedures were discussed. Patients were available for the VBN procedure when 
alternative procedures were considered not feasible based on expected yield, safety, 
and/or if previously performed procedures failed to establish a diagnosis. All patients 
provided informed consent for the procedure.

Additional inclusion criteria were: age > 18, pulmonary nodule(s) suspicious for 
malignancy or metastases of a known primary tumor, a distinct nodule with a diameter 
of > 6 mm in its largest dimension, nodule located in the parenchymal tissue > 5 mm 
from the parietal pleura and considered accessible by VBN.

Exclusion criteria were any contraindication to undergo bronchoscopy, inability to stop 
anticoagulants or antiplatelet medication around time of the procedure, pregnant or 
breastfeeding women, moderate to severe pulmonary fibrosis, severe emphysema with 
bullae > 5 cm in the vicinity of the target nodule or tunnel.

Before the procedure a dedicated high-resolution CT scan was performed from eligible 
subjects and assessed using the Archimedes VBN System (Broncus Medical, Inc., San Jose, 
California, USA) [22,23]. This image-guided navigation system comprises a workstation 
and software that reconstructs CT data into a 3D model, including the airways, blood 
vessels, ribs and lungs and provides features to mark the pulmonary nodule. The system 
calculates an airway path and suitable points of entry (POE) locations with a straight line, 
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vessel-free access to the pulmonary nodule (the tunnel path), as well as bronchoscopy 
paths for guiding the bronchoscopist to the POE locations [18,19,22,23].

During the procedure nodules were assessed with VBN in combination with fluoroscopy 
guidance and biopsies (preferred) or samples for cytology were obtained. Evaluation of a 
pneumothorax was performed with fluoroscopy at the end of the procedure. Specimen 
were evaluated by a dedicated pulmonary pathologist according to standard of care. The 
diagnostic yield was calculated according to the ‘intermediate’ definition by Vachani, et 
al, considering malignant and true benign outcomes as diagnostic and allowing for follow 
up on nodules [24]. After the procedure, results were discussed in the Multidisciplinary 
Board of Thoracic Oncology for each patient resulting in a definitive treatment proposal.

Patients characteristics including previously performed procedures and outcomes, as 
well as treatment plan without the VBN procedure, characteristics of the SPN, details of 
the procedure including but not limited to procedure time, radiation dose and duration 
of radiation, adverse events of special interest (respiratory failure, pneumothorax, 
subcutaneous emphysema, hemorrhage according to Common Terminology Criteria 
for Adverse Events (CTCAE v5) [25,26]), and treatment plan after the VBN procedure 
were recorded.

Given the nature of the study, descriptive statistics were applied using SPSSv23.

RESULTS

Between February 2021 and January 2022, 35 patients underwent the VBN procedure 
in our center. Patient and SPN characteristics are listed in Table 1. Main indications to 
request a biopsy were SPNs without a history of a solid malignancy (43 %), and SPNs 
in patients with a history of a solid malignancy other than lung cancer (37 %). In the 
minority of cases, a repeat biopsy was requested for mutation analysis in relapsing or 
progressive lung cancer harboring an oncogenic mutation. The majority of SPNs were 
solid lesions, mainly located in the upper lobes (66 %). About one third of the population 
underwent at least one diagnostic procedure before the VBN procedure.

9

2024060-Birgitta Hiddinga.indd   2012024060-Birgitta Hiddinga.indd   201 29-03-2024   10:0429-03-2024   10:04



202 

Chapter 9

Table 1. Patient and nodule characteristics NAVIGATOR

Total number of patients 	 N = 35

Age, median (range in years) 	68 (45 – 80)

Gender, number (%)
	 Male
	 Female

	 18 (51)
	 17 (49)

Indication for the procedure, number (%)
SPN without history of solid malignancy
SPN in patients with history of solid malignancy other than lung cancer
Nodule, relapse/progression of prior lung cancer considered

	 15 (43)
	 13 (37)
	 7 (20)

Biopsy procedure before VBN procedure, number (%, multiple procedures per patient 
possible)
None
Procedure before VBN
Diagnostic bronchoscopy
EBUS FNA
EUS FNA
CT guided transthoracic biopsy
Thoracoscopy

	 22 (63)
	 13 (37)
	 9
	 2
	 1
	 3
	 1

Morphology SPN, number (%)
Solid
Spiculated
Lobulated
Cavitated
Subsolid
Ground glass opacity

	 33 (94)
	 15
	 15
	 3
	 1 (3)
	 1 (3)

Localization SPN, number (%)
	 Right upper lobe
	 Middle lobe
	 Right lower lobe
	 Left upper lobe
	 Left lower lobe

	 13 (37)
	 2 (6)
	 8 (23)
	 10 (28)
	 2 (6)

SPN longest diameter, median (range; in mm) 	24 (10 – 57)

SPN, grouped per diameter, number (%)
Diameter ≤ 20 mm
Diameter > 20 mm

	 12 (34)
	 23 (66)

Bronchus sign visible, number (%) 	 22 (63)

SPN: solitary pulmonary nodule; VBN: virtual bronchoscopy navigation; EBUS: endobronchial 
ultrasound; FNA: fine needle aspiration; EUS: endoscopic ultrasound.
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Table 2. Procedural characteristics NAVIGATOR

Procedure (bronchoscopy) time, median (range; in minutes) 43 (25 – 89)

Fluoroscopy time, median (range; in minutes) 2.5 (0.3 – 7.8)

Radiation dose during procedure, median (range; in mSv) 16.6 (0.7 – 85.5)

Chosen path to SPN, number (%)
Airway path
Tunnel path
Both

18 (51)
13 (37)
4 (11)

Adverse events of special interest, number (% of procedures)
Hemorrhage
Grade 1
Grade 2
Grade 3
Pneumothorax
Late subcutaneous emphysema*
Respiratory failure

9 (26)
5
2
2
-

1 (3)
-

Diagnostic yield of VBN procedure (%)
Overall
Per SPN diameter
Diameter ≤ 20 mm
Diameter > 20 mm
Per chosen path
Airway path
Tunnel path
Both

77

37
78

89
62
75

Size of SPN grouped by VBN result, median (range; in mm)
Diagnosis obtained
Diagnosis not obtained

25 (10 - 57)
18 (10 - 30)

SPN: solitary pulmonary nodule; VBN: virtual bronchoscopy navigation. *no intervention necessary

In Table 2 the procedural characteristics are given. The route with an airway path, tunnel 
path, or a combination, was chosen based on the navigational planning and at the 
discretion of the bronchoscopist. In half of the cases an airway path was chosen (51 %). 
Fig. 1 depicts a procedure with a tunnel path.

Adverse events of special interest were few and manageable (Table 2). Grade 3 
hemorrhage according to CTCAE criteria, needing additional bronchoscopic hemostasis, 
occurred in two patients (6 %). One of these patients also needed noradrenalin due 
to hypotension with signs of secondary cardiac ischemia during the procedure. This 
patient was diagnosed with a primitive neuroectodermal tumor. In the second patient no 
diagnosis was obtained. Both patients recovered without any sequelae. In our case series 
no pneumothorax occurred, in one case however, three days after the VBN procedure 
a self-limiting subcutaneous emphysema of the neck region without other signs of a 
pneumothorax was diagnosed.

9
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Figure 1. Procedure with a tunnel path. A. Solitary pulmonary nodule located in the right lower 
lobe (RB9), axial view on CT scan. B. Endoscopic view of RB9 with virtual overlays of airway path 
(blue), the intrapulmonary nodule (green) and the vessel-free location for puncture. C. Needle in 
subcarina of RB9 to access the intrapulmonary nodule. D. Fluoroscopy view of bronchoscope and 
tunnel sheet guided in direction to the nodule (green) with open forceps.

The overall diagnostic yield leading to a classifying diagnosis of the VBN procedure 
was 77 % (27/35 cases, Table 2). The diagnostic yield was dependent on SPN size and 
chosen path, with highest yield in lesions with an airway path on CT imaging 89 % 
(15/18 lesions), and 78 % in SPNs with a diameter > 20 mm (18/23 lesions). The median 
diameter of SPN with diagnosis was 25 mm (range 10–57).
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Figure 2. Distribution of diagnostic yield per lobe. N = number of procedures per lobe.

The diagnostic yield per lobe is reflected in Fig. 2. In 22 cases we established a 
malignancy, and in 5 cases a benign diagnosis. In all cases of malignancy, the obtained 
tissue was sufficient for additional molecular testing to aid treatment decisions. Two 
benign SPNs were based on an infection, one on a Streptococcus pneumoniae infection, 
and another on a Streptococcus mitis infection. One pulmonary nodule was formed by 
reactive changes of the lung tissue after chemotherapy, and was fully resolved in time. 
One lymphocytic SPN was considered malignant by the treating physician and the patient 
underwent stereotactic radiotherapy without a confirmative diagnosis of a malignancy. 
An SPN with eosinophilic inflammation was also considered malignant, and the patient 
went for thoracic surgery. In the resection specimen a typical carcinoid was found.

In all patients we proposed an a-priori advice for presumed treatment in case of no 
histological confirmation of the nodule (Table 3). After the VBN procedure, this treatment 
plan was adapted in 24 patients (69 %).

9
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DISCUSSION

We investigated the value of the new VBN in our first series of 35 cases with a pulmonary 
nodule. In our study we only selected SPNs that were not otherwise accessible or for 
which other diagnostic procedures were considered less successful or less safe. With 
a diagnostic yield of 77 %, our findings are in line with previous data [22,27 –30]. The 
performance of our first cohort of VBN procedures was comparable to other studies, 
taking into account the differences in technique. Due to small patient numbers we need 
to extend our cohort to make data more robust. An important advantage of a successful 
VBN procedure is that patients obtain a definite tissue based diagnosis and therefore can 
be offered appropriate treatment, avoiding more invasive procedures or futile treatment. 
Without this VBN procedure almost all patients would not have had a definite diagnosis. 
In our set, the treatment plan of two third of the patients was adjusted based on the 
definitive diagnosis after the VBN procedure.

In this observational cohort study we confirmed that VBN can be performed with 
manageable adverse events. No pneumothorax or respiratory failures were observed. 
There was, however, one patient with subcutaneous emphysema 3 days after the 
procedure. Fluoroscopy after the procedure and a PET-CT scan one day after did not 
show any signs of a pneumothorax. In a multicenter study of 1388 patients in 37 centers, 
the VBN-related grade 2 or higher bronchopulmonary hemorrhage and grade 4 or higher 
respiratory failure rates were 1.5 % and 0.7 %, respectively [29]. In a single-center study 
assessing 114 nodules, pneumothorax occurred in 1.9 % and mild bleeding in 1.0 % 
[30]. In our study grade 2 and 3 bronchopulmonary hemorrhage rate was 11.5 %, with 
relevant (grade 3) hemorrhage occurring in two patients (5.7 %), which resolved without 
sequelae.

The diagnostic yield of bronchoscopic procedures is partly dependent on the presence 
of a bronchus sign [30–32]. A positive bronchus sign refers to the presence of a bronchus 
leading directly to a peripheral lung lesion, as observed on CT. A previous study using 
VBN reported an overall diagnostic yield of 67 % (34/51), increasing to 79 % (30/38) 
when only patients with a bronchus sign on CT were considered [31]. In cases without a 
bronchus sign, the reported yield was only 31 %. In our cohort, the diagnostic yield was 
also highest when considering only cases in which the SPN could be approached by an 
airway path (89 %). However, in contrast to earlier data, the diagnostic yield of procedures 
approaching lesions without a bronchus sign by following a trans parenchymal route, 
was greatly improved (62 %) [19,22]. In our study we created 17 tunnel paths between 
the central airways and the lesions. Thorough preparation, including a dedicated pre-
procedural CT scan and constructing airway- and tunnel paths, was crucial to obtain a 

9
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diagnosis. Procedural issues possibly hampering the accurate planning of the virtual 
pathways to the nodule were resolution of the lesion on the pre-procedural CT scan, 
physical blockades like mucus impaction in smaller airways [33], mismatches occurring 
due to inadequate positioning of the patient on the table in comparison to the CT scan, 
as well as the difference between patient triggered deep inhalation during the scan and 
intraprocedural breath hold under anesthesia [34,35]. Especially in the lower lobes, the 
accordance of the appointed region of the nodule compared to the planning can be 
low. This discrepancy due to ‘movement’ of the pulmonary nodule during anesthesia 
is reported to be up to 2.5 cm when the nodule is located in the lower lobes [36]. 
Better imaging techniques such as cone-beam CT with body-shape sensing are available 
to overcome problems of respiration and CT-to-body divergence, and can increase 
diagnostic accuracy [13,37–39]. Additional confirmation of the position of the nodule 
can also be achieved with rEBUS which may contribute to an even higher diagnostic yield 
[40,41]. Additional localization confirmation is attributable for lesions in the right upper 
lobe, lesions not visible on fluoroscopy and lesions in the peripheral third of the lung 
[42–44]. Finally, improved localization of the nodule is also necessary to be able to safely 
apply local ablative therapies with minimal damage of healthy lung tissue in the future.

Next to the bronchus sign, size of the nodule is an important parameter in determining 
the diagnostic success of a procedure. In a large meta-analysis, a CT-guided biopsy was 
superior to VBN plus rEBUS for the evaluation of lesions smaller than 2 cm and located in 
the outer third of the lung [6]. For larger peripherally located lesions the endobronchial 
approach may be preferred, as it has a high diagnostic yield (80 %) and a low risk of 
procedure-related complications [6].

The location of the lesions in our cohort were not equally distributed over all lobes, 
with more lesions present in the upper lobes. This upper lobe predominance reflects 
the findings of screen-detected lung cancers in the NELSON trial, where 65 % of nodules 
were located in the upper lobes [20]. Furthermore, it indicates the difficulty to obtain 
a diagnosis via conventional bronchoscopy or CT-guided transthoracic biopsy in the 
apical segments of the upper lobes. Also procedures with VBN in the upper lobes are 
challenging due to angulation of the scope and related difficulties with advancing the 
forceps, brush or needle into the working channel. In our experience, use of ultrathin 
bronchoscopes can be disappointing due to little amount of tissue that can be obtained 
with the small biopsy tools. Endoscopic tools with greater flexibility, but large enough 
to obtain a sufficient amount of tissue, are still needed.

The additional value of the new VBN technique to be able to further personalize 
treatment of our patients, can only be achieved by an extra investment of time and 
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human resources. Pre-procedural CT scan and route planning, is followed by a procedure 
with median time of 50 min during which next to the anesthesiologist, a radiology 
technologist, the bronchoscopist, a ‘co-pilot’ for the navigation and endoscopy staff is 
needed [45].

CONCLUSIONS

In view of the expected lung cancer screening program leading to increasing numbers 
of especially small pulmonary nodules, better tools to reach SPNs are needed to help 
select the right treatment for the right patient. VBN with the possibility to also use 
a trans-parenchymal route is a new technique with a good diagnostic yield, also in 
patients in whom previously performed procedures failed to establish a diagnosis and/
or alternative procedures are considered not feasible based on expected yield and/
or safety. Preventing futile or more invasive procedures like surgery or transthoracic 
punctures with a higher complication rate is beneficial for patients. Using the new VBN 
technique, we reached a diagnostic yield of 77 %, and allowed treatment adaptation in 
two-third of the analyzed patient population.

9
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The aim of this thesis was to investigate what role can be played by biomarkers in the 
treatment of lung cancer. What criteria do we test and what medication is available? 
Can biomarkers act as a target for precision therapy and can biomarkers help us evaluate 
therapy in order to detect early progression in a non-invasive manner? Will we be able 
to use biomarkers to stratify patients for specific treatment options?

NEUROENDOCRINE TUMORS AND NEUROENDOCRINE 
CARCINOMAS

In the first part of the thesis, we discussed the rare and difficult to treat neuroendocrine 
tumors (NETs) and neuroendocrine carcinomas (NECs). These syndromes have hardly 
benefited from all the new methods to better visualize cell biology and the unravelling of 
the genome. Medication is administered regardless of either tumor selection or patient 
selection. In this era of more and more treatment options becoming available, such as 
immune checkpoint inhibition, it is necessary to improve the methods for selecting the 
best therapy available for lung cancer patients. Repurposing of medication, the use 
of medication that is registered for another indication, is another option that needs 
to be investigated. Conducting studies of tumor selection or patient selection based 
on biomarkers is the way to proceed. After all, in the absence of patient or biomarker 
selections, agents that fail once might nevertheless have a beneficial effect in another 
group of patients.

In chapter 2, we reviewed the recent progress achieved in the field of staging and 
treatment of small cell lung cancer (SCLC) with surgery and radiotherapy. Furthermore, 
we reported on advances made in systemic treatment such as immunotherapy and 
its role in the treatment of SCLC in the last decade. We provided an overview of the 
treatment options and future perspectives in the era of molecular analysis on dividing 
SCLC into four molecular subtypes associated with therapeutic sensitivities.

In chapter 3 we wrote an editorial for a special issue on “Targeted therapy for small cell 
lung cancer”, aiming to reveal targetable biomarkers, as well as biomarkers that can 
stratify patient groups for more effective treatments. We described three main directions 
moving forward to better stratify patients for specific therapies and to overcome tumor 
heterogeneity. The classification of SCLC into four molecular subgroups was the first step. 
The second solution may be in applying combination therapy rather than monotherapy. 
Thirdly, novel drug delivery systems should help to target tumor cells whilst sparing 
healthy cells.
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Combination of treatment modalities to overcome tumor heterogeneity in SCLC, 
classification of SCLC into 4 molecular subtypes with their own therapeutic 
vulnerabilities, and development of novel drug delivery systems is the way 

forward to the treatment of this devastating and prevalent disease

Genetic testing of SCLC
Recently, genetic testing in the largest real-world cohort of 3,600 SCLC patients identified 
new genetic alterations and subtypes, making a case in favor of personalized treatment 
in the future [1]. Unique in this study was the combining of genetic data with clinical 
data, such as overall survival. This allowed for revealing genomics by metastatic site. 
Tumor mutational burden (TMB) and PTEN mutations were more prevalent in brain 
metastases compared to primary tumors and liver metastases. In a cohort of patients 
harboring an Serine/threonine kinase 11 (STK11) mutation, an association with a worse 
overall survival was found. Patients with STK11 mutations may benefit from efforts 
made in other cancer types to develop new therapeutic approaches for this mutation. 
Furthermore, a cohort of TP53/RB1 wild type was defined, about 5% of all SCLC. In 
some of these, human papilloma virus (HPV) was prevalent. Transformed SCLC with 
driver mutations typically found in NSCLC emphasizes the need for re-biopsy in case of 
progression to treatment. This study focused on the need for unravelling the biology and 
on the search for markers in order to enable tailored treatment. Overlaps in biomarkers 
or genes found in other tumor types warrant expansion of therapies to these other 
tumor types, for example, the development of STK11 inhibitors to treat SCLC and NSCLC 
harboring an STK11 mutation.

In chapter 4 we conducted a systematic review of O6-Methylguanine-DNA 
methyltransferase (MGMT) in lung cancer to evaluate whether MGMT promoter 
methylation can act as a prognostic or predictive biomarker to select patients with 
lung cancer who can benefit from treatment with temozolomide. The conclusion of 
the review is that MGMT promoter methylation in NSCLC is not a prognostic, nor a 
predictive factor, hence temozolomide has no place. In SCLC and NET patients with 
MGMT promoter methylation, it still needs to be confirmed whether it can serve as a 
predictive biomarker for treatment with temozolomide. In these cases, temozolomide 
can be considered as a “personalized” therapy.

In chapter 5, we performed a retrospective analysis to establish the frequency of MGMT 
promoter methylation and ALK expression in tissue samples of 75 patients with NETs 
and NECs. Ten of 70 (14%) specimens were ALK IHC positive. The ten ALK IHC positive 
specimens consisted of two typical carcinoids, two atypical carcinoids, and six SCLC. None 
of the 13 LCNECs were ALK IHC positive. ALK IHC positive specimens were tested for ALK 

10

2024060-Birgitta Hiddinga.indd   2212024060-Birgitta Hiddinga.indd   221 29-03-2024   10:0429-03-2024   10:04



222 

Chapter 10

FISH. None of them showed rearrangements. In 5 tissues of high ALK expression, the 
presence of ALK mutations was tested, but no ALK mutations were identified. We found 
that MGMT promoter methylation was present in 33% (3/9) of patients with typical 
carcinoid, in 22% (2/9) of patients with atypical carcinoid, in 22% (8/37) of patients with 
SCLC and in 8% (1/12) of patients with LCNEC. We concluded that routine testing of NET 
and NEC samples for an ALK rearrangement is not recommended as ALK expression is 
not associated with an ALK rearrangement. Routine testing of NET and NEC samples for 
MGMT will detect a promoter hypermethylation in a sizable minority of patients who 
are eligible for targeted treatment with temozolomide.

ALK expression in NET and NEC reflects the origin of the tumor, the 
neuroendocrine crest, and has no clinical consequences, so should not be tested in 

NET and NEC 

MGMT can act as a biomarker to predict response to temozolomide in NET  
and NEC

MGMT promoter methylation
In general, MGMT hypermethylation and NSCLC were found to be associated, but 
this had no impact on overall survival in NSCLC patients [2]. In an observational 
retrospective study, the treatment of neuroendocrine neoplasms with temozolomide 
resulted in an overall response rate of 27.4% [3]. Correlation was found with MGMT 
promoter methylation status, overall response rate being 51.8% and without MGMT 
promoter methylation 17.7%. This finding was prospectively confirmed in patients 
with neuroendocrine neoplasms, of which 23% lung NETs and 64% pancreas NETs [4]. 
Patients in the methylated group had longer PFS (median not reached) versus 30.2 
months in the unmethylated group. The overall response rate was 60% in the methylated 
group and 24% in the unmethylated group. This was not statistically significant, due 
to the small patient group. Another multicenter study randomized 111 patients with 
advanced duodeno-pancreatic, lung, or NETs of unknown primary site for treatment 
with an alkylating agent or oxaliplatin-based therapy, stratifying patients according 
to MGMT-methylation [5]. The study is closed and results are awaited. In pancreatic 
NETs, treatment with temozolomide plus capecitabine revealed benefits exceeding 
temozolomide alone [6]. MGMT deficiency was associated with response to treatment. 
The authors conclude that routine testing of MGMT is not recommended, but can be 
considered to select patients for treatment with capecitabin and temozolomide.
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Repurposing of drugs
In rare tumors with high medical need, it is important to overcome cancer-specific 
properties and to aim for targets that can influence the outcome of therapy [7]. Emerging 
targets like DLL3 in SCLC are also detected in NETs and LCNEC [8, 9]. These targets are 
not only important as a guide for treatment options [10], but also expand the range of 
therapeutic possibilities for LCNEC and NETs [11]. A study with ADC Rova-T revealed an 
ORR of 13% in DLL3-expressing NECs and NETs [12].

Studies with new medication or new targets for SCLC, such as lurbinectedin plus the 
ATR kinase inhibitor berzosertib, the antibody drug conjugates (ADCs) ABBV-706 and 
ABBV-011, multiple BiTes and CAR-T, are now including patients with NETs and LCNEC, 
and will thereby hopefully enlarge the therapeutic arsenal in all NETs [13-19].

K-RAS  MUTATED NSCLC

In the second part of the thesis, we conducted feasibility studies in a cohort of patients 
with advanced Kirsten rat sarcoma viral oncogene homologue (K-ras) mutated NSCLC. 
In the early days of treatment with immunotherapy in NSCLC, PD-L1 was used as a 
biomarker to predict responses to therapy [20]. However, when we started the study in 
2015, we did not use PD-L1 to make therapy decisions, K-ras mutation was mandated 
to enter the study subject to fulfilment of the other inclusion criteria.

In chapter 6, we described the trial in which we aimed to assess the clinical relevance 
of monitoring ctDNA in blood samples of patients with K-ras mutated advanced NSCLC, 
who were treated with immunotherapy in order to detect early responses and to enable 
the prediction of long-lasting responses. Altogether, decreasing mutant copies estimated 
with droplet digital PCR were associated with longer PFS and OS compared to patients 
displaying increased or stable ctDNA levels. CtDNA dynamics in combination with PD-L1 
status is a promising cost-effective approach to monitor durable clinical benefit, PFS and 
OS in patients with advanced NSCLC treated with immunotherapy. Measuring a single 
tumor-derived molecular aberration, when retrieved from the circulation, improves the 
early recognition of a durable clinical benefit, and can assist in treatment decision making.

Monitoring ctDNA dynamics is an easy-to-use and promising monitoring tool

In chapter 7, we investigated the gut microbiome in a Dutch cohort of 33 patients treated 
with anti-PD-1 immunotherapy for advanced K-ras-mutated NSCLC. We presented taxa 
and pathways associated with response to immune checkpoint inhibition and immune-
related adverse events in this homogeneous cohort of patients. We found an overlap 
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in microbial signatures of response and treatment resistance in a cohort of melanoma 
patients, suggesting shared signals across different tumor types. The gut microbiome 
potentially reflects general mechanisms and microbiome signatures and is therefore 
tumor-independent.

The gut microbiome with its specific taxa and pathways potentially reflects 
general mechanisms and microbiome signatures, and is therefore tumor 

independent

Detection of K-ras mutations
Tumor tissue is the “gold standard” to detect K-ras mutations. However, tissue is not 
always available, whilst drawing a blood sample from the patient is less invasive. 
Identification of K-ras G12C mutations in circulating tumor DNA was feasible and the 
concordance between ctDNA and tumor tissue was high, around 98% [20, 21]. The 
most common co-occurring mutation found was STK11. Detection of K-ras mutations 
in plasma can act as a surrogate for tissue samples, although these should be measured 
regularly and test results should be available within a reasonable timeframe to make 
clinical decisions for the patient [21, 22].

Nowadays, using whole exome sequencing to examine NSCLC, we found that more 
factors are associated with responses, such as tumor mutational burden (TMB) [23]. 
Mutations such as STK11/ liver kinase B1 (LKB1) and Kelch-like ECH-associated protein 
1 (KEAP1) are not associated with any durable clinical benefit of immunotherapy 
[24, 25]. However its impact on PD-(L)1 inhibition in K-ras-mutated advanced NSCLC 
patients is unknown [26]. All these mutations and genomic alterations need to be further 
investigated in prospective studies.

Targeting K-ras mutations
K-ras mutation used to be hard to target in the past decades [27]. Recently, a lot of 
attention has been drawn to the K-ras G12C mutation, since effective inhibition of K-ras 
G12C is possible with sotorasib and adagrasib [28, 29]. Sotorasib produced an ORR of 
37% to 43% in pretreated advanced NSCLC with K-ras G12C mutation [28]. Furthermore, 
sotorasib was better than docetaxel in phase 3 with improved PFS and ORR [30]. Although 
clinical outcomes vary from early disease progression in 5 to 16% of patients to durable 
responses with an 2-year OS rate of 32.5% [31].

The largest cohort of NSCLC patients with a K-ras G12C mutation consisted of 424 
patients treated with sotorasib or adagrasib [32]. Co-mutations seen in the patient group 
with early progression (< 3 months) were KEAP1, SMARCA4, CDKNA2A, and STK11. TP53 
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was the most frequently co-mutated gene in the cohort, but was not associated with 
clinical outcomes. DNA damage repair (DDR) genes such as we saw in SCLC: ATM, ATR 
and CHK1, provided a higher ORR (52.2% vs 27.7%) and a significantly longer PFS (5.9 
months vs 4.6 months) with K-ras G12C compared to DRR wild type. Only numerical OS 
was found, though not in a statistically significant degree.

Immunotherapy was less effective in STK11 and KEAP1 mutant lung cancer [26]. STK11 
loss resulted in the silencing of STING in KRAS, which downregulates immunogenicity 
in K-ras mutated NSCLC [33]. Furthermore, STK11 mutation was associated with a lack 
of PD-L1 expression, reduced tumor-infiltrating cytotoxic CD8+ T lymphocytes and 
resistance to immune checkpoint inhibition in patients harboring a K-ras mutation [24, 
34]. KEAP1 seemed a negative predictive biomarker for the response to immunotherapy, 
although correlated with high tumor mutational burden (TMB) levels, association 
was also found with lower immune infiltrates suggestive of a cold tumor immune 
microenvironment [35].

In a cohort of 1,261 patients with NSCLC, K-ras mutation was detected in 536 patients 
(42.5%), STK11 mutation was detected in 20.6% and KEAP1 mutation in 19.2% of cases 
[36]. Co-occurring mutations were found in around 10%. In the KRAS group, harboring 
STK11 and KEAP1 mutations had significantly lower PD-L1 expression. TMB was higher 
in de STK11 and KEAP1 group. STK11 and KEAP1 are also predictive of worse outcomes 
when treated with chemotherapy. However, in this study, KEAP1 co-occurring with K-ras 
G12C is associated with poor prognosis and inferior outcome. Co-mutation of STK11 
in the absence of KEAP1 did not affect the ORR, PFS, or OS with K-ras G12C. A study 
among 330 patients found TP53 (42%), STK11 (29%) and KEAP1 (27%) [36]. A significantly 
shorter survival was seen in co-mutation KEAP1, both in treatment with chemotherapy 
and in immunotherapy. The co-mutation status of STK11 and TP53 was not associated 
with survival.

Whether the presence of STK11 and KEAP1 mutations predicts a worse outcomes 
on immunotherapy alone or in combination with other treatments, such as targeted 
therapy, chemotherapy or radiotherapy, will have to be evaluated in a prospective 
manner. At this point, they are prognostic rather than predictive.

However, other K-ras mutations exhibit different clinical outcomes, suggesting a different 
underlying biology [37]. For example, K-ras G12D mutations were prevalent in never 
smokers compared to K-ras G12C. In this group, treatment with immunotherapy alone 
was associated with a worse outcome, ORR 15.8% vs 28.4% in the K-ras mutated group 
overall. Treatment with chemoimmunotherapy was superior in this group. New clinical 
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trials will have to lead to stratification of different K-ras mutations or co-occurring 
mutations.

With the studies covered by this thesis, we have been able to gain a more profound 
insight into novel biomarkers in lung tumors. Biomarkers are of vital importance to select 
and stratify patients for specific treatments.

TISSUE

Meanwhile, obtaining tissue remains of the utmost importance. Not only to diagnose a 
pulmonary nodule, but also to make a choice between the new treatment options that 
have become available lately. Diagnostic techniques for assessing pulmonary lesions 
remain challenging. Newer bronchoscopy techniques, such as virtual bronchoscopy 
navigation, to obtain tissue from difficult-to-reach abnormalities in the lung, it is now 
possible to carry out complete molecular analysis and to offer appropriate treatment. 
Or, in the case of progressive disease of the growing abnormality, these techniques 
allow us to obtain new tissue and assess resistance mechanisms for a different choice 
of therapy. Sufficient tissue is important for molecular analysis in the development 
towards precision medicine.

In chapter 8 we presented a ‘Lesson of the Month’ about an elderly patient with chronic 
myelomonocytic leukemia, who was diagnosed with lung adenocarcinoma. In the lung 
biopsy, several mutations were revealed, a PIK3CA mutation, an uncharacterized MET 
frameshift mutation and an IDH2 mutation. The latter originated from tumor-infiltrating 
chronic myelomonocytic leukemia. The two other mutations derived from the lung 
cancer. The PIK3CA mutation is a well-known driver mutation in lung cancer, the MET 
frameshift mutation was shown to induce MET exon 14 skipping, which was successfully 
targeted with crizotinib. This case illustrates that seemingly unexpected mutations 
can derive from an infiltrating second malignancy, which might not be recognized by 
histomorphology alone. The presence of a second malignancy should be considered 
when an unexpected genetic variant is detected in the molecular analysis of solid 
malignancies.

In chapter 9, we conducted a single-center, prospective, observational study – 
NAVIGATOR - of patients undergoing a virtual bronchoscopy navigation (VBN) procedure 
to assess a pulmonary nodule. We reported on a cohort of 35 consecutive patients who 
entered our program. The nodules were “hard to get”, considered not reachable by a 
CT-guided transthoracic biopsy or conventional bronchoscopy or with EBUS. The overall 
diagnostic yield was 77% and was dependent on the size of the nodule and chosen path. 
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Adverse events were few and manageable. Preventing more invasive procedures such 
as surgery or transthoracic punctures with a higher complication rate is beneficial for 
patients. Base on performing VBN with a diagnostic yield of 77%, we allowed a treatment 
adjustment in two-thirds of the analyzed patient population.

Novel approaches to assess tumor tissue in (suspected) lung cancer patients are 
feasible

In the rapidly evolving field of interventional bronchoscopy, we concluded in our  
NAVIGATOR study that we still need to improve the diagnostic accuracy and additional 
localization confirmation of the position of the nodule. Addition of radial-EBUS and cone-
beam CT-scan during the procedure is strongly recommended [38]. Not only in order 
to avoid complications, such as bleeding and pneumothorax, but, more importantly, to 
increase the diagnostic yield of the procedure. To build a solid database, efforts are being 
undertaken to expand to multicenter logistics with other expert centers.
Secondly, the correlation with detailed clinical data is expected to help selecting patients 
for this procedure. Furthermore, better selection criteria are required to allocate patients 
for the diagnostic tool that is most appropriate to obtain tissue, namely the NAVIGATOR 
or a CT-guided transthoracic biopsy. Comparison of data of extended numbers of 
procedures in NAVIGATOR with existing data of patients undergoing CT-guided 
transthoracic punctures at our center in the last 5 years can facilitate the development 
of selection criteria to allocate patients for the safest procedure with a priori the highest 
diagnostic yield.

Virtual bronchoscopy navigation
Virtual bronchoscopy has advantages in providing information of the airways, vessels 
and pleura. The planning CT is of the utmost importance since the virtual environment 
relies on it. The procedural issues that possibly hampered the accurate planning of the 
virtual pathways to the nodule were resolution of the lesion on the pre-procedural CT 
scan, and physical blockades like mucus impaction in smaller airways [39]. Moreover, CT 
to body divergence is a major obstacle to successful navigation [39]. This means that pre-
procedural lung volumes on the planning CT can differ drastically from intraprocedural 
lung volumes under general anesthesia in the intubated patient [40]. Especially in the 
lower lobes, the conformity with the appointed region of the nodule compared to the 
planning can be low. Nodules can move in position by 2 cm [41], mismatches can occur 
due to inadequate positioning of the patient on the table in comparison with the CT 
scan, and there can be a difference between patient-triggered deep inhalation during 
the scan and intraprocedural breath held under anesthesia [40]. More effective imaging 
techniques, such as the cone-beam CT with body-shape sensing, are available to bring 
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problems of respiration and CT-to-body divergence under control and can improve 
diagnostic accuracy [42].

Robotic-assisted bronchoscopy
To overcome limitations in navigation and diagnostic sampling, several robotic-assisted 
bronchoscopy (RAB) platforms were developed. Two platforms to perform RAB navigation 
received FDA approval and are currently available in the USA [43]. In Europe, no clearance 
for patient care has been received, as a result of which platforms are only available for 
research purposes at this moment. The first, the Monarch RAB platform (Auris Health, Inc., 
Redwood City, CA, USA) is based on electromagnetic navigation technology (EMN) [44]. 
The Ion Robotic-Assisted Endoluminal Platform (Intuitive Surgical, Inc., Sunnyvale, CA, USA) 
is based on shape-sensing technology, using fiber-optic bend sensors within the catheter 
itself to maintain orientation [45]. A third platform, the Galaxy System™ (Noah Medical, 
San Carlos, CA, USA), which is expected to obtain FDA clearance in 2023, provides EMN 
and digital tomosynthesis guidance on top of a disposable bronchoscope [43].

The main advantage of RAB navigation is the maintenance of a static position to navigate 
into very small peripheral airways under continuous visualization [46]. Navigational 
success was 88.6% with a diagnostic yield of 69.1% in the first study of EMN RAB [47]. 
Safe catheter positioning in the proximity of the lesion was feasible and safe (in Ion) 
[48]. Proximity of the catheter to the target lesion was the strongest predictor for a 
diagnosis, independent of the presence of a bronchus sign, or a concentric radial EBUS 
view [49]. Addition of the cone-beam CT for confirmation of the correct navigation 
and tool-in-lesion during biopsy sampling improved the diagnostic yield to 83% [50]. 
This emphasizes the issue of whether diagnostic yield is the correct primary endpoint, 
and that diagnostic accuracy is a better outcome measure, allowing for follow-up [51]. 
Overall, RAB navigation to the lesion with a bronchus sign, confirmation of the right 
location of the biopsy tool and obtaining sufficient tissue for diagnosis are all feasible 
[52]. Stability and precision are the keywords to reach peripheral lesions that are 
otherwise not capable of being diagnosed when using a robotic-assisted bronchoscopy 
platform.

In RAB platforms, CT to body divergence remains a major obstacle to successful 
navigation [42]. Augmented imaging, such as fluoroscopy or cone-beam CT, may resolve 
this problem. To improve the localization check, the O-arm CT was added [53]. With a 
view to overcoming these disadvantages, the Ion platform with shape-sensing ability 
turns out to be the most practical at this moment.
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The drawback of robotic systems is that they are expensive, whilst publications on initial 
cost, maintenance and procedural tools are not available. Prospective head-to-head 
comparative studies of RAB and EMN have not yet been performed, and, retrospectively, 
the diagnostic yield is about comparable [54]. Information about cost development and 
the insurance-reimbursement options for robotic systems needs to be obtained before 
their introduction in daily patient care. On the other hand, it is beyond doubt that lung 
nodules will need to be reached and diagnosed with more precision in the future.

Future in bronchoscopy
As time goes by, the navigational bronchoscopy procedures will offer access to novel 
advanced imaging techniques, such as confocal laser endomicroscopy and fluorescence 
molecular endoscopy, which will facilitate the identification of the lesion during the 
endoscopic procedure [55]. Both techniques could be combined with laser-enhanced 
fluorescent-labelled tracer detection to assess sensitivity to medication [56, 57]. Finally, 
improved localization of the nodule will also be necessary in the future to be able 
to safely apply local ablative therapies with minimal damage to healthy lung tissue. 
Treatment of the malignant nodule by means of microwave ablation under the guidance 
of a navigation bronchoscopy or RAB guided biopsy will be the subject of future studies 
[58, 59].

Ultimately, we expect that the development and combination of these techniques will 
pave the way to a one-stop-shop approach, with rapid on-site evaluation of the biopsy 
and imaging, followed by local treatment of the malignant pulmonary nodule.
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Het doel van dit proefschrift was te onderzoeken welke rol biomarkers kunnen spelen 
bij de diagnostiek en behandeling van longkanker. Op basis van welke criteria testen we 
en welke medicijnen zijn beschikbaar? Kunnen biomarkers bij longkanker fungeren als 
doelwit voor precisietherapie en kunnen biomarkers ons helpen de therapie te evalueren 
om vroegtijdige progressie van hun ziekte op minimaal invasieve manier op te sporen? 
Zullen we biomarkers kunnen gebruiken om patiënten de juiste behandeling te kunnen 
aanbieden?

NEUROENDOCRIENE TUMOREN EN NEUROENDOCRIENE 
CARCINOMEN

Het eerste deel van het proefschrift gaat over de zeldzame en moeilijk te behandelen 
neuro-endocriene tumoren (NETs) en neuro-endocriene carcinomen (NECs). Deze 
ziektebeelden hebben nog nauwelijks geprofiteerd van alle nieuwe methoden om de 
celbiologie en de ontrafeling van het genoom beter in kaart te brengen. Medicatie wordt 
toegediend ongeacht selectie op basis van tumorbiologie of patiëntkarakteristieken. In dit 
tijdperk waarin steeds meer behandelopties beschikbaar komen, zoals immuuntherapie, 
is het noodzakelijk de methoden te verbeteren die helpen selecteren om patiënten 
optimale therapie voor te schrijven. Het toedienen van medicatie die voor een andere 
indicatie werd geregistreerd, is een andere mogelijkheid die onderzocht moet worden. 
Het uitvoeren van onderzoek op basis van tumorselectie of patiëntselectie gebaseerd 
op biomarkers is dan een logische keuze. Immers, medicatie die heeft gefaald in een 
bepaalde patiëntengroep kan toch een gunstig effect hebben indien een andere 
selectie wordt toegepast, bijvoorbeeld op basis van biomarkers of andere specifieke 
patiëntkenmerken.

In hoofdstuk 2 beschreven we de recente vooruitgang die is bereikt op het gebied 
van stadiëring en behandeling van kleincellig longcarcinoom (SCLC) met chirurgie en 
radiotherapie. Bovendien rapporteerden we over de vooruitgang die de afgelopen tien 
jaar is geboekt op het gebied van systeembehandelingen, zoals immuuntherapie en de 
rol ervan bij de behandeling van SCLC. We gaven een overzicht van de behandelopties 
en toekomstperspectieven in het tijdperk van moleculaire analyse. De indeling van SCLC 
in vier moleculaire subtypen die verband houden met therapeutische gevoeligheid is 
een aanknopingspunt voor verder onderzoek.

In hoofdstuk 3 schreven we een introductieartikel (editorial) voor de speciale uitgave 
“Targeted therapy for small cell lung cancer” van het tijdschrift Cancers. In deze speciale 
uitgave verschenen artikelen waarin de auteurs op zoek gingen naar biomarkers die als 
doel kunnen dienen voor precisietherapie en naar biomarkers die patiëntengroepen 
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kunnen selecteren voor effectievere behandelingen. In dit artikel beschreven we drie 
belangrijke richtingen om patiënten beter te stratificeren voor specifieke therapieën 
en om de heterogeniteit van tumoren te overwinnen. De classificatie van SCLC in vier 
moleculaire subgroepen was de eerste stap. De tweede benadering kan liggen in het 
toepassen van combinatietherapie in plaats van monotherapie. Ten derde zouden 
nieuwe methoden voor medicijnafgifte in de tumorcellen of in de nabijheid van de 
tumorcellen moeten helpen om deze doelgericht aan te pakken en tegelijkertijd gezonde 
cellen te sparen.

Combinatie van behandelmodaliteiten om de heterogeniteit van tumoren 
in kleincellig longcarcinoom (SCLC) te overwinnen, classificatie van SCLC in 
4 moleculaire subtypen met hun eigen therapeutische gevoeligheid, en de 

ontwikkeling van nieuwe methoden voor medicijnafgifte is de weg voorwaarts in 
de behandeling van deze verwoestende ziekte.

Genetisch onderzoek in SCLC
Onlangs werden in het grootste cohort van 3600 SCLC-patiënten nieuwe genetische 
veranderingen en subtypes geïdentificeerd, wat pleit voor gepersonaliseerde behandeling 
in de toekomst [1]. Deze studie richtte zich allereerst op de noodzaak de biologie te 
ontrafelen en vervolgens op de zoektocht naar markers om behandeling op maat 
mogelijk te maken. Uniek in dit onderzoek was de combinatie van genetische gegevens 
met klinische gegevens, zoals de algehele overleving. Daarnaast werd het mogelijk om 
van elke metastase het genoom te onthullen. Tumor mutational burden (TMB) en PTEN-
mutaties kwamen vaker voor in hersenmetastasen vergeleken met primaire tumoren en 
levermetastasen. In een cohort patiënten met een serine/threoninekinase 11 (STK11) 
mutatie werd een verband met een slechtere algehele overleving gevonden. Patiënten 
met STK11-mutaties kunnen profiteren van inspanningen die bij andere soorten kanker 
worden verricht om nieuwe medicatie voor deze mutatie te ontwikkelen. Het aantreffen 
van biomarkers of genen die gevonden worden in andere tumortypen rechtvaardigen 
uitbreiding van therapieën naar deze andere tumortypen, bijvoorbeeld de ontwikkeling 
van STK11-remmers voor de behandeling van SCLC en niet-kleincellig longcarcinoom 
(NSCLC) die een STK11-mutatie herbergen.

Hoofdstuk 4 is een systematische review ter evaluatie van de aanwezigheid van O6-
Methylguanine-DNA-methyltransferase (MGMT) bij longkanker. De tweede vraag was of 
MGMT-promoter methylatie kan fungeren als een prognostische of predictieve biomarker 
om patiënten met longkanker te selecteren die baat kunnen hebben bij behandeling met 
temozolomide. De conclusie van het hoofdstuk is dat MGMT-promoter methylatie bij 
NSCLC geen prognostische of predictieve factor is, en dat voor temozolomide geen plaats 
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is in de behandeling. Bij SCLC- en NET-patiënten met MGMT-promoter methylatie moet 
nog worden bevestigd of dit kan dienen als voorspellende biomarker voor behandeling 
met temozolomide. In deze gevallen kan temozolomide worden beschouwd als een 
“gepersonaliseerde” therapie.

In hoofdstuk 5 voerden we een retrospectieve analyse uit om de frequentie van MGMT-
promoter methylatie en ALK-expressie te bepalen in weefselmonsters van 75 patiënten 
met NETs en NECs.

Tien van de 70 (14%) monsters toonden ALK-expressie met behulp van 
immuunhistochemie (IHC). De tien ALK-positieve monsters waren verdeeld in twee 
monsters met typisch carcinoïd, twee met atypisch carcinoïd en zes met SCLC. Geen 
van de 13 grootcellig neuroendocriene carcinomen (LCNECs) was ALK-positief. ALK IHC-
positieve exemplaren werden getest met ALK FISH voor het aantonen van een ALK-fusie. 
Geen van hen vertoonde een ALK-fusie. In 5 weefsels met hoge ALK-expressie werd 
op de aanwezigheid van ALK-mutaties getest, maar deze werden niet gevonden. We 
concludeerden dat het routinematig testen van NET- en NEC-monsters op een ALK-fusie 
niet wordt aanbevolen, omdat ALK-expressie niet geassocieerd is met een ALK-fusie.

We ontdekten dat MGMT-promoter methylatie aanwezig was bij 33% van de patiënten 
met typisch carcinoïd, bij 22% van de patiënten met atypisch carcinoïd, bij 22% van de 
patiënten met SCLC en bij 8% van de patiënten met LCNEC. Routinematig testen van 
NET- en NEC-monsters op MGMT zal een promotor hypermethylatie detecteren bij een 
aanzienlijke minderheid van patiënten die in aanmerking zou kunnen komen voor een 
gerichte behandeling met temozolomide.

ALK-expressie in NET en NEC weerspiegelt de oorsprong van de tumor, de neurale 
lijst, en heeft geen klinische consequenties, dus hoeft niet te worden getest in NET 

en NEC. 
MGMT kan fungeren als een biomarker om de respons op temozolomide in NET 

en NEC te voorspellen.

MGMT promoter methylatie
In het algemeen blijken MGMT-hypermethylatie en NSCLC geassocieerd te zijn, 
maar dit heeft geen relatie met de algehele overleving bij NSCLC-patiënten [2]. In 
een observationeel retrospectief onderzoek resulteerde de behandeling van neuro-
endocriene nieuwvormingen met temozolomide in een totaal responspercentage van 
27,4% [3]. De methylatiestatus van de MGMT-promoter bleek van belang, het totale 
responspercentage was hoger met MGMT-promoter methylatie (51,8%) dan zonder 
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methylatie (17,7%). Deze bevinding werd prospectief bevestigd bij patiënten met NETs, 
waarvan 23% long-NETs en 64% pancreas-NETs [4]. Patiënten in de gemethyleerde 
groep hadden een langere progressievrije overleving waarbij de mediaan nog niet werd 
bereikt in vergelijking met 30,2 maanden in de niet-gemethyleerde groep. Het totale 
responspercentage was 60% in de gemethyleerde groep en 24% in de niet-gemethyleerde 
groep. Dit was niet statistisch significant vanwege de kleine patiëntengroep. Een ander 
multicentrum onderzoek randomiseerde 111 patiënten met gevorderde duodeno-
pancreas-, long- of NETs met onbekende primaire lokalisatie voor behandeling met 
een therapie gebaseerd op alkylering of op oxaliplatin, waarbij de patiënten werden 
gestratificeerd op basis van MGMT-methylatie [5]. Het onderzoek is gesloten en de 
resultaten worden afgewacht. Bij pancreas-NETs liet behandeling met temozolomide 
plus capecitabine voordelen zien ten opzichte van behandeling met alleen temozolomide 
[6]. MGMT-deficiëntie was geassocieerd met respons op de behandeling. De auteurs 
concluderen dat routinematig testen van MGMT niet wordt aanbevolen, maar wel kan 
worden overwogen patiënten hierop te selecteren voor behandeling met capecitabine 
en temozolomide.

Veranderen van indicatie voor toediening van medicijnen
Bij zeldzame tumoren is het belangrijk kankerspecifieke eigenschappen te overwinnen en 
te richten op biomarkers die de uitkomst van de therapie kunnen beïnvloeden [7]. Een 
in opkomst zijnde biomarker zoals delta-like ligand 3 (DLL3) in SCLC wordt ook gevonden 
in NETs en LCNEC [8, 9]. Deze biomarkers zijn niet alleen belangrijk als leidraad voor 
behandeling [10], maar breiden daarnaast het bereik van therapeutische mogelijkheden 
voor LCNEC en NETs uit [11]. Een onderzoek met “antibody-drug conjugate” (ADC) Rova-T 
toonde een totaal responspercentage van 13% in NEC’s en NETs die DLL3 tot expressie 
brengen [12].

Studies met nieuwe medicatie of nieuwe doelwitten voor SCLC, zoals lurbinectedine 
plus de ATR-kinaseremmer berzosertib, de ADCs ABBV-706 en ABBV-011, multiple BiTes 
en CAR-T, bevatten nu patiënten met NETs en LCNEC, en zullen daardoor hopelijk het 
therapeutische arsenaal in alle NETs vergroten [13-19].

NSCLC MET EEN K-RAS  MUTATIE

In het tweede deel van het proefschrift hebben we haalbaarheidsstudies uitgevoerd 
bij een cohort patiënten met gevorderd Kirsten rat sarcoom viraal oncogeen homoloog 
(K-ras) gemuteerd NSCLC. Momenteel wordt het PD-L1 eiwit gebruikt als biomarker om 
de respons op immuuntherapie bij NSCLC te voorspellen [20]. Toen we in 2015 met de 
studie begonnen, gebruikten we PD-L1 nog niet om therapiebeslissingen te nemen. Voor 

2024060-Birgitta Hiddinga.indd   2392024060-Birgitta Hiddinga.indd   239 29-03-2024   10:0429-03-2024   10:04



240 

Hoofdstuk 11

een patiënt was het hebben van een NSCLC met een K-ras-mutatie de voorwaarde om 
deel te kunnen nemen aan de studie, mits aan de andere inclusiecriteria werd voldaan.

In hoofdstuk 6 beschreven we de studie waarin we de klinische relevantie wilden 
beoordelen van het monitoren van circulerend tumor DNA (ctDNA) in bloedmonsters 
van patiënten met K-ras-gemuteerd NSCLC die werden behandeld met immuuntherapie. 
Het ultieme doel is vroegtijdige responsen te detecteren en te voorspellen voor langdurig 
effect op immuuntherapie. Alles bij elkaar was een gedaald aantal mutantkopieën, 
geschat met digitale druppel-PCR, geassocieerd met langere progressievrije overleving 
en totale overleving vergeleken met patiënten die verhoogde of stabiele ctDNA-niveaus 
toonden. CtDNA-dynamiek in combinatie met PD-L1-status is een veelbelovende, 
kosteneffectieve benadering om een langdurig effect, progressievrije en totale 
overleving, te monitoren bij patiënten met gevorderd NSCLC die worden behandeld 
met immuuntherapie. Het meten in de bloedsomloop van een enkele, van een tumor 
afkomstige moleculaire afwijking, verbetert de vroege herkenning van een aanhoudend 
klinisch effect en kan helpen bij het nemen van behandelbeslissingen.

Het monitoren van de ctDNA-dynamiek is een eenvoudig te gebruiken en een 
veelbelovend monitoringinstrument

In hoofdstuk 7 onderzochten we het darmmicrobioom in een Nederlands cohort van 33 
patiënten met een K-ras-gemuteerd NSCLC die behandeld werden met immuuntherapie. 
We vonden stammen (taxonomische rangen) en routes die verband houden met de 
respons op immuuntherapie en immuungerelateerde bijwerkingen in dit homogene 
cohort patiënten. We vonden een overlap in microbiële kenmerken van respons en 
behandelresistentie bij een cohort melanoompatiënten, wat duidt op gedeelde signalen 
tussen verschillende tumortypen. Het darmmicrobioom weerspiegelt mogelijk algemene 
mechanismen en kenmerken van het microbioom en lijkt daarmee tumoronafhankelijk.

Het darmmicrobioom weerspiegelt mogelijk algemene mechanismen en 
kenmerken van het microbioom en is daarom tumoronafhankelijk.

Detectie van K-ras mutaties
Tumorweefsel is de “gouden standaard” om K-ras-mutaties te detecteren, maar weefsel 
is niet altijd voorhanden en het afnemen van een bloedmonster bij de patiënt is minder 
invasief. Identificatie van K-ras G12C-mutaties in circulerend tumor-DNA was haalbaar 
en de concordantie tussen ctDNA en tumorweefsel was hoog, ongeveer 98% [20, 21]. 
De meest gelijktijdig voorkomende mutatie die werd gevonden was STK11. Detectie van 
K-ras-mutaties in plasma kan dienen als vervanging voor weefselmonsters, hoewel deze 
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regelmatig moeten worden gemeten en de testresultaten binnen een redelijk tijdsbestek 
beschikbaar moeten zijn om klinische beslissingen voor de patiënt te kunnen nemen 
[21, 22].

Met volledige exome-sequencing van NSCLC werd ontdekt dat meer factoren 
geassocieerd zijn met respons op immuuntherapie, zoals bijvoorbeeld “Tumor 
Mutational Burden” (TMB) [23]. Mutaties als STK11/leverkinase B1 (LKB1) en Kelch-like 
ECH-associated protein 1 (KEAP1) zijn niet geassocieerd met enig langdurig klinisch 
voordeel van immuuntherapie [24, 25]. De impact ervan precies is bij K-ras-gemuteerde 
NSCLC-patiënten is echter onbekend [26]. Wat de invloed is van al deze mutaties en 
genetische veranderingen moet verder worden onderzocht in prospectieve studies.

Doelgerichte behandeling van K-ras mutaties
De K-ras utatie was de afgelopen decennia moeilijk te behandelen [27]. Onlangs is kreeg 
de K-ras G12C-mutatie veel aandacht, omdat effectieve remming van K-ras G12C mogelijk 
bleek met sotorasib en adagrasib [28, 29]. In een groep voorbehandelde NSCLC patiënten 
met een K-ras G12C-mutatie toonde sotorasib toonde een totaal responspercentage van 
37% tot 43% [28]. Bovendien was sotorasib beter dan docetaxel in fase 3 met verbeterde 
progressievrije overleving en totaal responspercentage [30]. Ondanks deze bevindingen 
variëren klinische uitkomsten van vroege ziekteprogressie bij 5 tot 16% van de patiënten 
tot duurzame effecten met een 2-jaars overlevingspercentage van 32,5% [31].

Het grootste cohort NSCLC-patiënten met een K-ras G12C-mutatie bestond uit 424 
patiënten die werden behandeld met sotorasib of adagrasib [32]. Co-mutaties die 
werden gezien in de patiëntengroep met vroege progressie (< 3 maanden) waren KEAP1, 
SMARCA4, CDKNA2A en STK11. TP53 was het meest frequent gemuteerde gen in het 
cohort, maar had geen correlatie met klinische resultaten. DNA-schadeherstelgenen 
(DDR) zoals we zagen in SCLC, ATM, ATR en CHK1, zorgden voor een hoger totaal 
responspercentage (52,2% versus 27,7%) en een significant langere progressievrije 
overleving (5,9 maanden vs. 4,6 maanden) met K-ras G12C vergeleken met DRR wild 
type. Er werd slechts numerieke overlevingswinst geboekt, zij het niet in statistisch 
significante mate.

Immuuntherapie was minder effectief in STK11- en KEAP1-gemuteerde longkanker 
[26]. STK11-verlies resulteerde in het uitschakelen van “stimulator of interferon genes” 
(STING) in KRAS, wat de immunogeniciteit in K-ras-gemuteerd NSCLC vermindert [33]. 
Bovendien was de STK11-mutatie geassocieerd met een gebrek aan PD-L1-expressie, 
verminderde tumor-infiltrerende cytotoxische CD8+ T-lymfocyten en resistentie tegen 
immuuntherapie bij patiënten met een K-ras-mutatie [24, 34]. Ondanks het feit dat 
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correlatie met een hoog TMB gezien werd, bleek KEAP1 een negatief voorspellende 
biomarker voor de respons op immuuntherapie. Daarnaast werd een associatie gevonden 
met minder immuuninfiltraten die duiden op een “cold tumor microenvironment” [35].

In een cohort van 1261 patiënten met NSCLC werd K-ras-mutatie gedetecteerd bij 536 
patiënten (42,5%), een STK11-mutatie bij 20,6% en KEAP1-mutatie bij 19,2% [36]. Bij 
ongeveer 10% werden meerdere gelijktijdig voorkomende mutaties gevonden. In de 
K-ras-groep hadden STK11- en KEAP1-mutaties een significant lagere PD-L1-expressie. 
TMB was hoger in de STK11- en KEAP1-groep. Daarnaast is de aanwezigheid van STK11 
en KEAP1 voorspellend voor slechtere resultaten bij behandeling met chemotherapie. In 
deze studie wordt KEAP1, dat gelijktijdig voorkomt met K-ras G12C, echter geassocieerd 
met een slechte prognose en een inferieure uitkomst. Co-mutatie van STK11 zonder 
een KEAP1-mutatie had geen invloed op het totaal responspercentage, progressievrije 
overleving of totale overleving K-ras G12C. Een onderzoek onder 330 patiënten vond 
TP53 (42%), STK11 (29%) en KEAP1 (27%) [36]. Een significant kortere overleving 
werd gezien bij co-mutatie KEAP1, zowel bij behandeling met chemotherapie als bij 
immuuntherapie. De co-mutatiestatus van STK11 en TP53 was niet geassocieerd met 
overleving.

Of de aanwezigheid van STK11- en KEAP1-mutaties een slechtere uitkomst voorspelt bij 
immuuntherapie alleen of in combinatie met andere behandelingen, zoals doelgerichte 
therapie, chemotherapie of radiotherapie, zal op een prospectieve manier moeten 
worden geëvalueerd. Op dit moment zijn ze eerder prognostisch dan voorspellend voor 
een respons.

Andere K-ras-mutaties vertonen echter verschillende klinische uitkomsten, wat 
een andere onderliggende biologie suggereert [37]. K-ras G12D-mutaties kwamen 
bijvoorbeeld veel voor bij niet-rokers vergeleken met K-ras G12C. In deze groep ging 
behandeling met alleen immuuntherapie gepaard met een slechtere uitkomst, een 
totaal responspercentage van 15,8% versus 28,4% in de totale K-ras-gemuteerde groep. 
Behandeling met chemo-immuuntherapie was in deze groep superieur. Nieuwe klinische 
onderzoeken zullen moeten leiden tot stratificatie van verschillende K-ras-mutaties of 
gelijktijdig voorkomende mutaties.

Met de onderzoeken die in dit proefschrift worden beschreven, hebben we een 
diepgaander inzicht kunnen verwerven in nieuwe biomarkers in longtumoren. 
Biomarkers zijn dus van cruciaal belang bij het selecteren en stratificeren van patiënten 
voor specifieke behandelingen.
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WEEFSEL

Ondertussen blijft het verkrijgen van weefsel van het grootste belang. Niet alleen om 
een longnodule te diagnosticeren, maar ook om een keuze te maken tussen de nieuwe 
behandelmogelijkheden die de laatste tijd beschikbaar zijn gekomen. Diagnostische 
technieken voor het beoordelen van longlesies blijven een uitdaging. Met nieuwere 
bronchoscopietechnieken, zoals virtuele navigatiebronchoscopie, om weefsel te 
verkrijgen van moeilijk bereikbare afwijkingen in de long, is het nu mogelijk om volledige 
moleculaire analyses uit te voeren en een passende behandeling aan te bieden. Of, in 
het geval van progressieve ziekte van de groeiende afwijking, stellen deze technieken 
ons in staat nieuw weefsel te verkrijgen en resistentiemechanismen te beoordelen voor 
een andere therapiekeuze. Voldoende weefsel is belangrijk voor het uitvoeren van een 
goede moleculaire analyse in de ontwikkeling naar precisiegeneeskunde.

In hoofdstuk 8 presenteerden we een ‘Les van de maand’ over een oudere patiënt met 
chronische myelomonocytaire leukemie (CMML), bij wie longadenocarcinoom werd 
vastgesteld. In de longbiopsie werden verschillende mutaties gevonden: een PIK3CA-
mutatie, een niet-gekarakteriseerde MET-frameshift-mutatie en een IDH2-mutatie. 
Deze laatste is ontstaan door tumor-infiltrerende CMML. De twee andere mutaties 
zijn afkomstig van de longkanker. De PIK3CA-mutatie is een bekende driver-mutatie 
bij longkanker; de MET-frameshift-mutatie bleek het “skippen” van MET exon 14 te 
induceren, welke met succes werd behandeld met crizotinib. Dit geval illustreert dat 
ogenschijnlijk onverwachte mutaties het gevolg kunnen zijn van een infiltrerende tweede 
maligniteit, die mogelijk niet door histomorfologie alleen wordt herkend. Indien een 
onverwachte genetische variant wordt gedetecteerd in de moleculaire analyse van solide 
maligniteiten, moet rekening worden gehouden met de aanwezigheid van een tweede 
maligniteit.

In hoofdstuk 9 rapporteerde we de resultaten van – NAVIGATOR –, een monocentrum, 
prospectieve, observationele studie uitgevoerd bij patiënten die een virtuele 
bronchoscopie-navigatie (VBN) procedure ondergingen om een longnodule te 
beoordelen. We presenteerden een cohort van de eerste 35 opeenvolgende patiënten die 
aan ons programma deelnamen. De longnodules waren moeilijk te bereiken en werden 
niet toegankelijk geacht met een CT-geleide transthoracale biopsie, een conventionele 
bronchoscopie of met een endobronchiale echografie (EBUS). De diagnostische 
opbrengst was 77% en bleek afhankelijk van de afmeting van de nodule en de gekozen 
route. Complicaties waren zeldzaam en beheersbaar. Het voorkómen van meer invasieve 
procedures met een hoger complicatierisico zoals chirurgie of transthoracale puncties 
is gunstig voor patiënten. Met het uitvoeren van VBN met een diagnostische opbrengst 
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van 77% bij longnodules waarvan anders geen diagnose zou worden gesteld, maakte 
dat we bij tweederde van de patiëntenpopulatie het behandelplan konden aanpassen 
naar een meer gerichte behandeling.

Nieuwe benaderingen om tumorweefsel te beoordelen bij (vermoedelijke) 
longkankerpatiënten zijn mogelijk.

In het snel evoluerende veld van interventiebronchoscopie hebben we in ons NAVIGATOR-
onderzoek geconcludeerd dat we nog steeds de diagnostische nauwkeurigheid en 
aanvullende lokalisatiebevestiging van de positie van de longnodule moeten verbeteren. 
Toevoeging van radiale EBUS en cone-beam CT-scan tijdens de procedure wordt sterk 
aanbevolen [38]. Niet alleen om complicaties, zoals bloedingen en pneumothorax, te 
voorkomen, maar belangrijker nog: om de diagnostische opbrengst van de ingreep te 
verhogen door een betere plaatsbepaling voorafgaand aan het nemen van de biopten. 
Daarnaast zijn betere selectiecriteria nodig om patiënten te kunnen toewijzen aan het 
diagnostische instrument dat het meest geschikt is om weefsel te verkrijgen, namelijk 
de VBN of een CT-geleide transthoracale biopsie. Correlatie met gedetailleerde klinische 
gegevens zal helpen om meer inzicht te verkrijgen in dit vraagstuk. Vergelijking van 
gegevens van uitgebreide aantallen procedures in NAVIGATOR met bestaande gegevens 
van patiënten die CT-geleide transthoracale puncties hebben ondergaan in ons centrum in 
de afgelopen 5 jaar kan de ontwikkeling van selectiecriteria vergemakkelijken om patiënten 
toe te wijzen aan de veiligste procedure met a priori de hoogste diagnostische opbrengst.

Samen met andere expertisecentra in Nederland bouwen we momenteel een database 
met gegevens over patiënten en procedures om navigatiebronchoscopie een solide plek 
te geven in het diagnostisch arsenaal van een longnodule.

Virtuele navigatiebronchoscopie
Virtuele bronchoscopie heeft voordelen bij het verstrekken van informatie over de 
luchtwegen, bloedvaten en de pleura. De plannings-CT-scan is van het grootste belang 
omdat de virtuele omgeving ervan afhankelijk is. De procedurele problemen die 
mogelijk de nauwkeurige planning van de virtuele paden naar de nodule belemmerden, 
waren de resolutie van de laesie op de pre-procedurele CT-scan en fysieke blokkades 
zoals slijmimpactie in kleinere luchtwegen [39]. Bovendien is de zogenaamde CT-
lichaamsdivergentie een groot obstakel voor succesvolle navigatie [39]. Dit betekent 
dat pre-procedurele longvolumes op de geplande CT drastisch kunnen verschillen van 
procedurele longvolumes onder algehele anesthesie bij de geïntubeerde patiënt [40]. 
Immers, patiënten kunnen in wakkere situatie veel dieper inademen dan de inspiratie 
die tijdens algehele anesthesie bij een geïntubeerde patiënt bereikt kan worden. Vooral 
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in de onderste longkwabben kan de overeenkomst vergeleken met de planning laag 
zijn. Longnodules kunnen zeker 2 cm in positie bewegen [41], er kunnen mismatches 
optreden als gevolg van een inadequate positionering van de patiënt op de tafel in 
vergelijking met de CT-scan, en er kan een verschil zijn tussen door de patiënt getriggerde 
diepe inhalatie tijdens de scan en de ademhaling onder narcose tijdens de procedure 
[40]. Er zijn effectievere beeldvormingstechnieken beschikbaar, zoals de cone-beam CT 
met lichaamsvormdetectie, om ademhalingsproblemen en CT-lichaamsdivergentie onder 
controle te brengen en de diagnostische nauwkeurigheid te verbeteren [42].

Robotgestuurde bronchoscopie
Om de beperkingen op het gebied van navigatie en diagnostische opbrengst te 
overwinnen, zijn verschillende robotgestuurde bronchoscopieplatforms (RAB) 
ontwikkeld. Twee platforms voor RAB-navigatie hebben goedkeuring gekregen van de 
Food and Drug Administration (FDA) en zijn momenteel beschikbaar in de Verenigde 
Staten [43]. In Europa is nog geen toestemming voor patiëntenzorg ontvangen, 
waardoor platforms op dit moment alleen beschikbaar zijn voor onderzoeksdoeleinden. 
Het eerste, het Monarch RAB-platform (Auris Health, Inc., Redwood City, CA, VS) is 
gebaseerd op elektromagnetische navigatietechnologie (EMN) [44]. Het Ion Robotic-
Assisted Endoluminal Platform (Intuitive Surgical, Inc., Sunnyvale, CA, VS) is gebaseerd 
op vormdetectietechnologie, waarbij gebruik wordt gemaakt van glasvezelbuigsensoren 
in de katheter zelf om de oriëntatie te behouden [45]. Een derde platform, het Galaxy 
System™ (Noah Medical, San Carlos, CA, VS) heeft in 2023 goedkeuring van de FDA 
verkregen, biedt EMN en digitale tomosynthesebegeleiding naast een wegwerp-
bronchoscoop [43].

Het belangrijkste voordeel van RAB-navigatie is het behoud van een statische positie om 
onder continue visualisatie naar zeer kleine perifere luchtwegen te navigeren [46]. Het 
navigatiesucces was 88,6% met een diagnostische opbrengst van 69,1% in het eerste 
onderzoek van EMN RAB [47]. Veilige katheterpositionering in de nabijheid van de laesie 
was haalbaar en veilig (in Ion RAB) [48]. De nabijheid van de katheter tot de doellaesie 
was de sterkste voorspeller voor een diagnose, onafhankelijk van de aanwezigheid 
van een bronchusteken of een concentrisch radiaal EBUS-beeld [49]. Toevoeging 
van de cone-beam CT ter bevestiging van de juiste navigatie en tool-in-laesie tijdens 
biopsiemonsters verbeterde de diagnostische opbrengst tot 83% [50]. Dit benadrukt de 
vraag of de diagnostische opbrengst het juiste primaire eindpunt is, en of diagnostische 
nauwkeurigheid een betere uitkomstmaat is, die follow-up mogelijk maakt [51]. Over het 
geheel genomen zijn RAB-navigatie naar de laesie met een bronchusteken, bevestiging 
van de juiste locatie van het biopteur en het verkrijgen van voldoende weefsel voor 
diagnose alle haalbaar [52]. Stabiliteit en precisie zijn de sleutelwoorden om perifere 
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laesies te bereiken die anders niet gediagnosticeerd zouden kunnen worden met behulp 
van een door robots ondersteund bronchoscopieplatform.

Ook op RAB-platforms blijft de divergentie tussen CT-scan en lichaam een groot obstakel 
voor succesvolle navigatie [42]. Toegevoegde beeldvorming, zoals doorlichting of cone-
beam CT-scan, kan dit probleem oplossen. Om de lokalisatiecontrole te verbeteren, 
werd de O-arm CT-scan toegevoegd [53]. Om deze nadelen te ondervangen, blijkt het 
Ion-platform met vormgevoelig vermogen op dit moment het meest praktisch.

Het nadeel van robotsystemen is dat ze duur zijn, terwijl publicaties over initiële 
kosten, onderhoud en procedurele hulpmiddelen niet beschikbaar zijn. Prospectieve 
onderlinge vergelijkende studies van RAB en EMN zijn nog niet uitgevoerd, en 
retrospectief is de diagnostische opbrengst ongeveer vergelijkbaar [54]. Informatie 
over de kostenontwikkeling en de vergoedingsopties voor robotsystemen moet worden 
verkregen voordat ze in de dagelijkse patiëntenzorg worden geïntroduceerd. Aan de 
andere kant staat buiten kijf dat longnodules in de toekomst met meer precisie moeten 
worden bereikt en gediagnosticeerd.

Bronchoscopie in de toekomst
Naarmate de tijd verstrijkt, zullen de navigatie-bronchoscopieprocedures toegang 
bieden tot nieuwe geavanceerde beeldvormingstechnieken, zoals confocale laser-
endomicoscopie en fluorescentie-moleculaire endoscopie, die de identificatie van 
de laesie tijdens de endoscopische procedure zullen vergemakkelijken [55]. Beide 
technieken zouden kunnen worden gecombineerd met laser-versterkte fluorescentie-
gelabelde tracerdetectie om de gevoeligheid voor medicatie te beoordelen [56, 57]. 
Tenslotte zal ook in de toekomst een verbeterde lokalisatie van de nodule nodig zijn om 
lokale ablatieve therapieën veilig toe te kunnen passen met minimale schade aan gezond 
longweefsel. Behandeling van de kwaadaardige nodule met microgolfablatie onder 
begeleiding van een navigatiebronchoscopie of RAB-geleide biopsie zal het onderwerp 
zijn van toekomstige studies [58, 59].

Uiteindelijk verwachten we dat de ontwikkeling en combinatie van deze technieken de 
weg zal vrijmaken voor een “one-stop-shop”-aanpak, met snelle evaluatie ter plaatse 
met beeldvorming en een biopsie, gevolgd door lokale behandeling van de kwaadaardige 
longnodule.
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DANKWOORD

“Wat is belangrijker,” vroeg Grote Panda, “de reis of de bestemming?”
“Het gezelschap,“ zei Kleine Draak.

(Uit: Grote Panda & Kleine Draak – James Norbury)

Promoveren was voor mij een internationaal, multicentrisch en longitudinaal project. 
Het lijkt bijna op een fase-1 studie. In deze reis door de tijd heb ik veel mensen ontmoet. 
Uiteraard patiënten en hun naasten die mij toevertrouwden om passant te zijn in een 
periode in het leven waarin rouw en ontzetting dichtbij zijn. Juist voor deze mensen 
hoop ik dat dit proefschrift een aanzet is tot meer duidelijkheid over hun ziekte en de 
behandeling daarvan. Dank voor jullie moed en volharding!

Voor mij was het een reis door de tijd die in het teken staat van samenwerken en 
verbinden.

Zonder mijn promotoren Jan van Meerbeeck en Dirk-Jan Slebos was dit “schriftje” er 
niet geweest.

Jan, groot mentor en groot clinicus! Ik heb je leren kennen in mijn laatste opleidingsjaar. 
De aanleiding was relatief toevallig. Mijn opleider Hugo Schouwink in Enschede nodigde 
mij uit om samen met hem enkele bevriende Japanse collega’s wetenschappelijk en 
sociaal te vermaken in een weekend aansluitend aan de WCLC 2011. Hugo zei daar 
nog bij dat het een mooie gelegenheid was om kennis te maken met Jan om eens te 
spreken over EUS en EBUS en wat verdieping in UZ Gent. In een weekend met de trein 
naar Gent en Antwerpen, het thuisland van Jan van Meerbeeck en Veerle Surmont. 
Het was vrij snel beklonken, een jaar fellowship in UZ Gent bij de thoracale oncologie. 
De liefde voor longoncologie werd hiermee bestendigd en een aanstelling als staflid 
in UZ Antwerpen het gevolg. We hebben samengewerkt in een periode waarin mijn 
leven nogal roerig was. Samen met Benedicte heb je me een “thuis” gegeven. Je bent 
een GROOT mentor, waarbij je me alle ruimte hebt gegeven om te groeien en mezelf 
te ontwikkelen. Ik bewonder je loyaliteit aan de mensen om je heen. Praktisch klinisch 
en wetenschappelijk heb ik veel van je geleerd. Ik beschouw het als een voorrecht om 
al die tijd met je te hebben mogen werken. Uitspraken als “ik ruik drukinkt” en “schrijf 
250 woorden per dag” zijn inmiddels geëvolueerd naar “ChatGPT is om de writersblock 
van een promovendus op te heffen”. En ja, de Bokma staat koud!
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Dirk-Jan, hoe fijn was het om jou te ontmoeten als nieuwe collega en maatje in 
Groningen, dat je als praatpaal wil fungeren als het eens tegenzit en met Karin altijd 
gastvrij bent als het gaat om een maaltijd of een drankje. Over de opleiding heb ik veel 
van je geleerd, ik ben blij dat ik dit stokje van je mocht overnemen. Je vermogen om 
ruimte te bieden aan mensen die nieuwe ideeën willen uitwerken siert je. Ook het tot 
een (goed) einde brengen van dit project was met structuur en overzicht uiteindelijk een 
feit. Je soms iets te pragmatische benadering biedt vele mogelijkheden . 

Mijn opleider Hugo Schouwink, dank je de introductie bij Jan, het was de moeite meer 
dan waard! Het resulteerde in deze dag en ik vind het leuk dat ik je nog met regelmaat 
zie bij de SAGA of een congres. En dan de longartsen uit de groep, allen een aandeel 
aan mijn opleiding: Paul, Albert, Nicolle, Wendy, de Michielen en Ilonka.

In UZ Gent kreeg ik een hartelijk welkom van diensthoofd professor Guy Joos en de 
rest van de staf. Collega’s Veerle Surmont en Karim Vermaelen waren daar voor het 
longoncologisch deel en van Kurt Tournoy heb ik EUS en EBUS tot zelfstandigheid 
geleerd. Elke dinsdagochtend was hierbij een feestje! Veerle, dank je voor je vriendschap 
en voor het feit dat je in de beoordelingscommissie wilde plaatsnemen. Dank ook aan 
alle longartsen in opleiding van toen in Gent: Sarah, Julie, Sophie, Isabelle, Eva, Barbara, 
Annelies en Thomas. We hebben veel lol gehad, ik heb me zeer welkom gevoeld.

De overstap naar het Universitair Ziekenhuis Antwerpen voelde als een warm bad. Samen 
optrekken met Annelies Janssens en Sisca Kohl toen we de eenheid Thoraxoncologie 
moesten vormgeven. Allereerst wat ontheemd, letterlijk zonder bureel (kantoor) en 
werkplek struinend door het ziekenhuis in de beginfase van de opbouw. Later, met ook 
Jan aan boord, een goed team, meestal de proeftuin voor nieuwe ontwikkelingen in 
het UZA. Bij de pathologie mijn grote vriend PP, Patrick Pauwels, een onuitputtelijke 
en ongebreidelde ideeënmachine om het daarna aan anderen over te laten ze uit te 
voeren. De andere collega’s van thoraxoncologie UZA: Ann en Brigitte, Annemie Snoeckx, 
Maarten Spinhoven, Laurens Carp, Frederik Vandaele, Christel de Pooter, Paul Van Schil, 
Jeroen Hendriks, Patrick Lauwerse, Karen Zwaenepoel, Toke Michiels en fellows Nele 
Desie, Svitlana Tarasevic, Xiang Zhang en Jo Raskin. Collega’s van de longziekten en 
endoscopie en binnen het MOCA, het was fijn!

Daarna in het UMCG mensen ontmoet met een onmisbare rol in deze voorbereiding, 
Dirk-Jan en Huib, Harry, Jeroen – voor de K-ras stukken – , Lucie en Anthonie. Later 
Frederike, altijd goed om samen op jacht te gaan naar longnodules en robots. Ik kijk uit 
naar de ontwikkeling van de “one-shop-stop”. Collega’s om mee te sparren en sociaal 
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vangnet van het eerste uur: Marieke, Rob en Aline, Dirk-Jan en Karin, Erik en Corien en 
natuurlijk Wim, maar die krijgt een speciale plek. Onno - mede-opleider, Maarten, Peter, 
Tji, Hester, Jellie, David, Marlies, Yvette, Johan, Anna, en oud-fellows Allan en Hanneke. 
De rest van de longoncogroep: Ria, Femke, Bettina, Geke, Anita, Nathalie, Karina, Lianne, 
Anne, Thea, Marjan, Linda, Rianne, Marijke, Linze en Annette. En dan Jolanda en Inez 
als middelpunt van onze afdeling. Jullie weten echt alles!

Als opleider heb ik fijne taak om AIOS te begeleiden op het pad naar zelfstandig longarts. 
Dit is zeker een vertragende factor geweest van dit eindproduct, maar ik haal hier 
veel voldoening uit en dat is de moeite meer dan waard! Bedankt voor jullie steun en 
belangstelling. Jullie zijn alweer een mooi deel van mijn werk.

Klaas Kok als geneticus gaf een ander inzicht in de materie, hoe waardevol was dat! En 
dat editorial vloog uit de vingers. Wim Timens (bedankt voor de mooie plaatjes!), Wilfred 
den Dunnen, Caroline Van De Wauwer, Gonda de Jonge en Rozemarijn Vliegenthart 
onvermoeibare beoordeling van navigatie CT’s, Adrienne Brouwers, Fred Ubbels, Robin 
Wijsman en Pieter Deseyne voor de invulling van mooie samenwerkingsverbanden. 
Bart Koopmans, Paul van der Leest, Ed Schuuring, Laura Bolte, Johannes Björk, Rinse 
Weersma en anderen.

Anna Boulton, dank je voor je leuke samenwerking! Bedankt voor het editen van de 
intro en de outro en het addendum. De woordenteller vond ik een verrassende vondst 
en je lekensamenvatting heeft een speciaal plekje gekregen. 

De longartsen in de wijde regio, bedankt voor jullie verwijzingen voor de 
navigatiebronchoscopie en het sparren over patiëntencasuïstiek, al dan niet in MDO-
verband.

De beoordelingscommissie bestaande uit prof. Dr. Harry Groen, prof. Dr. Veerle Surmont 
en prof. Dr. Anne-Marie Dingemans wil ik hartelijk bedanken voor de tijd en moeite die 
ze hebben genomen om dit proefschrift te lezen.

Dan de paranimfen die mij bijstaan op deze speciale dag. Ik ben zeer vereerd! Maurice 
Pardoel, die samen met Géke en de kinderen al zo lang een onderdeel is van mijn leven. 
Blij dat jij deze eretaak wilt vervullen en naast mij wilt staan vandaag. En dat samen met 
Annelies Janssens, “keep calm and carry on” waarmee ik zoveel persoonlijke gesprekken 
heb gevoerd in een belangrijke periode in ons leven. Hartverwarmend dat je hier bent!
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En dan voor de persoonlijke noot in verschillende fases van het leven aangehaakt: Ilse, 
Cas, Job en Kaat; Maurice en Géke, Adriaan, Elisa, Corinne; Mathieu en Ineke, Simone, 
Lieke. Femke, fijn dat je dichtbij woont, we moeten nodig weer eens uit eten! Wanda, 
de Efteling gaan we plannen. Inge, niet vaak, maar altijd goed. Monique, verder praten 
alsof er geen tijd tussen heeft gezeten.

De cadeautjes in mijn leven: Nina, Bobbi, Tessel en Leon. Zussen Sonja en Laura, samen 
met Remco en Edo, zo goed dat ik altijd bij jullie terecht kan! 

Lieve Wim, ook al een cadeautje, zo onverwacht en zo gezellig. Al snel bleken de 
“kacheltjes van Wim” een eerste levensbehoefte in een arctische winter in het tuinhuis. 
Daarna samen slopen en weer bouwen, wat een avontuur! Dank je voor je steun en 
aandeel bij dit schriftje. Ik hou van jou, jij maakt mijn leven stukken lichter!

Zeker niet als allerlaatste maar juist boven alles, papa en mama, bedankt voor jullie 
stimulans om mij de wereld te laten ontdekken en te doen waarvan ik dacht dat goed 
voor mij zou zijn. Jullie zorgen altijd voor mij en ik ben zo blij dat jullie hierbij zijn! Blijf 
nog maar een tijdje!
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CURRICULUM VITAE

Birgitta Ingrid Hiddinga werd geboren in Groningen. 
Na het behalen van het VWO diploma aan de 
Rijksscholengemeenschap Coevorden keerde ze terug 
naar Groningen voor haar studie geneeskunde. Eén 
coschap – interne geneeskunde – was in het kader 
van Erasmusuitwisseling in het Universitair Ziekenhuis 
Antwerpen. Na haar diplomering deed ze een breed palet 
aan klinische vaardigheden op in onder andere in de 
kindergeneeskunde en jeugdgezondheidzorg. Tevens was 
ze teamleider van een docententeam voor de deeltijdopleiding doktersassistent aan 
het Deltion College in Zwolle. Ze gaf daar anatomie, fysiologie en pathologie en was 
stagebegeleider. Toen het ziekenhuis trok, begon ze als ANIOS interne geneeskunde in 
Enschede, vanwaar ze overstapte naar de Longziekten in Medisch Spectrum Twente. Hier 
rondde ze haar opleiding af. Aansluitende verhuisde ze naar België voor een fellowship 
Thoracale Oncologie in Universitair Ziekenhuis Gent onder leiding van Jan van Meerbeeck 
en Veerle Surmont. Dit resulteerde in een aanstelling als staflid Thoracale Oncologie in 
Universitair Ziekenhuis Antwerpen van ruim 5 jaar. Sindsdien is zij werkzaam als longarts 
met aandachtsgebied longoncologie in het Universitair Medisch Centrum Groningen.
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